近期承担的重要科研项目:
1.连续变量量子密钥分发,国家重点研发计划,2016.07-2021.06
2.基于氮化硅薄膜腔光力系统的非经典量子态制备与操控研究,国家自然科学基金,2018.1-2021.12
3.连续变量量子保密通信技术,山西省重点研发计划,2018.1-2021.3
4.空地一体化连续变量量子保密通信示范网络,广东省重点领域研发计划项目,2020.1-2023.1
近期发表的重要学术论文:
1.Continuous-variable quantum key distribution under strong channel polarization disturbance, PHYSICAL REVIEW A 102, 032625 (2020).
2.Microfiber Mechanical Resonator for Optomechanics, ACS Photonics 7, 695 (2020).
3.High-Speed Post-Processing in Continuous-Variable Quantum Key Distribution Based on FPGA Implementation, JOURNAL OF LIGHTWAVE TECHNOLOGY 38, 3935 (2020).
4.Impact of Four-Wave-Mixing Noise from Dense Wavelength-Division-Multiplexing Systems on Entangled-State Continuous-Variable Quantum key Distribution, PHYSICAL REVIEW APPLIED 14, 024013 (2020).
5.Continuous-variable measurement-device-independent quantum key distribution with source-intensity errors, PHYSICAL REVIEW A 102, 022609 (2020).
6.Ultrashort all-fiber Fabry–Perot interferometer
fabricated by a CO2 laser, Appl. Opt. 59, 8959-8963 (2020).
7.Quantum entanglement via a controllable four-wave-mixing mechanism in an optomechanical system, PHYSICAL REVIEW A 100, 053842 (2019).
8.Generation of Gaussian-modulated entangled states for continuous variable quantum communication, Optics Letters, 44 (15), 3613-3616 (2019).
9.Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers, Physical Review A, 99, 42309 (2019).
10.Realistic rate–distance limit of continuous-variable quantum key distribution, Optics Express, 27 (9), 13372-13386 (2019).
11.High-Gain and Narrow-Bandwidth Optical Amplifier via Optomechanical Four-Wave Mixing, Physical Review Applied, 11, 064048 (2019).
12.Long-distance continuous-variable quantum key distribution with entangled states, Phys. Rev. Appl. 10, 064028 (2018).
13.Multimode four-wave mixing in an unresolved sideband optomechanical system, Phys. Rev. A 97, 033806 (2018).
14.High-visibility, high-strength, rapid-response, in-fiber optofluidic sensor, Journal of lightwave technology 36, 2896 (2018).
15.Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution, Quantum Information Processing 17, 344 (2018).
16.High-speed time-domain balanced homodyne detector for nanosecond optical field applications, Journal of the Optical Society of America B 35, 481 (2018).
17.Cascaded on-chip phonon shield for membrane microresonators,
Applied Optics 36, 10436 (2018).
18.Security analysis of unidimensional continuous-variable quantum key
distribution using uncertainty relations, Entropy 20, 157 (2018).
19.Compact 6 dB two-color continuous variable entangled source based on
a single ring optical resonator, Appl. Sci. 8, 330 (2018).
20.Strong quantum squeezing of mechanical resonator via parametric
amplification and coherent feedback, Phys. Rev. A 96, 063811 (2017).
21.Finite-size analysis of unidimensional continuous-variable quantum
key distribution under realistic conditions, Opt. Express 25, 27995 (2017).
22.High-visibility in-line fiber-optic optofluidic Fabry–Perot
cavity, Appl. Phys. Lett. 111, 191102 (2017).
23.FPGA-Based Implementation of Size-Adaptive Privacy Amplification in
Quantum Key Distribution, IEEE Photon. J. 9, 7600308 (2017).
24.Imperfect state preparation in continuous-variable quantum key
distribution, Phys. Rev. A 96, 042312 (2017).
25.Experimental study on all-fiber-based unidimensional
continuous-variable quantum key distribution, Phys. Rev. A 95, 062330 (2017).
26.Continuous
variable quantum key distribution,Chin. Phys. B 26, 040303 (2017).
27.High-efficiency
reconciliation for continuous variable quantum key distribution,
Japanese Journal of Applied Physics 56, 044401 (2017).
28.Suppression
of phonon tunneling losses by microfiber strings for high-Q membrane
microresonators,
Appl. Phys. Lett. 109, 191903 (2016).
29.Highprecision
auto-balance of the time-domain pulsed homodyne detector,
Acta. Phys. Sin. 65, 100303 (2016).
30.Quantum
analysis and experimental investigation of the nondegenerate optical
parametric oscillator with unequally injected signal and idler, Phys. Rev. A 93, 013831 (2016).
31.Quantum
frequency up-conversion of continuous variable entangled states, Appl. Phys. Lett. 107, 231109 (2015).
32.Generation
of stable and high extinction ratio light pulses for continuous variable quantum key distribution, IEEE J. Quantum Electronics 51, 5200206 (2015).
33.Efficient
Suppression of Laser Excess Noise for Quantum Optomechanical System,
Acta Photonica Sinica 44,
0827001 (2015).
34.Quantum
frequency down-conversion of bright amplitude-squeezed states,
Opt. Express 22, 24192 (2014).
35. Influence
of guided acoustic wave Brillouin scattering on excess noise in
fiber-based continuous variable quantum key distribution,
J. Opt. Soc. Am. B 31, 2379 (2014).
36. Efficient
Generation of Squeezed Light Based on MgO-Doped Periodically Poled
LiNbO3,
Chin. Phys. Lett. 31, 014208 (2014).
37. Four-state
modulation continuous variable quantum key distribution over a 30-km
fiber and analysis of excess noise,
Chin. Phys. Lett. 30, 010305 (2013).
38. Continuous
variable entanglement distribution for long-distance quantum
communication,
Chin. Phys. Lett. 30, 060302 (2013).
39. Robust
generation of bright two-color entangled optical beams from a phase insensitive
optical parametric amplifier,
Appl. Phys. Lett. 100, 091112 (2012).
40. Ultrastable
Fiber-Based Time-Domain Balanced Homodyne Detector for Quantum
Communication,
Chin. Phys. Lett. 29,
124202 (2012).
41. Tunable
single-frequency intracavity frequency-doubly Ti:Sapphire laser
around 461 nm, Chin. Phys. Lett. 28, 124205 (2011).
42. Generation
and homodyne detection of continuous-variable entangled optical
beams with a large wavelength difference, Phys. Rev. A 84, 020301(R)
(2011).
43. High
–efficiency continuously tunable single-frequency doubly resonant
optical parametric oscillator, Appl. Opt. 50, 1477 (2011).
44. Generation
of two-color continuous variable quantum entanglement at 0.8 and 1.5
mm,
Appl.
Phys. Lett. 97,
031107 (2010).
45. Efficient
quantum
memory for light, Nature 465, 1052 (2010).
46. Observation
of two-color continuous variable quantum correlation at 0.8 and 1.5mm,
J. Opt. Soc. Am. B 27, 842 (2010).
47. Quantum
noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5 nm,
Appl. Opt. 48, 6475 (2009).
48. Influence
of laser linewidth on external-cavity frequency doubling efficiency
of a 1.56
mm
master oscillator fiber power amplifier, Chin. Phys. B 18, 2324
(2009).
49. Continuous-wave,
single-frequency intracavity singly resonant optical parametric
oscillator at 1.5-mm
wavelength, Chin. Opt. Lett. 7, 244 (2009).
50. Generation
of a squeezing vacuum at a telecommunication wavelength with
periodically poled LiNbO3, Appl. Phys. Lett. 92,
221102 (2008).
51. Noise
suppression, linewidth narrowing of a master oscillator power
amplifier at 1.56um and the second harmonic generation output at
780nm,Opt.Express
16, 11871 (2008).
52. Broadband
and rapid tuning of an all-solid-state single-frequency Nd:YVO4
laser, Appl. Phys. B 90,
485 (2008).
53. Frequency
conversion of continuous variable quantum states, J. Opt. Soc. Am. B
25, 269 (2008).
54. Generation
of qudits and entangled qudits, Phys. Rev.
A 77, 015802 (2008).
55. High-efficiency
generation of a continuous-wave single-frequency 780 nm laser by
external-cavity frequency doubling, Appl.
Opt. 46,
3593 (2007).
56. Quantum
correlation between fundamental and second-harmonic fields via
second-harmonic generation, J.
Opt. Soc. Am. B
24, 660 (2007).
57. Generation
of amplitude squeezed green light from a high efficiency PPKTP
frequency doubler, Opt. Commun. 265,
576 (2006).
58. Investigation
of fundamental and second harmonic squeezed lights from a singly
resonant PPKTP frequency doubler, J. Phys. B
39, 4163
(2006).
59. Generation
of sub-Poisson Ian state with quantum high-and low-pass filters,
Phys.
Rev. A
72, 013822 (2005).
60. Single-mode
approximation of parametric down-conversion, Phys.Rev.
A 72,
06380 (2005).
61. Quantum
optical implementation of quantum communication, China
Communications,
68 (2005).
62. The
response characteristic of a quantum high-pass/low-pass filer for
quantum state preparation, J. Opt. B
7, 736 (2005).
63. New
high-efficiency source of a three-photon W state and its full
characterization using quantum state tomography, Phys. Rev.
Lett. 95,150404
(2005).
64. Multi-photon
entangled states from two-crystal geometry parametric
down-conversion and their application in quantum teleportation, Opt. Commun. 244,
285 (2005).
65. Four-photon
W state two-crystal geometry parametric down-conversion, Phys.
Rev. A 70,
014301 (2004).
66. Four-photon
entanglement from two-crystal geometry, Phys. Rev.
A 69, 020302 (R) (2004).
67. Generation
of the four-photon W state and other multiphoton entangled states
using parametric down-conversion, Phys. Rev.
A 70, 052308 (2004).
68. Multiparty
secret sharing of quantum information based on entanglement
swapping, Phys.
Lett. A 324,
420 (2004).
授权专利:
1.高速脉冲时域平衡零拍探测装置,专利号 ZL 2019 1 0926387.6 (2020)
2.具有侧面微流体通道的全光纤开腔FP式光流体传感器,专利号 ZL 2017 1 0882257.8 (2020)
3.一种安全密钥速率计算方法及系统,专利号 ZL 2018 1 0883479.6 (2020)
4.一种实现一维调制连续变量量子密钥分发方法,专利号 ZL 2017 1 0230519.2 (2019)
5.信号调制连续变量纠缠源的制备装置,专利号 ZL 2017 1 0602457.3 (2019)
6.微结构光纤和石英毛细管的微形变高机械强度熔接方法,专利号 ZL 2017 1 0256741.X (2019)
7.一种高机械品质因子的薄膜谐振子实现装置,专利号 ZL 2016 1 10741294.2 (2018)
8.可实现时域脉冲平衡零拍探测器自动平衡的控制装置,专利号
ZL 2015 1 0411759.3 (2017)
9.一种适用于连续变量量子密钥分发的脉冲发生器,专利号 ZL 2014 1 0146307.2
(2017)
10.锁定LiNbO3马赫-曾德尔调制器偏置工作点的方法,专利号
ZL 2013 1 0185704.6 (2015)
11.全光纤激光噪声过滤装置,专利号
ZL 2013 1 0014845.1 (2015)
12.连续变量量子态频率变换装置,专利号
ZL 2012 1 0553640.6 (2015)
13.一种激光时空模式改善装置,专利号
ZL 2012 1 0142758.X (2014)
14.双色可调谐连续变量纠缠态产生和探测装置,专利号
ZL 2011 1 0256115.3 (2013)
15.全光纤脉冲平衡零拍探测装置,专利号
ZL 2011 1 0188519.3 (2012)
专利转让:
1.锁定LiNbO3马赫-曾德尔调制器偏置工作点的方法,专利号 ZL 2013 1 0185704.6
2.全光纤脉冲平衡零拍探测装置,专利号 ZL 2011 1 0188519.3
获奖:
题目:“光场量子态的制备、操控及在量子通信中的应用”
获奖人:李永民,张宽收,冯晋霞
级别:山西省自然科学二等奖
联系方式:
地址:山西省太原市坞城路92号,山西大学光电研究所
Tel: 0351-7011575
Email: yongmin@sxu.edu.cn