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Abstract Cluster state is the basic resource for one-way quantum computation and a valuable resource

for establishing quantum network, because it has a flexible and varied composition form. We present

measurement-device-independent quantum secret sharing (QSS) and quantum conference (QC) schemes

based on continuous variable (CV) four-mode cluster state with different structures. The users of the proto-

col prepare their own Einstein-Podolsky-Rosen (EPR) states, respectively. One mode of these EPR states is

sent to an untrusted relay where a generalized Bell measurement creates different types of CV cluster states

among four users, while the other mode is kept at their own station. We show that a shared secret key for

QSS and QC schemes is distilled based on the shared quantum correlation among four users. QC and four

users QSS are implemented based on the star shape CV cluster state. QSS with three users are implemented

based on the linear or square shape CV cluster states. The results show that the secure transmission distance

for an asymmetric network, where the transmission distances between the users and relay are different, is

longer than that of a symmetric network, where the transmission distances between the users and relay are

the same. The presented schemes provide concrete references for establishing quantum network with the CV

cluster state.
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tum secret sharing
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1 Introduction

Quantum key distribution (QKD) is one of the quantum technologies that are closest to practical ap-

plications, and it has been applied in several areas [1–6]. In the practical application, the imperfection

of the QKD system will cause security issues [7]. Device-independent QKD protocol provides a solution

to side-channel attacks [8–10], but the security of it relies on the violation of a Bell inequality [11]. A

more practical solution is measurement-device-independent (MDI) QKD protocol [12–14], which can not

only resist all attacks against the measuring terminal, but also reduce the detector requirements to the

current level of technical conditions which can be achieved [15–18]. As for the implementation of QKD,

besides QKD system based on discrete variable, continuous variable (CV) QKD system, which uses light
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modes and homodyne detections instead of single-photon quantum states and single-photon detection to

complete the key distribution process, may achieve high rates [19]. CV-MDI QKD protocol using coher-

ent states [20] and squeezed states [21] was proposed theoretically [22], and implemented experimentally

between two parties [23].

With the gradual maturation of QKD devices and technologies in recent years, the QKD network has

attracted more attention. Increasing number of quantum communication network users make it necessary

to study multiuser quantum communication protocol, such as quantum secret sharing (QSS) [24–27] and

quantum conference (QC) [28] protocols. In the QSS protocol, a dealer can distribute an arbitrary secret

key among n participants so that only authorized subset of participants can reconstruct the secret. In

order to implement the QC protocol, all legitimate participants need to share a set of identical keys that

are used to implement encrypted communication between group members. Members outside the group

cannot decrypt the communication content of the members within the group.

CV multipartite entangled states, which are mainly composed of Greenberger-Horne-Zeilinger (GHZ)

state [29] and cluster state [30] according to the different entangled manners among submodes, are ba-

sic resources in quantum information. Cluster state is a basic quantum resource for one-way quantum

computation [31]. CV cluster states [30, 32–34], which can be generated deterministically, have been

successfully produced for eight-qumode [35], 60-qumode [36] and even up to 10000-qumode [37]. Based

on a prepared large scale cluster state, one-way quantum computation can be implemented by measure-

ment and feedforward of the measurement results [38–46]. Besides the application in one-way quantum

computation, cluster state can also be used to establish quantum network [47, 48], which has complex

structure.

CV MDI multipartite QC and QSS protocols have been designed by using tripartite GHZ state [49].

Recently, a CV MDI star network for QC is also proposed [50] based on GHZ state. Compared to the GHZ

state, a cluster state has a variety of structures, and it is more suitable to be used in the network with

complex structures. After selecting the appropriate cluster state, the QSS protocol can be implemented

in any group with more than three users of all legitimate participants.

In this paper, we propose MDI QSS and QC networks based on four-mode CV cluster states with

different structures. Four trusted users send one mode of their Einstein-Podolsky-Rosen (EPR) states,

which are prepared by their own respectively, to a middle untrusted relay by quantum channels. After

receiving all quantum states from each user, a generalized multipartite Bell detection is performed in the

untrusted relay which can even be controlled by Eve. Comparing with the schemes that use pairwise

entanglement, what we proposed in this paper is an MDI scheme in which the attacks on measurement

devices are moved from the legitimate members’ sides to the untrusted party’s side. These suitable

measurements that project onto a displaced version of the remaining quantum states at the user’s station

create CV cluster states at last. With different feedforward of measurement results one can create different

types of CV cluster states.

QSS with four users and three users can be implemented based on the star shape four-mode CV cluster

state and the linear cluster-like quantum correlations, respectively. QC with four users is implemented

based on the star shape four-mode CV cluster state. Secret key rates of a symmetric and an asymmetric

quantum network structures are compared. The results show that the transmission distance for an

asymmetric quantum network is longer than that of a symmetric one. The presented scheme can be

easily extended to more complex network structures by using the large scale CV cluster state.

The paper is organized as follows. We present the basic principle of protocols of four-partite CV

MDI quantum communication in Section 2. The security analysis and simulation results are discussed in

Sections 3 and 4. Finally, the discussion and conclusion are presented in Section 5.

2 MDI quantum network with four-mode Gaussian cluster state

Cluster state is a type of multipartite quantum entangled graph states corresponding to some mathemat-

ical graphs [30, 32, 40, 41]. The CV cluster quadrature correlations (so-called nullifiers) can be expressed
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Figure 1 (Color online) The four-partite cluster states. Each cluster node, corresponding to an optical mode, is represented

by a circle. Neighboring nodes are connected by lines. (a), (b) and (c) represent star, linear and square shape cluster state,

respectively.

by [32, 41].
(

p̂a −
∑

b∈Na

cabx̂b

)

→ 0, ∀a ∈ G, (1)

where x̂a = (â + â†)/2 and p̂a = (â − â†)/2i represent the quadrature-amplitude and quadrature-phase

operators of an optical mode â, respectively. The subscript a(b) expresses the designated mode â (b̂). The

modes of a ∈ G denote the vertices of the graph G, while the modes of b ∈ Na are the nearest neighbors

of mode â. The factor cab corresponds to the strength that the modes â and b̂ have interacted [51]. For an

ideal cluster state, the left-hand side of (1) tends to zero, which represents a simultaneous zero eigenstate

of the quadrature combination [41]. The CV cluster quantum entanglements generated by experiments

are deterministic, but imperfect, the entanglement features of which have to be verified and quantified

by the sufficient conditions for the fully inseparability of multipartite CV entanglement [52, 53].

According to the generation method proposed in [32], CV cluster state can be prepared by coupling

squeezed states on a beam-splitter network. There are three kinds of four-mode CV cluster states,

including star, linear, and square shape cluster states, respectively, as shown in Figure 1. Among these

three kinds of cluster states, the linear cluster state can be obtained from the square cluster state via

appropriate local Fourier transforms [53], so the square cluster state can also be used to implement the

QSS with three users as the linear cluster state. Furthermore, four-mode star shape cluster state can be

obtained from those of the four-mode GHZ state with a local phase shift on the mode 1, so the two states

are equivalent. In this paper, two types of QSS and QC schemes are proposed using the four-mode CV

cluster states with different structures.

A quantum network includes four honest legitimate users (Alice, Bob, Charlie and David) and an

untrusted relay, which may be even controlled by Eve, is shown in Figure 2. If the legal users in the

network need to implement the MDI QSS or QC, they should follow the steps below. Step 1, four EPR

states are prepared independently by the legal users, respectively. One mode âi, i ∈ {1− 4}) of the EPR

states is transmitted to the untrusted relay. Step 2, Bell measurement is performed in the relay after

four optical beams are interfered on a beam-splitter network with the prescribed rules in Figure 2 and

the homodyning measurement results (γ = {xc1 , pc2 , xc3 , xc4}) are published. Step 3, according to the

measurement results, Alice, Bob, Charlie and David will perform suitable displacement on the remained

EPR beams b̂i (i ∈ {1− 4}) in their station, respectively. In this way, a four-mode cluster state (b̂′1 − b̂′4)

is shared among four users in the network. Based on the quantum correlations of the shared cluster state,

secret key of MDI QSS and QC schemes can be achieved. The same secret can be achieved among the

four users by QC and the secret key can be shared among four legitimate users or any three users by

QSS.

2.1 QC and QSS with the star shape cluster state

It has been shown that the quantum correlations among amplitude or phase quadratures of optical modes

can be used to implement QKD [54, 55], tripartite QC and QSS [49]. Based on this method, we design

MDI QC and QSS schemes with the shared quantum correlations among amplitude or phase quadratures

of optical modes. At the station of untrusted relay in Figure 2, after optical beams âi, i ∈ {1 − 4}
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â
2

ĉ
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Figure 2 (Color online) Basic protocol for MDI quantum network with a four-mode cluster state. Alice, Bob, Charlie and

David prepare an EPR state, respectively. They hold one mode (b̂i, i ∈ {1− 4}) of the EPR state in their own station and

send the other mode (âi, i ∈ {1− 4}) to an untrusted relay. After receiving the modes from Alice, Bob, Charlie and David,

the Bell measurement is performed in the relay. Displacement operations are performed on the modes (b̂i, i ∈ {1− 4}) after

the users obtain the measurements results from the relay. HBS, half beam splitter.

passing through a beam-splitter network consists of three half beam splitters (HBS), the output modes

ĉi, i ∈ {1− 4} can be expressed as

ĉ1 =
1√
2
â1 +

1√
2
â2,

ĉ2 = −1

2
â1 +

1

2
â2 +

1

2
â3 +

1

2
â4, (2)

ĉ3 =
1

2
â1 −

1

2
â2 +

1

2
â3 +

1

2
â4,

ĉ4 = − 1√
2
â3 +

1√
2
â4.

The amplitude quadratures of ĉ1, ĉ3 and ĉ4 and the phase quadrature of ĉ2, are measured by homodyne

detection system, respectively. Afterwards these measurement results γ are published in classical channel.

Based on these published measurement results, four users in the quantum network perform displacement

operations on their own optical beams b̂i, i ∈ {1− 4}, respectively.
For achieving QC, Bob, Charlie and David displace the amplitude quadratures x̂bi with ∆x̂bi , i ∈

{2, 3, 4}, respectively, while Alice keeps the x̂b1 unchanged, so we have

x̂b′
1
= x̂a1

,

x̂b′
2
= x̂b2 +∆x̂b2 , (3)

x̂b′
3
= x̂b3 +∆x̂b3 ,

x̂b′
4
= x̂b4 +∆x̂b4 ,

where

∆x̂b2 = −
√
2x̂c1 ,

∆x̂b3 = − 1√
2
x̂c1 − x̂c3 +

1√
2
x̂c4 , (4)

∆x̂b4 = − 1√
2
x̂c1 − x̂c3 −

1√
2
x̂c4 .

By substituting (2) into (3), and basing on the quantum correlations of the EPR states among the legal

users (Alice, Bob, Charlie and David) x̂ai
− x̂bi → 0, p̂ai

+ p̂bi → 0, where i ∈ {1 − 4}, we obtain the

expression of output modes b̂′1 − b̂′4 after the displacement operations, which are

x̂b′
1
= x̂a1

,
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x̂b′
2
= −x̂a1

, (5)

x̂b′
3
= −x̂a1

,

x̂b′
4
= −x̂a1

,

in the ideal case with infinite squeezing.

The QSS with four users can also be achieved in Figure 2. After receiving the measurement results

γ, Alice displaces the phase quadrature p̂b1 of her optical mode with ∆p̂b1 = −2p̂c2, while Bob, Charlie

and David keep their phase quadratures p̂bi (i ∈ {2, 3, 4}) unchanged, respectively. Using the quantum

correlations for the EPR states p̂ai
+ p̂bi → 0, the phase quadratures of Alice, Bob, Charlie and David’s

modes after the displacement operation can be expressed as

p̂b′
1
= p̂b1 +∆p̂b1 = −p̂a2

− p̂a3
− p̂a4

,

p̂b′
2
= −p̂a2

, (6)

p̂b′
3
= −p̂a3

,

p̂b′
4
= −p̂a4

.

When the phase quadratures of modes b̂′i are homodyned by the users, respectively, the resulting data

satisfy −p̂b′
1
+ p̂b′

2
+ p̂b′

3
+ p̂b′

4
= 0 in the ideal case.

By applying an inverse Fourier transform (which corresponds to −90◦ rotation in phase space) on

optical modes b̂′2, b̂
′
3 and b̂′4, respectively, the modes owned by Alice, Bob, Charlie and David meet the

distributed CV four partite star shape cluster state, where the corresponding quantum correlations are

given by p̂b′
1
− x̂b′

2
− x̂b′

3
− x̂b′

4
= 0, p̂b′

i
− x̂b′

1
= 0, where i ∈ {2, 3, 4}.

Based on the quantum correlation between amplitude quadratures of the four-mode star shape cluster

state (Eq. (5)), QC protocol can be implemented among four users. In QC, four users measure amplitude

quadrature of their remained output modes (b̂′i), respectively, and use the measurement outcomes to do

the reconciliation and post selection. Since x̂bi = x̂b1 , i ∈ {2, 3, 4}, the users can obtain coincident

quantum keys.

The QSS with four users can also be achieved based on quantum correlations among phase quadratures

of the four-mode star shape cluster state (Eq. (6)). In this case, any three users of Alice, Bob, Char-

lie and David must share their measurement outcomes and perform parameter estimation, information

reconciliation, and privacy amplification through a public channel with the fourth user because of the

relationship among the measurement results of phase qusdratures of b̂′i, so the QSS with four users is

achieved. For example, Bob, Charlie and David must cooperate at the same time to extract the secret

of Alice, any one or two users cannot extract the secret without the help of the rest users. Any smaller

groups of the four users cannot reconstruct the secret since the shared key depends on the total quantum

correlation in phase quadrature of optical beams among four users.

2.2 QSS with the linear cluster-like quantum correlation

In most cases, let n be a set of identities parties, the distributed secret from dealer should be reconstructed

by any t-out-of-n parties, and any collusion of less than t parties should have “almost” no information

about the underlying secret, which is called the (t, n) secret sharing scheme [56–58]. The previous

discussion of QSS scheme is the case of t = n.

For achieving QSS among a small group with authorized users, the scheme proposed in [50] must trace

out the useless modes. However, any t-out-of-n QSS protocol can be completed by using designed and

suitable cluster state. Here, we propose a 2-out-of-3 QSS scheme based on linear cluster-like quantum

correlation or box cluster-like quantum correlation, which cannot be achieved by using the star shape

cluster state.

Supposing that the dealer Alice wants to distribute secret to Bob, Charlie and David, respectively. Any

two users of Bob, Charlie and David can reconstruct the secret, and any one cannot get any information

without the help of the other users.
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At first we present the QSS among Alice, Bob and Charlie who own optical mode 1, 2 and 3, respectively,

as shown in Figure 1. This MDI-QSS protocol can also be achieved by the scheme in Figure 2. Four

users prepare their EPR states, respectively, which are same with the preparing step in QC. After

receiving the results γ from the untrusted relay, Alice displaces her amplitude quadrature x̂b1 with

∆x̂b1 = −2x̂c3 +
√
2x̂c4 , while Bob and Charlie keep their amplitude quadratures x̂bi , where i ∈ {2, 3}

unchanged, respectively. Using the conditions of EPR entangled states, the amplitude quadratures of

Alice, Bob and Charlie’s modes can be expressed as

x̂b′
1
= x̂b1 +∆x̂b1 = x̂a2

− 2x̂a3
,

x̂b′
2
= x̂a2

, (7)

x̂b′
3
= x̂a3

,

in the ideal case. When homodyning the amplitude quadratures of modes b̂′i, we have the quantum

correlation expressed by x̂b′
1
− x̂b′

2
+ 2x̂b′

3
= 0 in the ideal case with infinite squeezing. Based on this

quantum correlation, Bob and Charlie can obtain the secret key distributed by Alice.

For the QSS among any three users in the network, the displacements implemented by users are

different. For the QSS among Alice, Bob, and David, Alice displaces her amplitude quadrature x̂b1 with

∆x̂b1 = −2x̂c3 −
√
2x̂c4 , while Bob and David keep their amplitude quadratures x̂bi , i ∈ {2, 4} unchanged,

respectively. The resulting states satisfy x̂b′
1
− x̂b′

2
+ 2x̂b′

4
= 0. For the QSS among Alice, Charlie, and

David, Alice displaces her amplitude quadrature x̂b1 with ∆x̂b1 = − 1√
2
x̂c1 − x̂c3 , while Charlie and David

keep their amplitude quadratures x̂bi , where i ∈ {3, 4} unchanged, respectively. The resulting states

satisfy 2x̂b′
1
+ x̂b′

3
+ x̂b′

4
= 0. So far, Alice has been able to distribute secrets to any two users among Bob,

Charlie and David, and the 2-out-of-3 QSS protocol can be implemented.

Not only that, QSS among Bob, Charlie, and David can also be implemented. Charlie can shift

her amplitude quadrature x̂b3 with ∆x̂b3 =
√
2x̂c1 − 2x̂c3 , while Bob and David keep their amplitude

quadratures x̂bi , where i ∈ {2, 4} unchanged, respectively. The resulting states satisfy 2x̂b′
2
+x̂b′

3
+x̂b′

4
= 0.

In the presented 2-out-of-3 QSS protocols, the inactive fourth user cannot obtain any information of

the secret sharing among the legitimate three users, since his optical mode has no quantum correlation

with the optical modes hold by the legitimate three users. For example, in QSS among Alice, Bob and

Charlie, the inactive user David cannot obtain the share key.

3 Security analysis

In this section, we analyze the most realistic security of QSS and QC against the coherent attack (shown

in Figure 3). A joint attack involving both the untrusted relay and the four links is the most general

eavesdropping strategy for such a quantum network which is shown in Figure 3. In Eve’s station, the four

modes (âi where i ∈ {1, 4}) sent by users are intercepted and interacted with an ensemble of ancillary

vacuum modes via a general unitary. The output modes from Eve’s station are sent to the untrusted

relay, where they are homodyned and the results are published following the protocols. Eve stores the

remaining modes in a quantum memory, which will be measured at the end of the protocol. The joint

statistical variables must be retrieved by four users to deal with the joint attack. Four users should

compare a small part of their data via the public channel and reconstruct the error probability.

In order to calculate the secret key rate, the covariance matrix should be written firstly. Four in-

dependent EPR states are prepared by Alice, Bob, Charlie and David at beginning, respectively. The

covariance matrix is

VA,B,C,D =

4
⊕

i=1

Vi, (8)

where

Vi =

(

ViI
√

V 2
i − 1σZ

√

V 2
i − 1σZ ViI

)

,
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Êα
2

Êα
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Figure 3 (Color online) Scheme against a coherent attack. Eve chooses four pure Gaussian states (Êai
, i = 1− 4) from

his ancillary qumodes (AQ), and injects them into the channel between Alice (Bob, Charlie, David) and the relay by beam

splitter whose transmission efficiency is ηi (i = 1− 4). One of the output modes is sent to the relay as a fake mode, while

the other modes and the remaining AQ are stored in Eve’s quantum memory (QM).

where Vi = cosh(2r) (i ∈ {A,B,C,D}) is the variance of Alice’s, Bob’s, Charlie’s and David’s EPR state

and r is the squeezing parameter. We choose VA = VB = VC = VD = V for simplify. I = ( 1 0

0 1
) is the

identity matrix, and the σZ = ( 1 0

0 −1
) is the Pauli Z matrix.

Eve produces the state ρEA,EB,EC,ED
, whose covariance matrix can be expressed as

VEA,EB,EC,ED
=













VEA1
I g1I g4I g6I

g1I VEA2
I g2I g5I

g4I g2I VEA3
I g3I

g6I g5I g3I VEA4
I













, (9)

where the VEA1
, VEA2

, VEA3
and VEA4

are the variances of the thermal states which are injected into the

Alice’s, Bob’s, Charlie’s and David’s channels, respectively. g1 − g6 represents the correlations between

different modes, where the amplitude and phase quadratures correlations are supposed to be the same.

Then the variance matrix in the initial system can be written as

VA,B,C,D,Eve = VA,B,C,D ⊕ VEA,EB,EC,ED
. (10)

Eve interferes the submode Êai
with mode âi (i = 1 − 4) on the beam splitter (BS) with transmittance

ηi (i = 1− 4), respectively. The performance of BS can be written as

BSEvei =

( √
ηiI

√
1− ηiI

−√
1− ηiI

√
ηiI

)

, i = 1− 4. (11)

Eve’s overall operation of these four beam splitters is given by

UEve =
4
⊕

i=1

BSEvei . (12)
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When the submodes are transmitted to the relay, they are interfered on three HBSs, which are shown

in Figure 3. The overall operations at the relay are

UR = HBS3HBS2HBS1, (13)

where the expression of HBSi (i = 1− 3) is given by (11) with η = 1/2.

Finally, the whole system’s covariance matrix before homodyne measurement can be calculated as

Vb1b2b3b4c1c2c3c3Eve = URUEveVA,B,C,D,EveU
T
EveU

T
R . (14)

The amplitude quadratures of ĉ1, ĉ3, ĉ4 and phase quadrature of ĉ2 are measured by homodyne

detection system in the relay. We rewrite the matrix in the new form:

Vb1b2b3b4c1c2c3c3Eve =

(

Vb1b2b3b4Eve C

CT Vc1c2c3c3

)

. (15)

After homodyning x̂c1 , p̂c2 , x̂c3 and x̂c4 , the conditional covariance matrix is

Vb1b2b3b4Eve|c1c2c3c3 = Vb1b2b3b4Eve − CHHomC
T, (16)

where HHom = (WVc1c2c3c3W )
MP

means one quadrature of mode ĉi is homodyned. W = x
⊕

p
⊕

x
⊕

x,

in which x = ( 1 0

0 0
) means the amplitude quadrature is homodyned, p = ( 0 0

0 1
) stands for homodyning the

phase quadrature. MP denotes the Moore Penrose inverse of the matrix.

Since the variances and covariances of quadratures remain the same by displacement operations, only

mean values are changed, the partial state ρb′
1
b′
2
b′
3
b′
4
owns the same covariance matrix as ρb1b2b3b4|c1c2c3c3 .

3.1 Secret key rate of QC

When the four users receive the measurement result γ from the untrusted relay, the local mode b̂i is

homodyned by its owner with random outcome βi. The local mode b̂j of its owner is mapped into a

Gaussian state ρbj |biγ after the measurement. Then the mutual information I(βi : βj) by two users can

be calculated. The amount of information Eve can obtain is quantified by the Holevo bound H(βi : ρEve).

In this paper, we suppose that Alice shares her secret key with the other users in QC. Thus the secret

key rate (K
QC

RR

AB , K
QC

RR

AC and K
QC

RR

AD ) with reverse reconciliation can be defined as

K
QCRR

AB = βI(b′1 : b′2)−H(b′1 : ρEve),

K
QC

RR

AC = βI(b′1 : b′3)−H(b′1 : ρEve), (17)

K
QCRR

AD = βI(b′1 : b′4)−H(b′1 : ρEve),

respectively, where I(b′1 : b′i) =
1
2 log2

V (b′i)
V (b′

i
|b′

1
) (i = 2, 3, 4) denotes the mutual information between Alice

and Bob (Charlie or David). V (b′i | b′1) denotes the conditional variance of b′i after b′1 is homodyned.

H(b′1 : ρEve) = S(ρEve) − S(ρEve | b′1) denotes the Holevo bound between b′1 and Eve, which represents

the amount of information Eve can obtain. S(M) =
∑

i h (mi) is the von Neumann entropy, where

h (x) := x+1
2 log2

x+1
2 − x−1

2 log2
x−1
2 and mi are the symplectic eigenvalues of covariance matrix M ,

which can be calculated by the eigenvalue spectrum of the matrix |iΩM |, where Ω =
⊕

i (
0 1

−1 0
). Since

Eve can purify the whole state ρb′
1
,b′

2
,b′

3
,b′

4
,Eve, the Holevo information can be written as

H (b′1 : ρEve) = S
(

ρb′
1
,b′

2
,b′

3
,b′

4

)

− S
(

ρb′
2
,b′

3
,b′

4
| b′1
)

. (18)

3.2 Secret key rate of QSS

In QSS with four users, we assume Alice is the dealer who holds the secret key, Bob, Charlie and David

collaborate with each other to share the secret key. Alice can make suitable local Gaussian operation to
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share secret key with Bob, Charlie and David. The secret key rate K
QSSRR

ABCD with reverse reconciliation

can be expressed as

K
QSS

RR

ABCD = βI (b′2, b
′
3, b

′
4 : b′1)−H (b′1 : ρEve) , (19)

where I (b′2, b
′
3, b

′
4 : b′1) =

1
2 log2

V (b′
1
)

V (b′
1
|b′

2
,b′

3
,b′

4
) denotes the mutual information among phase quadratures of

Bob, Charlie, David and Alice. H(b′1 : ρEve) = S(ρEve)− S(ρEve | b′1) denotes the Holevo bound between

b′1 and Eve, which represents the amount of information Eve can obtain.

In QSS with three users, the secret key rate with reverse reconciliation can be written as

K
QSS

RR

ABC = βI (b′2, b
′
3 : b′1)−H (b′1 : ρEve) ,

K
QSSRR

ABD = βI (b′2, b
′
4 : b′1)−H (b′1 : ρEve) , (20)

K
QSS

RR

ACD = βI (b′3, b
′
4 : b′1)−H (b′1 : ρEve) ,

K
QSSRR

BCD = βI (b′2, b
′
4 : b′3)−H (b′3 : ρEve) ,

respectively. The secret key rate is calculated in the same way as (17).

4 Results

For any given values of thermal noise VEAi
> 1 (i = 1− 4), Eve’s covariance matrix (Eq. (9)) is fully

determined by the parameters gi (i = (1 − 6)). To analyze the protocols in different situations, the

bona fide condition [59] µ2 > 1 is needed, where µ is the smallest symplectic eigenvalue of the matrix

VEAEBECED
. According to the current experimental technology, in the following simulation we set the

reconciliation efficiency β = 0.95, the variance of Eve’s EPR entangled state VAi
= 1.5 (i ∈ {1− 4}).

In order to facilitate the analysis and design, we replace the transmission efficiency with the realistic

transmission distance by (ηi = 10−α
Li
10 ), where α = 0.2 dB/km is the loss of the optical fibers, Li

(i = 1 − 4) denotes the transmission distance between Alice (Bob, Charlie, David) and the untrusted

relay.

In our designed QC, Bob, Charlie and David share the secret keys with Alice, respectively. There are

many entangled categories among the submodes in Eve’s state. If Eve wants to obtain secret keys from

Bob’s, Charlie’s and David’s channel simultaneously, the symmetric attack manner can be implemented to

Bob’s, Charlie’s and David’s channel at the same time, i.e., g1 = g4 = g6 in (9), and we take g2 = g3 = g5
for simplification. The bona-fide conditions must be satisfied, and a numerical example is provided in

Figure 4. Referring to the discussion in [23,49], the colored regions are divided into three parts accoding

to the positive partial transpose (PPT) criterion [60, 61]. The inner area and four peripheral areas

correspond to the separable attack with separable ancillas and entangled attacks with entangled ancillas,

respectively.

The relationship between the final secret key rates (K
QCRR

AB ) in QC and the transmission distance is

shown in Figure 5, where g1 and g2 are taken as the status (1) (g1 = −0.65 and g2 = 0), status (2)

(g1 = g2 = 0) and status (3) (g1 = 0.65 and g2 = 0), respectively. The variance of Alice’s (Bob’s,

Charlie’s, David’s) thermal node (ai, i ∈ {1−4}) is quantified as Vi = 10, i ∈ {A,B,C,D} (corresponding

to 13 dB squeezing).

Two cases of symmetry and asymmetry network are analyzed in Figure 5. Symmetry network means

that the distances between Alice, Bob, Charlie, David and the relay are equal, where L1 = L2 = L3 =

L4 = L (solid lines). In the asymmetric network, Alice is very close to the relay, while the distance

between Bob, Charlie, David and the untrusted relay are equal, where we assume L1 = 0.01 km and

L2 = L3 = L4 = L (dash lines). In both symmetric and asymmetric network, if the attacker Eve chooses

the entangled state in status (3), the transmission distance in QC is the shortest. On the other hand,

the highest secret key rate and longest transmission distance are obtained when Eve chooses entangled

state in status (1). Comparing the transmission distance in the symmetric and asymmetric network,

it is obvious that the transmission distance between legitimate users and the relay is increased in the

asymmetric network.
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Figure 4 (Color online) The accessible region satisfying

the bona fide condition for QC protocol. The position of

three status are marked by (1), (2) and (3), respectively.

Figure 5 (Color online) The secret key rate versus trans-

mission distance for QC protocol. The straight lines are for

the symmetry case and the dash lines are for the asymmetry

case.
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Figure 6 (Color online) The accessible region satisfying

the bona fide condition for four participants QSS protocol.

The position of three status are marked by (1), (2) and (3),

respectively.

Figure 7 (Color online) The secret key rate versus trans-

mission distance for four participants QSS protocol. The

straight lines are for the symmetry case and the dash lines

are for the asymmetry case.

For QSS with four users, we suppose the attacks in Bob’s, Charlie’s and David’s channels are the same,

that is g1 = g4 = g6 and g2 = g3 = g5. By using the PPT criterion, the bona field (shown in Figure 6)

can be divided into two parts. The purple part stand for the case ρEA
is entangled with ρEB,EC,ED

, while

the yellow part means they are separated.

We also choose three kinds of status to analyze the relationship between the secret key rate and

the transmission efficiency. Status (1) (g1 = g4 = g6 = −0.65 and g2 = g3 = g5 = 0), status (2)

(g1 = g4 = g6 = 0 and g2 = g3 = g5 = 0) and status (3) (g1 = g4 = g6 = 0.65 and g2 = g3 = g5 = 0)

are compared, respectively. The similar results as that of the QC are obtained in the symmetric and

asymmetric network for the different quantum states used by Eve in QSS with four users which are shown

in Figure 7.

The attacks of the four types of QSS with three users are similar because our scheme is symmetric.

In order to achieve the symmetric attack of the protocol, Eve selects different input states by selecting
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Figure 8 (Color online) The bona fide condition for three

participants QSS protocol. The position of three status are

marked by (1), (2) and (3), respectively.

Figure 9 (Color online) The secret key rate versus trans-

mission distance for three participants QSS protocol. The

straight lines are for the symmetry case and the dash lines

are for the asymmetry case.

different coefficients g1 − g6. For the QSS scheme among Alice, Bob and Charlie, Eve chooses g1 = g4;

for the QSS scheme among Alice, Bob and David, Eve chooses g1 = g6; for the QSS scheme among Alice,

Charlie and David, Eve chooses g4 = g6; for the QSS scheme among Bob, Charlie and David, Eve chooses

g2 = g3.

The bona fide condition for Alice, Bob and Charlie’s QSS protocol is shown in Figure 8. Similar to

QSS with four users, the inner part can also be divided into two parts according to the PPT criterion.

The two peripheral parts and the yellow part (inner part) stand for the ancillas states are entangled and

separated, respectively.

The relationship between the secret key rate and the transmission efficiency is indicated in Figure 9 for

QSS among Alice, Bob and Charlie. Three status (1) with g1 = −0.80 and g2 = 0, (2) with g1 = g2 = 0,

and (3) with g1 = 0.80 and g2 = 0 are compared, respectively. In the symmetry network, we assume that

the distances between Alice, Bob, Charlie and the relay are equal, where L1 = L2 = L3 = L (solid lines).

In the asymmetric network, we assume that Alice is very close to the relay L1 = 0.01 km, while the

distance between Bob, Charlie and the relay are equal L2 = L3 = L (dash lines). We also find that the

highest secret key and longest transmission distance are obtained when the state in status (1) is chosen by

Eve. The asymmetric network provides longer transmission distance than that of the symmetric network

for the QSS with three users. Since the transmission loss between Alice and untrusted relay is omitted,

the longer transmission distance can be achieved in the asymmetric network than that of the symmetric

network in Figures 5, 7 and 9, respectively.

Figure 10 shows the relationship between the secret key rate and the variance of EPR entangled state V

(squeezing) when the transmission distance between users and untrusted relay is 1 km. Three protocols in

asymmetric networks are compared, which are chosen to be status (1) in Figures 5, 7 and 9, respectively.

When the variance V > 1.59 (corresponding to 4.52 dB squeezing), the secret key can be obtained in all

protocols. The secret key is increased with the increasing of the variance of EPR state.

5 Conclusion

We propose MDI quantum networks for QC and QSS with a star shape four-mode CV cluster state, and

QSS with three users based on a linear CV cluster-like quantum correlation, respectively. The cluster

state is prepared by performing Bell measurement in an untrusted relay and suitable displacement at the

user’s station. We show that the secret key rate and transmission distance depend on the state used by
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Figure 10 (Color online) The secret key rate versus variance of EPR states for four users QSS, three users QSS and QC

protocols. Line (1) four users QSS; line (2) three users QSS; line (3) QC protocol.

Eve in the attack scheme and the structure of the network. The longer transmission distance is obtained

in the asymmetric network than that of the symmetric network. The secret key can be obtained only

when the squeezing of the CV entangled state is higher than a threshold.

Compared with CV GHZ state, various quantum correlations can be obtained in CV cluster states

with different structures. Thus the MDI quantum network based on the CV cluster state can be more

flexible and various quantum communication tasks can be implemented in the network. The smaller

groups of participants cannot reconstruct the quantum secret in QSS. For example, any user except the

secret dealer cannot reconstruct the quantum secret without the help of the other participant users in

QSS with three users, and any one or two users cannot reconstruct the quantum secret without the help

of the rest of users in QSS with four users. The proposed MDI network can be extended to more complex

network based on the large scale CV cluster state.
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2 Weedbrook C, Pirandola S, Garćıa-Patrón R, et al. Gaussian quantum information. Rev Mod Phys, 2012, 84: 621–669

3 Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network.

Opt Express, 2014, 22: 21739

4 Wang S, Chen W, Guo J F, et al. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt

Lett, 2012, 37: 1008

5 Wang S, Yin Z Q, Chau H F, et al. Proof-of-principle experimental realization of a qubit-like qudit-based quantum

key distribution scheme. Quantum Sci Technol, 2018, 3: 025006

6 Yin Z Q, Wang S, Chen W, et al. Improved security bound for the round-robin-differential-phase-shift quantum key

distribution. Nat Commun, 2018, 9: 457

7 Diamanti E, Lo H K, Qi B, et al. Practical challenges in quantum key distribution. Npj Quantum Inf, 2016, 2: 16025

8 Braunstein S L, Pirandola S. Side-channel-free quantum key distribution. Phys Rev Lett, 2012, 108: 130502

9 Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance.

Opt Lett, 2018, 43: 2030

10 Wang S, Yin Z Q, Chen W, et al. Experimental demonstration of a quantum key distribution without signal disturbance

monitoring. Nat Photon, 2015, 9: 832–836
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