首页 | 简介 | 研究方向 | 教学工作 | 实验室 | 科研人员 | 学术交流 | 产品开发 | 出版物 | 机构设置 | 获奖专利 | 招聘信息 | 常用链接

人员简介

      李永民,男,1977年1月生,理学博士,理学博士,量子光学与光量子器件国家重点实验室、山西大学光电研究所教授,博士生导师,山西省三晋英才拔尖骨干人才、山西省中青年拔尖创新人才、山西省校优秀青年学术带头人。主要研究方向:量子光学、量子信息。

      2003年毕业于山西大学光电研究所,获理学博士学位。2003-2005年在日本东京大学从事博士后研究,主要研究方向为多光子量子态的制备及其在量子信息领域的应用。2008年访问澳大利亚国立大学,合作进行固态介质量子信息存储的研究。2005年至今在山西大学量子光学与光量子器件国家重点实验室工作,主要从事量子通信、量子光力等方面的理论与实验研究。

   先后主持多项国家级科研项目,包括国家重点研发计划课题、国家自然科学基金项目、总装预研项目、教育部博士点基金;作为主要骨干参与承担国家重大科学研究计划项目和国家自然科学基金科学仪器基础研究专款等项目。已在Nature,Phys. Rev. Lett.,Phys. Rev. Appl.,Phys. Rev. A, Appl. Phys. Lett.等国内外重要学术期刊上发表论文八十余篇,被SCI引用一千余次。获国家发明专利授权12项(已技术转让两项);山西省自然科学二等奖1项(排名1)。

近期承担的重要科研项目:

1.连续变量量子密钥分发,国家重点研发计划,2016.07-2021.06 (主持)

2.基于氮化硅薄膜腔光力系统的非经典量子态制备与操控研究,国家自然科学基金,2018.1-2021.12 (主持)

3.xxxx关键技术,总装预研基金项目,2015.6-2015.12 (主持)

4.基于调制纠缠态的远程连续变量量子密钥分发研究, 国家自然科学基金,2014.1-2017.12 (主持)

 

近期发表的重要学术论文:

 1. Generation of Gaussian-modulated entangled states for continuous variable quantum communication, Optics Letters, 44 (15), 3613-3616 (2019).

 2. Continuous-variable measurement-device-independent quantum key distribution using modulated squeezed states and optical amplifiers, Physical Review A, 99, 42309 (2019).

 3. Realistic rate–distance limit of continuous-variable quantum key distribution, Optics Express, 27 (9), 13372-13386 (2019).

 4. High-Gain and Narrow-Bandwidth Optical Amplifier via Optomechanical Four-Wave Mixing, Physical Review Applied, 11, 064048 (2019).

 5. Long-distance continuous-variable quantum key distribution with entangled states, Phys. Rev. Appl. 10, 064028 (2018).

 6. Multimode four-wave mixing in an unresolved sideband optomechanical system, Phys. Rev. A 97, 033806 (2018).

 7. High-visibility, high-strength, rapid-response, in-fiber optofluidic sensor, Journal of lightwave technology 36, 2896 (2018).

 8. Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution, Quantum Information Processing 17, 344 (2018).

 9. High-speed time-domain balanced homodyne detector for nanosecond optical field applications, Journal of the Optical Society of America B 35, 481 (2018).

 10. Cascaded on-chip phonon shield for membrane microresonators, Applied Optics 36, 10436 (2018).

 11. Security analysis of unidimensional continuous-variable quantum key distribution using uncertainty relations, Entropy 20, 157 (2018).

 12. Compact 6 dB two-color continuous variable entangled source based on a single ring optical resonator, Appl. Sci. 8, 330 (2018) .

 13. Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback, Phys. Rev. A 96, 063811 (2017).

 14. Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions, Opt. Express 25, 27995 (2017).

 15. High-visibility in-line fiber-optic optofluidic Fabry–Perot cavity, Appl. Phys. Lett. 111, 191102 (2017).

 16. FPGA-Based Implementation of Size-Adaptive Privacy Amplification in Quantum Key Distribution, IEEE Photon. J. 9, 7600308 (2017).

 17. Imperfect state preparation in continuous-variable quantum key distribution, Phys. Rev. A 96, 042312 (2017).

 18. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution, Phys. Rev. A 95, 062330 (2017).

 19. Continuous variable quantum key distribution, Chin. Phys. B 26, 040303 (2017).

 20. High-efficiency reconciliation for continuous variable quantum key distribution, Japanese Journal of Applied Physics 56, 044401 (2017).

 21.Suppression of phonon tunneling losses by microfiber strings for high-Q membrane microresonators, Appl. Phys. Lett. 109, 191903 (2016).

22Highprecision auto-balance of the time-domain pulsed homodyne detector, Acta. Phys. Sin. 65, 100303 (2016).

23.Quantum analysis and experimental investigation of the nondegenerate optical parametric oscillator with unequally injected signal and idler, Phys. Rev. A 93, 013831 (2016).

24.Quantum frequency up-conversion of continuous variable entangled states, Appl. Phys. Lett. 107, 231109 (2015).

25.Generation of stable and high extinction ratio light pulses for continuous variable quantum key distribution, IEEE J. Quantum Electronics 51, 5200206 (2015).

26.Efficient Suppression of Laser Excess Noise for Quantum Optomechanical System, Acta Photonica Sinica 44, 0827001 (2015).

27.Quantum frequency down-conversion of bright amplitude-squeezed states, Opt. Express 22, 24192 (2014).

28. Influence of guided acoustic wave Brillouin scattering on excess noise in fiber-based continuous variable quantum key distribution, J. Opt. Soc. Am. B 31, 2379 (2014).

29. Efficient Generation of Squeezed Light Based on MgO-Doped Periodically Poled LiNbO3, Chin. Phys. Lett. 31, 014208 (2014).

30. Four-state modulation continuous variable quantum key distribution over a 30-km fiber and analysis of excess noise, Chin. Phys. Lett. 30, 010305 (2013).

31. Continuous variable entanglement distribution for long-distance quantum communication, Chin. Phys. Lett. 30, 060302 (2013).

32. Robust generation of bright two-color entangled optical beams from a phase insensitive optical parametric amplifier, Appl. Phys. Lett. 100, 091112 (2012).

33. Ultrastable Fiber-Based Time-Domain Balanced Homodyne Detector for Quantum Communication, Chin. Phys. Lett. 29, 124202 (2012).

34Tunable single-frequency intracavity frequency-doubly Ti:Sapphire laser around 461 nm, Chin. Phys. Lett. 28, 124205 (2011).

35Generation and homodyne detection of continuous-variable entangled optical beams with a large wavelength difference, Phys. Rev. A 84, 020301(R) (2011).

36High –efficiency continuously tunable single-frequency doubly resonant optical parametric oscillator, Appl. Opt. 50, 1477 (2011).

37. Generation of two-color continuous variable quantum entanglement at 0.8 and 1.5 mm, Appl. Phys. Lett. 97, 031107 (2010).

38. Efficient quantum memory for light, Nature 465, 1052 (2010).

39. Observation of two-color continuous variable quantum correlation at 0.8 and 1.5mm, J. Opt. Soc. Am. B 27, 842 (2010).

40. Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5 nm, Appl. Opt. 48, 6475 (2009).

41. Influence of laser linewidth on external-cavity frequency doubling efficiency of a 1.56 mm master oscillator fiber power amplifier, Chin. Phys. B 18, 2324 (2009).

42. Continuous-wave, single-frequency intracavity singly resonant optical parametric oscillator at 1.5-mm wavelength, Chin. Opt. Lett. 7, 244 (2009).

43. Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO3, Appl. Phys. Lett. 92, 221102 (2008).

44. Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56um and the second harmonic generation output at 780nm,Opt.Express 16, 11871 (2008).

45. Broadband and rapid tuning of an all-solid-state single-frequency Nd:YVO4 laser, Appl. Phys. B 90, 485 (2008).

46. Frequency conversion of continuous variable quantum states, J. Opt. Soc. Am. B 25, 269 (2008).

47. Generation of qudits and entangled qudits, Phys. Rev. A 77, 015802 (2008).

48. High-efficiency generation of a continuous-wave single-frequency 780 nm laser by external-cavity frequency doubling, Appl. Opt. 46, 3593 (2007).

49. Quantum correlation between fundamental and second-harmonic fields via second-harmonic generation, J. Opt. Soc. Am. B 24, 660 (2007).

50. Generation of amplitude squeezed green light from a high efficiency PPKTP frequency doubler, Opt. Commun. 265, 576 (2006).

51. Investigation of fundamental and second harmonic squeezed lights from a singly resonant PPKTP frequency doubler, J. Phys. B 39, 4163 (2006).

52. Generation of sub-Poisson Ian state with quantum high-and low-pass filters, Phys. Rev. A 72, 013822 (2005).

53. Single-mode approximation of parametric down-conversion, Phys.Rev. A 72, 06380 (2005).

54. Quantum optical implementation of quantum communication, China Communications, 68 (2005).

55. The response characteristic of a quantum high-pass/low-pass filer for quantum state preparation, J. Opt. B 7, 736 (2005).

56. New high-efficiency source of a three-photon W state and its full characterization using quantum state tomography, Phys. Rev. Lett. 95,150404 (2005).

57. Multi-photon entangled states from two-crystal geometry parametric down-conversion and their application in quantum teleportation, Opt. Commun. 244, 285 (2005).

58. Four-photon W state two-crystal geometry parametric down-conversion, Phys. Rev. A 70, 014301 (2004).

59. Four-photon entanglement from two-crystal geometry, Phys. Rev. A 69, 020302 (R) (2004).

60. Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion, Phys. Rev. A 70, 052308 (2004).

61. Multiparty secret sharing of quantum information based on entanglement swapping, Phys. Lett. A 324, 420 (2004).

 

授权专利:

1.一种高机械品质因子的薄膜谐振子实现装置,专利号 ZL 2016 1 10741294.2 (2018)

2.可实现时域脉冲平衡零拍探测器自动平衡的控制装置,专利号 ZL 2015 1 0411759.3 (2017)

3.一种适用于连续变量量子密钥分发的脉冲发生器,专利号 ZL 2014 1 0146307.2 (2017)

4.锁定LiNbO3马赫-曾德尔调制器偏置工作点的方法,专利号 ZL 2013 1 0185704.6 (2015) 

5.全光纤激光噪声过滤装置,专利号 ZL 2013 1 0014845.1 (2015)

6.连续变量量子态频率变换装置,专利号 ZL 2012 1 0553640.6 (2015)

7.一种激光时空模式改善装置,专利号 ZL 2012 1 0142758.X (2014)

8.双色可调谐连续变量纠缠态产生和探测装置,专利号 ZL 2011 1 0256115.3 (2013)

9.全光纤脉冲平衡零拍探测装置,专利号 ZL 2011 1 0188519.3 (2012)

 

专利转让:

1.锁定LiNbO3马赫-曾德尔调制器偏置工作点的方法,专利号 ZL 2013 1 0185704.6

2.全光纤脉冲平衡零拍探测装置,专利号 ZL 2011 1 0188519.3

 

获奖:

题目:“光场量子态的制备、操控及在量子通信中的应用”

获奖人:李永民,张宽收,冯晋霞

级别:山西省自然科学二等奖

 

联系方式:

地址:山西省太原市坞城路92号,山西大学光电研究所

Tel: 0351-7011575

Email: yongmin@sxu.edu.cn

 

地址:山西省太原市坞城路92号 邮编:030006 联系电话:0351-7010688
版权所有:山西大学光电研究所 ysms@sxu.edu.cn