
Experimental demonstration of robustness of
Gaussian quantum coherence
HAIJUN KANG,1 DONGMEI HAN,1 NA WANG,1 YANG LIU,1 SHUHONG HAO,2,4 AND XIAOLONG SU1,3,*
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University,
Taiyuan 030006, China
2School of Mathematics and Physics, Anhui University of Technology, Maanshan 243000, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
4e-mail: haoshuhong@qq.com
*Corresponding author: suxl@sxu.edu.cn

Received 4 March 2021; revised 30 April 2021; accepted 1 May 2021; posted 4 May 2021 (Doc. ID 424198); published 28 June 2021

Besides quantum entanglement and steering, quantum coherence has also been identified as a useful quantum
resource in quantum information. It is important to investigate the evolution of quantum coherence in practical
quantum channels. In this paper, we experimentally quantify the quantum coherence of a squeezed state and a
Gaussian Einstein–Podolsky–Rosen (EPR) entangled state transmitted in Gaussian thermal noise channel. By
reconstructing the covariance matrix of the transmitted states, quantum coherence of these Gaussian states is
quantified by calculating the relative entropy. We show that quantum coherence of the squeezed state and
the Gaussian EPR entangled state is robust against loss and noise in a quantum channel, which is different from
the properties of squeezing and Gaussian entanglement. Our experimental results pave the way for application of
Gaussian quantum coherence in lossy and noisy environments. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.424198

1. INTRODUCTION

The principle of coherent superposition of waves plays impor-
tant roles in many well-known phenomena such as interference
and diffraction. In quantum mechanics, the superposition prin-
ciple, which is one of the fundamental nonclassical character-
istics of quantum states, underlies many nonclassical properties
of quantum mechanics including entanglement or coherence
[1]. Recently, resource theories of coherence have attracted a
lot of attention [2–4]. Quantum coherence, which character-
izes the quantumness and underpins quantum correlations in
quantum systems, plays a key role in many novel quantum
phenomena and has been identified as a quantum resource
for quantum information processing [5–9]. Quantum coher-
ence also plays a strong role in biology systems [10], such as
photosynthetic energy transport, the avian compass, and sense
of smell.

To quantify coherence, Baumgratz et al. established a frame-
work by referring to the method of quantifying entanglement
[1]. The quantum coherence of a quantum state is defined as
the minimum distance between the quantum state and an in-
coherent state in the Hilbert space [1]. In addition to relative
entropy and l 1 norm [1], it has been shown that quantum
coherence can also be quantified by Fisher information [11],
skew information entropy [12], Tsallis relative α entropy
[13], robustness [14], and so on. The freezing [15], distillation
[16], catalysis [17], and erasure [18] of quantum coherence and

the relationships between quantum coherence and complemen-
tarity relation [19], uncertainty relation [20], and quantum en-
tanglement or other types of quantum correlation [21,22] have
also been investigated. With the rapid development in quan-
tum coherence theory, the experimental demonstration related
to quantum coherence is in progress [23–28]. Gaussian states,
such as the squeezed state and the Einstein–Podolsky–Rosen
(EPR) entangled state, play essential roles in continuous vari-
able (CV) quantum information [29–31], where Gaussian
states are generated deterministically and information is en-
coded in the position or momentum quadrature of photonic
harmonic oscillators. For example, Gaussian states have been
applied in quantum computation [32,33], quantum key distri-
bution [34–36], quantum teleportation [37,38], quantum en-
tanglement swapping [39–41], quantum dense coding [42,43],
and verification of the error-disturbance uncertainty relation
[44,45]. Recently, it has been shown that quantum coherence
with infinite-dimensional systems can be quantified by relative
entropy [46]. Then the investigations of Gaussian quantum co-
herence attracted lots of attention [47–49].

In practical quantum computation and quantum informa-
tion, decoherence coming from the inevitable interaction be-
tween a quantum resource and the environment is a main
obstacle [50]. Up to now, the decoherence of squeezing, entan-
glement, and quantum steering in the thermal noise channel
has been experimentally demonstrated [51–55]. Toward the
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application of quantum coherence, it is necessary to investigate
the evolution of quantum coherence in lossy and noisy envi-
ronment [56,57]. Very recently, it has been shown that quan-
tum coherence can be robust against noise theoretically [58]
and quantum coherence of optical cat states can be robust
against loss [59].

In this paper, we experimentally quantify quantum coher-
ence of Gaussian states, for example, a squeezed state and a
Gaussian EPR entangled state, by measuring their covariance
matrices. Then we investigate quantum coherence of these
Gaussian states through lossy and noisy channels. We show that
quantum coherence of these Gaussian states is robust against
loss in a lossy channel, which is similar to the case of squeezing
and entanglement of a Gaussian state. The most interesting
thing is that the quantum coherence of these Gaussian states
is still robust in a noisy channel even if the squeezing and
entanglement of the Gaussian state disappear. The presented
results provide useful reference for applying quantum coher-
ence of a Gaussian state in practical quantum information
processing.

2. PRINCIPLE OF THE EXPERIMENT

As shown in Fig. 1(a), the quantum coherence of a Gaussian
state is distributed through a Gaussian thermal noise channel,
and the quantum coherence of the output state is measured.

Here we consider two kinds of Gaussian channels: one is a lossy
channel where only vacuum noise is involved, and the other is a
noisy channel where the noise higher than vacuum noise exists.
The squeezed state and the EPR entangled state, which are gen-
erated from a nondegenerate optical parametric amplifier
(NOPA) as shown in Fig. 1(b), are used as two examples to
investigate the quantum coherence of a Gaussian state in
our experiment. The NOPA cavity is in a semimonolithic
structure, which is composed by an a-cut type II potassium
titanyl phosphate (KTP) crystal (3 mm × 3 mm × 10 mm),
whose front surface is used as input mirror, and a concave mir-
ror with curvature radius of 50 mm. The NOPA is operating in
the case of deamplification, i.e., the relative phase between the
signal and the pump light is locked to �2n� 1�π. The lossy
channel is simulated by combination of a half-wave plate
(HWP) and a polarization beam splitter (PBS), and the noisy
channel is simulated by combination of an HWP, two PBSs,
and an ancillary coherent beam carrying Gaussian noise.

At first, we distribute the amplitude squeezed state through
a lossy channel, where the output state is measured by the
homemade homodyne detector at Bob’s side in the time do-
main. Then we investigate the quantum coherence of an EPR
entangled state in lossy channel, where output states are mea-
sured by Alice’s and Bob’s homodyne detectors simultaneously
in the time domain. Finally, we quantify the quantum coher-
ence of the amplitude squeezed state and EPR entangled state
in a noisy channel, where the Gaussian noise is added through
amplitude and phase modulators (LINOS, LM0202 P and
LM0202 PHAS) on an ancillary coherent beam and coupled
into the lossy channel by the PBS. In the measurement of
the covariance matrix of output states in the time domain,
the electrical signal of each homodyne detector is mixed with
a 3 MHz reference signal (SRS, DS345), then passes through a
low-pass filter and a low-noise preamplifier (SRS, SR560), and
finally is recorded in a digital storage oscilloscope (Teledyne
LeCroy, WaveRunner 640Zi). The bandwidth of the homo-
dyne detectors we used is 8 MHz, and the common-mode re-
jection ratio is 30 dB (at 3 MHz). The sampling rate of the
digital storage oscilloscope is 500 KS/s, and there are
5 × 105 data for each sampling space.

3. QUANTUM COHERENCE

Quantum coherence of a quantum state ρ̂ in Fock space can be
calculated by [1]

C rel: ent:

�
ρ̂

�
� S�ρ̂diag� − S

�
ρ̂

�
, (1)

where S is van Neumann entropy and ρ̂diag is a diagonal matrix,
which removes all off-diagonal elements of the density matrix ρ̂.
In the case of Gaussian quantum information, a Gaussian state
ρ̂�x̄,V� can be completely represented by the displacement x̄
and the covariance matrix V in phase space, which corresponds
to the first and second statistical moments of the quadrature
operators, respectively [30,31]. The displacement x̄ � hx̂i,
where x̂ � �X̂ 1, Ŷ 1,…, X̂ N , Ŷ N �t , X̂ k � âk � â†k and Ŷ k �
i�â†k − âk� are the amplitude and phase quadrature of an optical
mode, respectively. The element of covariance matrix V is
defined as Vij � 1

2 hx̂i x̂j � x̂jx̂ii − hx̂iihx̂ji. The diagonal

Fig. 1. (a) Schematic of transmitting the quantum coherence of a
Gaussian state in a thermal noise channel. (b) Experimental setup. The
1080 nm and the 540 nm laser outputs from the Nd:YAP/LBO laser
pass through two mode cleaners and are injected into the NOPA as
signal light and pump light, respectively. The output modes of the PBS
behind the NOPA are an amplitude squeezed state (transmitted mode)
and a phase squeezed state (reflected mode) or EPR entanglement
state, when the HWP behind the NOPA is set to 22.5° or 0°, respec-
tively. We use homodyne detectors to measure the output modes and a
digital storage oscilloscope to record the experimental data. The inter-
ference efficiencies of homodyne detectors are 99%, and the quantum
efficiencies of photodiodes (LASER COMPONENTS, InGaAs-PD-
500um) are 99.6%. AM, amplitude modulator; PM, phase modulator.
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Gaussian states (incoherent states) are thermal states [47], so
the incoherent state ρ̂diag in Eq. (1) is replaced by an N -mode
thermal state ρ̂�x̄th,Vth� whose mean number of particles is the
same as ρ̂�x̄,V� for each mode. Thus, the Gaussian quantum
coherence of an N -mode Gaussian state can be represented
as [47]

C rel: ent:�ρ̂�x̄,V�� � S�ρ̂�x̄th,Vth�� − S�ρ̂�x̄,V��, (2)

where S�ρ̂�x̄,V�� � −
PN

i�1��νi−12 �log2�νi−12 � − �νi�1
2 �log2�νi�1

2 ��
and S�ρ̂�x̄th,Vth�� � −

PN
i�1��μi−12 �log2�μi−12 �− �μi�1

2 �log2�μi�1
2 ��

are the von Neumann entropy of ρ̂�x̄,V� and ρ̂�x̄th,Vth�,
respectively. νi and μi are the symplectic eigenvalues of V and
Vth, respectively. Here the displacements x̄th � 0 and the
elements of the diagonal covariance matrix Vth are given by V
with V th 2i−1,2i−1 �V th 2i,2i � 1

2
�V 2i−1,2i−1�V 2i,2i ��x̄2i−1�2�

�x̄2i �2�.
Since the displacements x̄ of the Gaussian states we used in

our experiment are zero, the Gaussian state can be completely
represented by its covariance matrix V. The covariance matrix
of the amplitude squeezed state is given by

Vsqu �
�
V s 0
0 V as

�
, (3)

where V s and V as are the variances of squeezed and anti-
squeezed noise of the squeezed state, respectively. The squeezed
and antisqueezed noise levels of the squeezed state are quanti-
fied by 10 log10 V s dB and 10 log10 V as dB, respectively. The
symplectic eigenvalue of the squeezed state can be determined
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetVsqu

p
.

The covariance matrix of the EPR entangled state is given by

Vent �
�

A C
Ct B

�
, (4)

where A � B � 1
2 �V s � V as�I, C � 1

2 �V s − V as�Z, t denotes
transpose, I �

�
1 0
0 1

�
, and Z �

�
1 0
0 −1

�
. The symplec-

tic eigenvalues can be determined by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2−4DetVent

p
2

q
, where

Δ � DetA �DetB� 2DetC. The positive partial transposi-
tion (PPT) criterion [60] is applied to describe the entangle-
ment of the EPR entangled state, which is a sufficient and
necessary condition for a two-mode entanglement state with
continuous variables. The PPT value can be determined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2−4DetVent

p
2

q
, where Γ � DetA �DetB − 2DetC. When

the PPT value is less than 1, the two mode quantum states
are entangled [60].

A one-mode Gaussian state ρ�x̄,V� transmitting in a
Gaussian channel can be represented by [61,62]

x̄ → T x̄ � d̄ ,V → TVT t � Λ, (5)

where d̄ is displacement operator in phase space, T is the am-
plification or attenuation and rotation operator in phase space,
and Λ is a noise term that may consist of quantum as well as
classical noise. The thermal noise channel, which belongs to the
incoherent channel [47] of the CV Gaussian quantum system,
can be written as [62]

T � ffiffiffi
η

p
I,Λ � �1 − η��δ� υ�I, d̄ � 0, (6)

where η and δ are the transmission efficiency and the excess
noise of the Gaussian channel, respectively, and υ � 1 repre-
sents the vacuum noise. When δ � 0, the Gaussian channel is a
lossy channel. The loss of the channel is given by L � 1 − η.

4. RESULTS

First we quantify the quantum coherence of the amplitude
squeezed state and the EPR entangled state by the covariance
matrices we reconstructed (see Appendix A) in a lossy environ-
ment. The decoherence of the squeezing of the squeezed state
and the entanglement of the EPR entangled state in the lossy
channel is shown in Figs. 2(a) and 2(b), respectively. It is ob-
vious that the squeezing and entanglement are robust against
loss in a lossy channel. Quantum coherence of the squeezed
state and the EPR entangled state in a lossy channel is shown
in Figs. 2(c) and 2(d), respectively. We can find that the quan-
tum coherence of the squeezed state and the EPR entangled
state is decreased with the increase of loss, which reaches zero
only when the maximal loss is reached. When the loss equals 1,
the squeezed state turns into a vacuum state and the EPR state
turns into a separable state. We can see that the quantum
coherence of these Gaussian states is also robust against loss
in a lossy channel.

Then we quantify the quantum coherence of a squeezed
state and an EPR entangled state in a noisy environment. In
the case of noisy channel, we fix the channel losses to
L � 0.4 and change the excess noise δ added on the amplitude
squeezed state and one mode of the EPR entangled state. The
decoherence of the squeezing of the squeezed state and the
entanglement of the EPR entangled state in the noisy channel

Fig. 2. Experimental results in a lossy channel. (a) Dependence of
squeezing (red solid line) and antisqueezing (blue dotted line) of the
squeezed state on the loss. The dashed line is the shot noise limit
(SNL). (b) Dependence of PPT value of the EPR entangled state
on the loss. The dashed line is the boundary of the entangled and
separable states. (c) and (d) Dependence of the quantum coherence
of the squeezed state and the EPR entangled state on the loss, respec-
tively. The initial squeezed and antisqueezed noise levels are −2.95 dB
and 4.15 dB, respectively. The error bars represent one standard
deviation and are obtained based on the statistics of the data.

1332 Vol. 9, No. 7 / July 2021 / Photonics Research Research Article



is shown in Figs. 3(a) and 3(b), respectively. Different from the
results in the lossy channel, the noise level of squeezing is be-
yond the shot noise limit (SNL) when the excess noise over
δ � 0.74 and the PPT value is greater than 1 when the excess
noise is greater than δ � 2.14, which means the squeezing of
the squeezed state and the entanglement of the EPR entangle-
ment state are destroyed.

The quantum coherence of the squeezed state and the EPR
entangled state in a noisy channel is shown in Figs. 3(c) and
3(d), respectively. It is obvious that the quantum coherence
of the squeezed state and the EPR entangled state is decreased
with the increase of the excess noises. However, the quantum
coherence of these Gaussian states still exists even if the squeez-
ing and entanglement disappear. It is interesting that the quan-
tum coherence of these two Gaussian states will vanish only
when infinite excess noises are involved in the case of fixed
channel loss. The dependence of quantum coherence of the
squeezed state and the EPR entangled state on loss and excess
noise is shown in Figs. 3(e) and 3(f ), respectively. It is obvious
that the quantum coherence of these Gaussian states is robust
against noise in a noisy channel.

We note that the squeezing and entanglement are destroyed
at different excess noise levels as shown in Figs. 3(a) and 3(b).
The reason for this result is that the excess noise is only added
on one mode of the EPR entangled state. It shows that the EPR

entanglement can tolerate more noise than the squeezed state in
a one-mode noise channel. The squeezing and entanglement
will be destroyed at same excess noise level if we add the excess
noise on both modes of the EPR entangled state simultaneously
(see Appendix B).

We also demonstrate the monotonicity of quantum coher-
ences of the squeezed state and the entanglement state in lossy
and noisy channels as shown in Figs. 2 and 3, respectively. The
quantum coherences of these two Gaussian states are decreasing
with the increase of loss and noise in quantum channels, which
is because the lossy and noisy channels are all incoherent oper-
ations and quantum coherence will decrease under incoherent
operations [1,47]. The physical reason for the robustness of
quantum coherences of these Gaussian states in a noisy channel
is that the proportion of quantum coherence is decreased
when it is mixed with thermal noise, but the quantum coher-
ence disappears completely only when infinite thermal noise is
involved.

5. CONCLUSION

In summary, we experimentally demonstrate the quantum co-
herence of Gaussian states in lossy and noisy channels. The re-
sults confirm that the quantum coherences of the squeezed state
and the EPR entangled state are robust against loss and noise in
a Gaussian thermal noise channel, although the squeezing and
entanglement of Gaussian states disappear at a certain noise
level in a noisy channel. Thus, the quantum coherence of a
Gaussian state can resist decoherence when it is used as quan-
tum resource. Our investigation makes a step toward the ap-
plication of quantum coherence as a quantum resource in
quantum communication.

It is interesting to accomplish quantum information tasks
that only require quantum coherence of a Gaussian state
due to its unique property in the presence of loss and noise.
However, a suitable application for only applying the quantum
coherence of a Gaussian state remains an open question.
Recently, it has been shown that the Gaussian entanglement
can be transferred in a single-mode cavity [63], which is an
application of robustness of quantum coherence of Gaussian
states. Based on the presented results of robustness for quantum
coherences of Gaussian states, the potential application of
quantum coherence is worthy of further investigation.

APPENDIX A: RECONSTRUCTION OF THE
COVARIANCE MATRIX

To reconstruct the covariance matrix of an EPR entangled state,
the variances and the cross correlations of the amplitude or
phase quadratures are obtained by simultaneously measuring
the amplitude or phase quadratures of two modes of the
EPR entangled state in the time domain. The diagonal ele-
ments of the covariance matrix are the variances of the ampli-
tude and phase quadratures hΔ2�x̂i�i, and the nondiagonal
elements are the covariances of the amplitude or phase quad-
ratures, which are calculated via the measured variances [64]:

Vij � �hΔ2�x̂i � x̂j�i − hΔ2�x̂i�i − hΔ2�x̂j�i�∕2, (A1)

Vij � −�hΔ2�x̂i − x̂j�i − hΔ2�x̂i�i − hΔ2�x̂j�i�∕2, (A2)

Fig. 3. Experimental results in a noisy channel. (a) Dependence of
the squeezing (red solid line) and antisqueezing (blue dotted line) of
the squeezed state on the excess noise. The dashed line is SNL.
(b) Dependence of the PPT value of the EPR entangled state on
the excess noise. The dashed line is the boundary of the entangled
and separable states. (c) and (d) Dependence of the quantum coher-
ence of the squeezed state and the EPR entangled state on the excess
noise, respectively. (e) and (f ) Quantum coherence of the squeezed
state and the EPR entangled state parameterized by loss and excess
noise, respectively. The red dots represent the experimental results
in (c) and (d).
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where hΔ2�x̂i − x̂j�i and hΔ2�x̂i � x̂j�i are the correlation var-
iances of amplitude and phase quadratures, which can be obtained
from the measured variances in the time domain. Based on the
reconstructed covariance matrix, the quantum coherence of the
EPR entangled state can be quantified according to Eq. (2).

APPENDIX B: TWO GAUSSIAN THERMAL NOISE
CHANNELS

Here we consider the situation in which two modes of the
Gaussian EPR entangled state are distributed through two
Gaussian thermal noise channels, where the loss and excess
noise are added on both modes of EPR entangled state as
shown in Fig. 4. The two output states are measured by
Alice’s and Bob’s homodyne detectors.

The decoherence of the entanglement of the EPR entangled
state in the two lossy and noisy channels is shown in Figs. 5(a)

and 5(b), respectively. The entanglement of the EPR entangled
state is robust against loss in two lossy channels, where we assume
the losses in the two channels are the same. In the case of the two
noisy channels, we fix the losses of the two Gaussian thermal
noise channels to L � 0.4 and add the same excess noise δ
on the two modes of the EPR entangled state. The entanglement
of the EPR entangled state is destroyed when the excess noise
δ > 0.74, which is same as the case in which the squeezing
of the squeezed state is destroyed as shown in Fig. 3(a) in the
main text. Comparing Fig. 5(b) and Fig. 3(b) in the main text,
it is obvious that the critical point where the disappearance of
entanglement happens is different when the excess noise is added
on one or two modes of the EPR entangled state.

The quantum coherences of the EPR entangled state in two
lossy and noisy channels are shown in Figs. 5(c) and 5(d), re-
spectively. The dependence of the quantum coherence of the
EPR entangled state on loss and excess noise is shown in
Fig. 5(e). It is obvious that quantum coherence is robust against
loss and noise when two modes of the EPR entangled state are
transmitted through two Gaussian thermal channels, which is
the same as the case in which one mode of the EPR entangled
state is transmitted through a Gaussian thermal channel as
shown in Fig. 3 in the main text.
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