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Quantum coherence plays an important role in quantum
information processing. In this Letter, we experimen-
tally demonstrate the conversion of local and correlated
Gaussian quantum coherence in the process of converting
two squeezed states into an entangled state. We also inves-
tigate the relationship among total, local, and correlated
coherence and show that the total coherence of a two-mode
Gaussian state is the sum of local quantum coherence of each
mode and the correlated quantum coherence between two
modes. Our results highlight the connection of different
quantum coherence in a two-mode Gaussian system and
provide references for potential application. © 2021 Optical
Society of America

https://doi.org/10.1364/OL.428597

The concept of coherence is the basis for the phenomenon of
interference and diffraction in classical wave mechanics. When
the superposition principle is applied to quantum mechanics,
the concept of quantum coherence is developed [1]. Quantum
coherence, which characterizes the quantumness and underpins
quantum correlations in quantum systems, plays a key role in
many novel quantum phenomena and has been identified as a
quantum resource for quantum information processing [2,3].
The relationship between quantum coherence and the com-
plementarity relation [4], uncertainty relation [5], quantum
entanglement, or other types of quantum correlation [6–8]
has been well studied. Recently, experimental demonstrations
obtaining maximal coherence via an assisted distillation process
[9], relation between coherence and path information [10],
cyclic interconversion between coherence and quantum corre-
lations [11], and quantification of the coherence of a tunable
quantum detector [12] have been realized.

The quantum coherence of a quantum state is defined as the
minimum distance between the quantum state and an inco-
herent state in Hilbert space [1], which is different from the
visibility of interference in classical optics. There are several
methods to quantify quantum coherence that include relative
entropy, l1-norm [1], fisher information [13], and robustness
of coherence [14]. The quantization of quantum coherence has
also been extended to infinite dimension [15–17].

Quantum coherence can describe the quantum properties
of single-mode, two-mode and multi-mode, which is different
from quantum correlation that requires at least two modes. In
a multi-mode system, local coherence represents the quantum
coherence of each mode, and correlated coherence refers to the
total correlation (including quantum and classical correlation)
among all modes [18–20]. The quantum correlated coherence
in a cavity optomechanical system [19], multipartite photonic
system [21], and quantum dots system [22] have been investi-
gated. However, the distribution and conversion of local and
correlation coherence in a two-mode system are still unclear and
have not been experimentally demonstrated.

Gaussian states, such as a squeezed state and Einstein–
Podolsky–Rosen (EPR) entangled state, play essential roles
in quantum information with continuous variables [23,24].
Gaussian quantum information has made significant progress in
quantum teleportation [25,26], quantum dense coding [27,28],
quantum entanglement swapping [29–31], quantum key distri-
bution [32–34], quantum computation [35,36], and quantum
networks [37]. It has been shown that quantum coherence
with continuous variables can be quantified by relative entropy
[15,16] Bures and Hellinger distances [17]. The scheme of
generating quantum coherence in continuous variable systems
via Gaussian measurements has also been proposed [38]. It is
important for the investigation of the monogamy and polygamy
relation of quantum coherence.

In this Letter, we experimentally demonstrate the conversion
of local and correlated Gaussian quantum coherence by cou-
pling two squeezed states on a variable beam splitter. The local
and correlated quantum coherence of the two-mode Gaussian
state are quantified by relative entropy. We observe that the local
quantum coherence of a squeezed state still exists when squeez-
ing disappears with the change of transmissivity of the beam
splitter. We demonstrate that the total coherence of a two-mode
Gaussian state is the sum of the local quantum coherence of
each mode and the correlated quantum coherence between the
two modes. Our results highlight the conversion of local and
correlated coherence along with the transformation of quan-
tum states and the relation among total, local, and correlated
coherence in a two-mode Gaussian state.
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Fig. 1. Schematic of the conversion between local and correlated
Gaussian quantum coherence when two squeezed states are con-
verted into an entangled state by a beam splitter. Blue and white boxes
represent with and without quantum coherence, respectively. The
dotted circle, red ellipse, and circle represent the noise of vacuum,
squeezed, and thermal states in phase space, respectively.

As shown in Fig. 1, two squeezed states are coupled on a beam
splitter, and an entangled state is obtained when transmittance
of the beam splitter is 50%. Only local coherence exists for two
independent squeezed states before the beam splitter. When the
entangled state is generated, the local coherence converts into
correlated coherence totally after the beam splitter.

Here, we use relative entropy to measure the distance in
Hilbert space. The relative entropy of quantum coherence of a
quantum state ρ̂ can be calculated by C(ρ̂)= S(ρ̂diag)− S(ρ̂),
where S is van Neumann entropy, and ρ̂diag is an incoherent
state removing all off-diagonal elements of ρ̂ [1]. Total quantum
coherence in quantum state ρ̂AB can be represented as [18,19]

Ct(ρ̂AB)= Cl (ρ̂AB)+ Cc (ρ̂AB), (1)

where Ct(ρ̂AB) is total coherence, Cl (ρ̂AB)= C(ρ̂A)+ C(ρ̂B )
is local coherence, and Cc (ρ̂AB) is correlated coherence. The
quantum correlated coherence of ρ̂AB is equal to zero, if and only
if ρ̂AB = ρ̂A ⊗ ρ̂B [39].

A Gaussian state can be completely represented by its dis-
placement x̄ and covariance matrix V in phase space, which
correspond to the first and second statistical moments of the
quadrature operators, respectively [23,24]. The displacement
x̄= 〈x̂〉, where x̂ = (X̂ 1, P̂1, . . . , X̂ N, P̂N)

T , X̂ k = (âk + â †
k
)

and P̂k = i(â †
k
− âk ) are amplitude and phase quadrature of

an optical mode, respectively. The elements of V are defined as
Vij =

1
2 〈x̂i x̂ j + x̂ j x̂i 〉 − 〈x̂i 〉〈x̂ j 〉. Since the displacements x̄

of the Gaussian states we used in our experiment are zero, the
Gaussian state can be completely represented by its covariance
matrix V. A typical incoherent state of Gaussian states is the
thermal state [16], so it can be used to quantify quantum coher-
ence of Gaussian states. Thus, Gaussian quantum coherence of
an N-mode Gaussian state can be represented as [16]

C[V] = S [Vth]− S[V], (2)

where S(V)=−
∑N
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[(
νi−1

2

)
log2
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2

)
−
(
νi+1

2

)
log2(
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2
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and S(Vth)=−
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i=1
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2

)
log2
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−
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2

)
log2
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)]
are the von Neumann entropy of a Gaussian

state with covariance matrix V and a thermal state with
covariance matrix Vth, respectively. νi and µi are sym-
plectic eigenvalues of V and Vth, respectively. Here the
elements of the covariance matrix Vth are given by V with
Vth 2i−1,2i−1 = Vth 2i,2i =

1
2 (V2i−1,2i−1 + V2i,2i ).

When an amplitude squeezed state (mode 1) and a phase
squeezed state (mode 2) are coupled on a variable beam splitter

with zero relative phase difference, the covariance matrix of
output modes A and B of the beam splitter is given by

VAB =

(
VA C
CT VB

)
, (3)

where VA = diag{〈δ2 X̂ A〉, 〈δ
2 P̂A〉} and VB =

diag{〈δ2 X̂ B 〉, 〈δ
2 P̂B 〉} are the covariance matrices of modes

A and B , respectively, and C= diag{〈X̂ A X̂ B 〉, 〈 P̂A P̂B 〉} repre-
sents the correlation between modes A and B . The variances of
amplitude and phase quadratures of modes A and B are given by

〈δ2 X̂ A〉 = (1− η)〈δ2 X̂ 1〉 + η〈δ
2 X̂ 2〉, (4)

〈δ2 P̂A〉 = (1− η)〈δ2 P̂1〉 + η〈δ
2 P̂2〉, (5)

〈δ2 X̂ B 〉 = η〈δ2 X̂ 1〉 + (1− η)〈δ
2 X̂ 2〉, (6)

〈δ2 P̂B 〉 = η〈δ2 P̂1〉 + (1− η)〈δ
2 P̂2〉, (7)

where η is transmissivity of the variable beam splitter. 〈δ2 X̂ 1〉,
〈δ2 P̂1〉, 〈δ2 X̂ 2〉, and 〈δ2 P̂2〉 are the variances of amplitude and
phase quadratures of modes 1 and 2, respectively.

The correlation of the amplitude and phase quadratures of
modes A and B are

〈X̂ A X̂ B 〉 =
√
η(1− η)(〈δ2 X̂ 2〉 − 〈δ

2 X̂ 1〉), (8)

〈 P̂A P̂B 〉 =
√
η(1− η)(〈δ2 P̂2〉 − 〈δ

2 P̂1〉). (9)

Total, local, and correlated quantum coherence of a
two-mode Gaussian state are given by

Ct [VAB] = S(Vth AB )− S(VAB), (10)

Cl [VAB] = C[VA] + C[VB ], (11)

Cc [VAB] = S(VA)+ S(VB )− S(VAB), (12)

where

C[VA] = S(Vth A)− S(VA), (13)

C[VB ] = S(Vth B )− S(VB ) (14)

are quantum coherence of modes A and B , respectively. The
symplectic eigenvalue of VA(B) is determined by

√
DetVA(B).

The symplectic eigenvalues of VAB can be determined by√
1±
√
12−4DetVAB

2 , where1=DetVA +DetVB + 2DetC.

As shown in Fig. 2, an amplitude squeezed state and a phase
squeezed state, generated from two nondegenerate optical
parametric amplifiers (NOPAs), are used to investigate the
conversion of Gaussian quantum coherence in our experiment.
The NOPA cavity is in a semi-monolithic structure composed
of a potassium titanyl phosphate (KTP) crystal whose front
surface is used as an input mirror and a concave mirror with
curvature radius of 50 mm. NOPA1 and NOPA2 are operated
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Fig. 2. Experimental setup. The 1080 nm and 540 nm laser beams
and are injected into two nondegenerate optical parametric amplifiers
(NOPAs) as signal and pump light, respectively. Two squeezed states
are coupled on a variable beam splitter. Output modes of the beam
splitter are measured by two homodyne detectors simultaneously.

in the case of deamplification and amplification, where the
relative phase between the signal and the pump light are locked
to (2n + 1)π and 2nπ , respectively. When both half-wave
plates (HWPs) behind NOPA1 and NOPA2 are set to 22.5◦, the
transmitted modes of the two polarization beam splitters (PBSs)
are an amplitude squeezed state (mode 1) and a phase squeezed
state (mode 2), respectively. Then, we couple modes 1 and 2 to
the variable beam splitter, where the variable beam splitter is
simulated by the combination of a HWP and two PBSs, and the
transmissivity is changed by rotating the HWP.

To reconstruct the covariance matrices of VA and VB , we
measure the quantum variance of amplitude quadratures
〈δ2 X̂ A〉 and 〈δ2 X̂ B 〉 and phase quadratures 〈δ2 P̂A〉 and 〈δ2 P̂B 〉

in the time domain. Since there is no correlation between
amplitude quadrature X̂ A(B) and phase quadrature P̂A(B),
the non-diagonal elements of VA and VB are zero. So, we only
experimentally measure the diagonal elements in the covariance
matrix of mode A(B), which is called partial reconstruction of
the covariance matrix [40]. It should be noted that this approxi-
mate treatment does not affect the experimental results. The
quantum variances of amplitude quadrature 〈δ2 X̂ A(B)〉 and
phase quadrature 〈δ2 P̂A(B)〉 are obtained from the measured
X̂ A(B) and P̂A(B) in the time domain by locking the relative
phase of mode A(B) and local oscillator of the homodyne detec-
tor to 0 and π/2, respectively. To reconstruct the covariance
matrices of VAB, we also measure cross correlations 〈X̂ A X̂ B 〉

and 〈 P̂A P̂B 〉 in the time domain. Since there is no correlation
between X̂ A(B) and P̂B(A), the non-diagonal elements of C are
zero too. The cross correlations are obtained by 〈X̂ A X̂ B 〉 =

[〈δ2 X̂ A〉 + 〈δ
2 X̂ B 〉 − 〈δ

2(X̂ A − X̂ B )〉]/2 and 〈 P̂A P̂B 〉 =

[〈δ2 P̂A〉 + 〈δ
2 P̂B 〉 − 〈δ

2( P̂A − P̂B )〉]/2, where 〈δ2(X̂ A − X̂B )〉

and 〈δ2( P̂A − P̂B )〉 are obtained from the simultaneously
measured amplitude and phase quadrature of modes A and
B [40].

In the measurement of output states in the time domain,
the electrical signal of each homodyne detector is mixed with a
3 MHz reference signal (SRS, DS345), then passed through a
low-pass filter and a low-noise preamplifier (SRS, SR560), and
finally recorded in a digital storage oscilloscope (TELEDYNE
LECROY, WaveRunner 640Zi). The sampling rate is 500 KS/s,
and there are 5× 105 data for each sampling.

Quantum noises of modes A and B , obtained from the
measured quantum variance of amplitude and phase quadra-
tures 〈δ2 x̂i 〉 (x̂i represents X̂ A, P̂A, X̂ B , and P̂B ) according to

Fig. 3. (a), (b) Dependence of quantum noise of modes A and B
on transmissivity of beam splitter, respectively. The solid and dotted
curves are quantum noise level of phase and amplitude quadrature,
respectively. The black dashed line is shot noise limit (SNL), which
corresponds to vacuum noise. (c), (d) Dependence of quantum coher-
ence of modes A and B on transmissivity of beam splitter, respectively.
Dots, squares, and triangles correspond to experimental results.

10 log10〈δ
2 x̂i 〉 dB, are shown in Figs. 3(a) and 3(b), respectively.

We show that quantum noises of phase quadrature of mode
A [solid red curve in Fig. 3(a)] and amplitude quadrature of
mode B [dotted blue curve in Fig. 3(b)] both increase with the
increase in transmissivity η. Conversely, quantum noises of
amplitude quadrature of mode A [dotted blue curve in Fig. 3(a)]
and phase quadrature of mode B [solid red curve in Fig. 3(b)]
decrease with the increase in η. In our experiment, when
η= 0, modes A and B are exactly modes 1 and 2, respectively,
since modes 1 and 2 are reflected totally by the beam splitter.
Similarly, when η= 1, modes A and B are exactly modes 2
and 1, respectively, since modes 1 and 2 are transmitted totally
by the beam splitter. So, squeezing is observed at η= 0 and
η= 1. The squeezing and anti-squeezing of modes 1 and 2 are
−2.6± 0.08 dB (〈δ2 P̂1〉 = 〈δ

2 X̂ 2〉 ≈ 0.55) and 4.7± 0.08 dB
(〈δ2 X̂ 1〉 = 〈δ

2 P̂2〉 ≈ 2.95), respectively.
Quantum coherences of modes A and B , obtained accord-

ing to Eqs. (13) and (14) based on the measured covariance
matrices VA and VB , are shown in Figs. 3(c) and 3(d), respec-
tively. Squeezing of modes A and B exists in the regions of
0≤ η < 0.188 and 0.812<η≤ 1. It is interesting that squeez-
ing disappears in the region of 0.188≤ η≤ 0.812, but quantum
coherences of modes A and B still exist. The quantum coher-
ences of modes A and B both decrease when η increases from
zero to 0.5 and increase when η increases from 0.5 to one. The
quantum coherences are equal to zero when η= 0.5 because
modes A and B are thermal states that are incoherent states, but
they are an EPR entangled state at this point.

Based on the measured covariance matrix VAB, we exper-
imentally quantify the total coherence, local coherence, and
correlated coherence according to Eqs. (10), (11), and (12)
respectively, which are shown in Fig. 4. The total quantum
coherence is equal to local coherence when η= 0 and η= 1
because those two Gaussian states of modes A and B are sep-
arated at these transmissivities. In this case, the correlated
coherence is equal to zero. The correlated coherence is maximal,
but the local quantum coherence is equal to zero at η= 0.5
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Fig. 4. Dependence of total (dashed blue line), local (solid black
curve), and correlated coherence (dotted red curve) of the two-mode
Gaussian state on transmissivity of beam splitter. Dots, squares, and
diamonds correspond to experimental results.

because modes A and B are an EPR entangled state, but each
of these modes is a thermal state that is an incoherent state.
The total coherence is composed of correlated coherence
totally at η= 0.5. By comparing quantum coherence at η= 0
and η= 0.5, we show that local quantum coherence is con-
verted into correlated quantum coherence when two separable
squeezed states are converted into an entangled state.

The total quantum coherence remains unchanged when η
increases from zero to one. Local quantum coherence decreases
when η increases from zero to 0.5 and increases when η increases
from 0.5 to one, while correlated quantum coherence shows
the opposite behavior. No matter what the transmissivity is, the
total coherence of a two-mode Gaussian state is the sum of local
quantum coherence and correlated quantum coherence.

In summary, we experimentally demonstrate the conversion
of local and correlated Gaussian quantum coherence along
with the conversion from two squeezed states to an entangled
state. We show that local coherence exists even when squeezing
disappears. We also demonstrate that the total coherence of
a two-mode Gaussian state is the sum of local coherence of
each mode and correlated coherence between two modes. The
presented results clarify the relation among total, local, and
correlated coherence of a two-mode Gaussian state and provide
references for applications based on quantum coherence.
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