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Abstract: Quantum discord quantifies quantum correlation between
quantum systems, which has potential application in quantum information
processing. In this paper, we propose a scheme realizing the remote transfer
of Gaussian quantum discord, in which another quantum discordant state
or an Einstein-Podolsky-Rosen entangled state serves as ancillary state.
The calculation shows that two independent optical modes that without
direct interaction become quantum correlated after the transfer. The output
Gaussian quantum discord can be higher than the initial Gaussian quantum
discord when optimal gain of the classical channel and the ancillary state
are chosen. The physical reason for this result comes from the fact that the
quantum discord of an asymmetric Gaussian quantum discordant state can
be higher than that of a symmetric one. The presented scheme has potential
application in quantum information network.
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1. Introduction

Quantum correlation, which can be quantified by quantum discord [1–3], is a fundamental
resource for quantum information processing. It has been shown that quantum correlation (no
quantum entanglement) can be used to complete some quantum computation tasks [4–6]. Quan-
tum discord can be also utilized as a resource for entanglement distribution [7], quantum state
merging [8, 9], remote state preparation [10], local broadcasting [11, 12] and quantum key dis-
tribution [13,14]. Recent research shows that quantum discord bounds the amount of distributed
entanglement [15], cannot be shared [16], and can be frozen in the non-Markovian dynam-
ics [17]. Presently, Quantum discord has been extended to the region of continuous variables
for Gaussian states [18, 19] and certain non-Gaussian states [20]. Gaussian quantum discord
has been experimentally demonstrated [21–24].

Entanglement swapping [25–28], which makes two independent quantum states without di-
rect interaction become entangled, is important to build quantum information network [29]. In
fact, it represents the quantum teleportation of entangled state [27]. Entanglement swapping has
been experimentally demonstrated in both discrete and continuous variables region [30, 31].

In this paper, we propose a scheme to realize the remote and unconditional transfer of Gaus-
sian quantum discord based on applying the technique of entanglement swapping. The Gaussian
quantum discord is transferred remotely and unconditionally by using an other quantum discor-
dant state or an Einstein-Podolsky-Rosen (EPR) entangled state as ancillary state. Two quantum
states that never have direct interaction become quantum correlated after transfer of Gaussian
quantum discord. A more interesting result is that the output Gaussian quantum discord can
be higher than the initial quantum discord at some given conditions, which will never happen
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Fig. 1. Schematic of the Gaussian quantum discord remote transfer. BS: 50:50 beam-
splitter, HD: homodyne detection system, g: gain factor of the classical channel, EOMx
and EOMp: amplitude and phase electro-optical modulator.

in entanglement swapping. The maximum output quantum discord is obtained when optimal
gain in classical channel and squeezing parameter of the EPR entangled state are chosen. The
simplest way to transfer the Gaussian quantum discord is to use a coherent state as ancillary
state, where the output quantum discord can also be higher than the initial quantum discord
when optimal gain is chosen. This feature is useful for constructing a quantum information net-
work. The physical reason for this result is that the quantum discord of an asymmetric Gaussian
quantum discordant state can be higher than that of a symmetric one, which is also proved in
the paper. Here, the asymmetric (symmetric) Gaussian quantum discordant state means that the
correlated noise variances on two quantum correlated beams are different (same).

2. The remote transfer scheme

2.1. Using a Gaussian discordant state as ancillary state

Figure 1 shows the schematic for the remote transfer of Gaussian quantum discord. Alice and
Bob, who represent two nodes in a quantum information network, own two independent Gaus-
sian discordant states (â, b̂) and (ĉ, d̂), respectively. In order to transfer the quantum correlation
to remote station, Alice and Bob send one of each states (b̂ and ĉ) to the middle station owned
by Claire. Claire interferes quantum modes b̂ and ĉ on a 50% beam-splitter (BS) and measures
the amplitude and phase quadratures of the output modes f̂ and ê by two homodyne detec-
tion (HD) systems, respectively. The measurement results are fedforward to Bob through the
classical channel. Bob performs phase space displacement on quantum mode d̂ with amplitude
and phase modulators (EOMx and EOMp), respectively. Finally, the quantum discord between
quantum modes â and d̂́ are measured by an verifier.

The amplitude and phase quadratures of an optical mode ô are defined as X̂o = ô+ ô† and
Ŷo = (ô− ô†)/i, respectively. The variances of amplitude and phase quadratures for a vac-
uum (coherent) state are V (X̂v) = V (Ŷv) = 1. The Gaussian quantum discordant state can be
obtained by correlated (anti-correlated) displacement of two coherent states in the amplitude
(phase) quadrature with a discording noise V [21], which is a separable state. The two modu-
lated coherent states are â = ĉ1 + ŝ1 and b̂ = ĉ2 + ŝ2, respectively, where ĉ1 and ĉ2 represent
two independent coherent state at same frequency, ŝ1 = X̂s + iŶs and ŝ2 = X̂s− iŶs stand for the
discording signal with a variance V (X̂s) = V (Ŷs) = V . The covariance matrix of the prepared
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Gaussian discordant state is given by

σ =

(
A C
C B

)
, (1)

where

A = B =

(
1+V 0

0 1+V

)
, C =

(
V 0
0 −V

)
. (2)

For Alice and Bob’s Gaussian discordant state, we have V = VA and V = VB in the covariance
matrix, respectively.

Quantum discord is defined as the difference between two quantum analogues of classically
equivalent expression of the mutual information. For a bipartite quantum system ρAB, the total
classical and quantum correlations is given by mutual information I(ρAB) = S(ρA)+ S(ρB)−
S(ρAB), where S(ρ) is the von Neumann entropy. Another expression of mutual information
based on conditional entropy is J←(ρAB) = S(ρA)− inf{Π j} S{Π j}(A|B), which is known as one-
way classical correlation. The infimum describes all possible measurements on subsystem B.
The difference between these two expressions of mutual information is defined as quantum
discord DAB = I(ρAB)− J←(ρAB). An explicit expression of Gaussian quantum discord for a
two-mode Gaussian state is given by [19]

DAB = f (
√

I2)− f (ν−)− f (ν+)+ f (
√

Emin), (3)

where f (x) = ( x+1
2 ) log2(

x+1
2 )− ( x−1

2 ) log2(
x−1

2 ),

ν± =

√
Δ±√Δ2−4detσ

2
(4)

are the symplectic eigenvalues of a two-mode covariance matrix σ with detσ as the determinant
of covariance matrix and Δ = detA+detB+2detC, and

Emin =

⎧⎨
⎩

2I2
3+(I2−1)(I4−I1)+2|I3|

√
I2
3+(I2−1)(I4−I1)

(I2−1)2
a)

I1I2−I2
3+I4−

√
I4
3+(I4−I1I2)2−2I2

3 (I4+I1I2)
2I2

b)
(5)

where a) applies if (I4− I1I2)2 ≤ I2
3 (I2 + 1)(I1 + I4) and b) applies otherwise. I1 = detA,

I2 = detB, I3 = detC, I4 = detσ are the symplectic invariants. A two-mode Gaussian state is
quantum correlated when Gaussian quantum discord DAB > 0.

In Fig. 1, the output modes from the 50% beam-splitter are ê = (b̂+ ĉ)/
√

2 and f̂ = (b̂−
ĉ)/
√

2. The measured photocurrents of two homodyne detection systems are ı̂1 = (X̂b− X̂c)/
√

2
and ı̂2 = (Ŷb+Ŷc)/

√
2, respectively. They are sent to Bob through the classical channel, respec-

tively. The output beam is
d̂′ = d̂+

√
2gı̂1 + i

√
2gı̂2, (6)

where g describes Bob’s (suitably normalized) amplitude and phase gain factor in the classical
channels, where we have assumed that the gain in two channels is identical. The covariance
matrix of the output states â and d̂́ is given by

σout =

(
Á Ć
Ć B́

)
(7)

where

Á=

(
1+VA 0

0 1+VA

)
, B́ =

(
Vd́ 0
0 Vd́

)
, Ć =

(
gVA 0
0 −gVA

)
,

with Vd́ = 1+2g2+g2VA+(1−g)2VB. Finally, the quantum discord of the output states can be
verified by Eq. (3).
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2.2. Using an EPR entangled state as ancillary state

For the case of transferring Gaussian quantum discord with an EPR entangled state as ancillary
state, the quantum discordant state at Bob’s station is replaced by an EPR entangled state, whose
covariance matrix is given by

σE =

(
AE CE

CE BE

)
, (8)

where

AE = BE =

(
VE 0
0 VE

)
, CE =

⎛
⎝

√
V 2

E −1 0

0 −
√

V 2
E −1

⎞
⎠ , (9)

in which VE = cosh2r is the variance of the EPR entangled state, where r is the squeezing
parameter.

After the transfer of the quantum discordant state, the covariance matrix of the output state
becomes

σEout =

(
Á Ć
Ć B́E

)
, (10)

where Á and Ć are same with that in Eq. (7), and

B́E=

(
VEd́ 0
0 VEd́

)
(11)

with VEd́ = (g2 +1)VE −2g
√

V 2
E −1+g2(1+VA).

2.3. The effect of imperfect detection efficiency

We also consider the effect of the imperfect detection efficiency on the proposed transfer
schemes. The detection efficiency can be looked as the loss of the detected optical mode, which
is usually modeled by a beam splitter with transmission efficiency of η . In this way, the de-
tected optical mode ô turns into

√η ô+
√

1−ην̂ , where ν̂ represent the vacuum noise induced
by imperfect detection efficiency. For analyzing the effect of imperfect detection efficiency on
the proposed scheme, we consider the detection efficiency on the optical modes â, ê, f̂ , and d̂′,
respectively.

3. Results and analysis

Figure 2(a) shows the dependence of output quantum discord on the Alice’s discording noise VA

with a Gaussian quantum discordant state with discording noise VB as ancillary state. The output
quantum discord with VB = 20, g = 1 (red dashed line) is lower than the Alice’s initial quantum
discord (black solid line). From the expression of Vd́ , we can see that the output quantum discord
is independent on Bob’s discording noise when a unit gain factor is chosen. When the optimal
gain factor is chosen, the output quantum discord can be improved (blue dotted line with VB =
20, g = 0.88). The most important result is that the output quantum discord can be higher than
the initial quantum discord when optimal gain factor and Bob’s discording noise are chosen.
For example, the green dash-dotted line in Fig. 2(a) corresponds to VB = 0, g = 0.26, which
means that two independent coherent states are used as ancillary state. It is clear that the output
quantum discord is higher than the initial quantum discord when the discording noise of initial
state VA > 18. Therefore we can complete the transfer of Gaussian quantum discord using
coherent state as ancillary state, which is the simplest way for the practical application.

Figure 2(b) shows the dependence of output quantum discord on the discording noise with
an EPR entangled state as ancillary state. Comparing the red dashed (r = 0.46, g = 1) and
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Fig. 2. Dependence of quantum discord of output state on the discording noise with a
quantum discordant state (a) and an EPR entangled state (b) as ancillary state.

Fig. 3. (a) Dependence of output quantum discord on Bob’s discording noise and the gain
factor with a quantum discordant state as ancillary state. (b) Dependence of output quantum
discord on squeezing parameter and the gain factor with an EPR entangled state as ancillary
state.

blue dotted lines (r = 1.15, g = 1), we find that the higher entanglement the higher output
quantum discord can be obtained when unit gain factor is chosen. When the optimal squeezing
and gain factor are chosen, the output quantum discord (green dash-dotted line with r = 0.33,
g = 0.32) can also be higher than the initial quantum discord (black solid line) when the initial
discording noise VA > 7.6. Comparing the green dash-dotted lines in Fig. 2(a) and 2(b), we
find that the maximum output Gaussian quantum discord is obtained when an EPR entangled
state is used as ancillary state with optimal parameters. The purple dash-dotted-dotted lines in
Fig. 2 correspond to the case of imperfect detection efficiency with η = 0.9 and optimal gain
factors. Comparing the green dash-dotted and purple dash-dotted-dotted lines, it is obvious that
the quantum discord is decreased due to the imperfect detection efficiency.

Figure 3(a) shows the dependence of output quantum discord on Bob’s discording noise
and gain factor for the case with a quantum discordant state as ancillary state, where Alice’s
discording noise is chosen to be 50. It is obvious that the maximum output quantum discord is
obtained at VB = 0, i.e. the ancillary states are two independent coherent states. This confirms
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Fig. 4. Dependence of quantum discord of output state on the gain factor with a quantum
discordant state (a) and an EPR entangled state (b) as ancillary state.

that using coherent state as ancillary state is the simplest way to transfer the Gaussian quantum
discord. Figure 3(b) shows the dependence of output quantum discord on squeezing parameter
and gain factor when an EPR entangled state is used as an ancillary state, in which Alice’s
discording noise is fixed to 50. The maximum output quantum discord is obtained with optimal
squeezing parameter and gain factor. Comparing the maximum output quantum discord in Fig.
3(a) and 3(b), we find that entanglement is helpful to obtain maximum output quantum discord.

The relation between quantum discord of the output states and the gain factor when Alice’s
discording noise VA = 50 is shown in Fig. 4. In Fig. 4(a), the black solid, red dashed and blue
dotted lines correspond to Bob’s discording noise of 0, 20 and 50, respectively. The optimal gain
factor increases with the increasing of Bob’s discording noise. The maximum output quantum
discord is obtained when coherent state is used as ancillary state. In Fig. 4(b), the black solid,
red dashed and blue dotted lines correspond to squeezing parameter r = 0, 0.33 and 1.15,
respectively. The optimal gain factor is close to unit with the increasing of squeezing parameter.
There is an optimal squeezing that maximize the output quantum discord, which is r = 0.33. In
this case, the maximum output Gaussian quantum discord of 0.92 is obtained.

4. Quantum discord of an asymmetric Gaussian discordant state

We now analyze the physical reason for why output quantum discord can be higher than ini-
tial quantum discord. Comparing the covariance matrixes of the initial and output Gaussian
discordant states, we find that the initial state is a symmetric quantum discordant state, which
has same noise variances on its two quantum correlated beams, while the output state is an
asymmetric quantum discordant state, which has different noise variances on its two quantum
correlated beams. This implies that the quantum discord of an asymmetric Gaussian quantum
discordant state may be higher than that of a symmetric one. For proving this conclusion, we
assume the discording noise modulated on two coherent states are different in the preparation
of the quantum discordant state. For example, assuming the two modulated coherent states are
â = ĉ1 + ŝ1 and b̂ = ĉ2 +T ŝ2, respectively, where T is the attenuation of the discording signal.
In this case, the elements in the covariance matrix of the prepared Gaussian quantum discordant
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Fig. 5. (a) Quantum discord of the asymmetric (T = 0.5, red dashed line) and symmetric
(T = 1, black solid line) Gaussian quantum discordant state. (b) Dependence of the Gaus-
sian quantum discord on attenuation at discording noises V = 50 (red dashed line) and
V = 1 (black solid line).

state [Eq. (1)] becomes

B =

(
1+T 2V 0

0 1+T 2V

)
C =

(
TV 0
0 −TV

)
, (12)

When T �= 1, the prepared state becomes an asymmetric Gaussian quantum discordant state.
Figure 5(a) shows the Gaussian quantum discord for the prepared state. It is obvious that the

quantum discord with attenuation (red dashed line, T = 0.5) is higher than that without attenu-
ation (black solid line, T = 1) when discording noise V > 4. Fig. 5(b) shows the dependence of
quantum discord on the attenuation T at different discording noises. When V = 50 (red dashed
line), it is clear that there is an optimal attenuation T that maximize the quantum discord. When
0.1 < T < 1, the quantum discord is higher than the symmetric Gaussian quantum discordant
state. However, when V = 1 (black solid line), the quantum discord of the asymmetric Gaussian
quantum discordant state is not higher than that of the symmetric one.

A symmetric Gaussian discordant state can also be turned into an asymmetric state by at-
tenuate one or both optical modes. Here, we attenuate the optical modes â and b̂ by two beam
splitters with transmission efficiencies T1 and T2, respectively. The attenuated optical modes
become ấ =

√
T1â +

√
1−T1v̂1 =

√
T1(ĉ1 + ŝ1)+

√
1−T1v̂1 and b̂́ =

√
T2b̂ +

√
1−T2v̂2 =√

T2(ĉ2 + ŝ2)+
√

1−T2v̂2, respectively.
Figure 6 shows the dependence of quantum discord on the attenuations T1 and T2 with dis-

cording noise V = 50. When T1 = 1 and 0 < T2 < 1, the Gaussian discordant state is an asym-
metric state. It is obvious that the quantum discord with the optimal attenuation T2 is higher
than the discord of a symmetric Gaussian discordant state, which corresponds to the quantum
discord at T1 = T2 = 1. This is similar to what we obtained in Fig. 5(b), which confirms that the
quantum discord of an asymmetric Gaussian discordant state can be higher than a symmetric
one with optimal attenuation. When the attenuation on the mode â is also considered, the quan-
tum discord is decreased along with the decrease of T1. This is because the asymmetry between
two optical modes is reduced by attenuating both modes.

So we draw a conclusion that the quantum discord of an asymmetric Gaussian quantum dis-
cordant state can be higher than that of a symmetric one prepared in this way when optimal
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Fig. 6. Dependence of quantum discord on the attenuations T1 and T2 with discording noise
V = 50.

attenuation and discording noise are chosen. This comes from the fact that the one-way classi-
cal correlation J←(ρAB) is measurement dependent. The attenuation of one mode (asymmetry)
lead to the decrease of total and classical correlations, while the difference between them (quan-
tum discord) can be increased. This result is compatible with what obtained by Madsen et al
in [23], where the attenuation of one mode of a Gaussian quantum discordant state lead to in-
creasing of quantum discord. In [23], transmission of one mode of a Gaussian discordant state
in a lossy channel is mimicked by a beam-splitter with variable transmission efficiency. They
observed the increase of quantum discord along with the increasing of the attenuation, which
lead to an asymmetric Gaussian quantum discordant state. This property of Gaussian quantum
discord will have potential application in quantum information tasks. For example, in the pre-
sented remote transfer scheme, the output quantum discord can be higher than the input discord.
Since the Gaussian quantum discordant state is resilient to loss, it may be used to extend the
transmission distance of quantum communication.

5. Conclusion

In conclusion, a remote transfer scheme of Gaussian quantum discord is proposed. The quantum
correlation emerges between two independent quantum modes that without direct interaction
after the remote transfer. In the remote transfer scheme with a Gaussian discordant state as
ancillary state, the output quantum discord is independent on discording noise of the ancil-
lary state when unit gain is chosen. The maximum output quantum discord is obtained with
two independent coherent states as ancillary state in the case of optimal gain. In the remote
transfer scheme with an EPR entangled state as ancillary state, the maximum output quantum
discord is obtained when optimal squeezing and gain are chosen. Comparing schemes with a
Gaussian quantum discordant state and an EPR entangled state as ancillary state, we find that
entanglement in the ancillary state is helpful to improve the output quantum discord.

Notably, the output Gaussian quantum discord can be higher than the initial quantum discord.
The physical reason for this phenomenon is that the quantum discord of an asymmetric Gaus-
sian quantum discordant state can be higher than that of a symmetric one. The remote transfer
of Gaussian quantum discord has potential application in the quantum information network.
Especially, the coherent states can serve as the ancillary states, which might save the quantum
resources in the practical application.
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