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Einstein-Podolsky-Rosen (EPR) steering is a quantum mechanical phenomenon that allows one party to steer
the state of a distant party by exploiting their shared entanglement. It has potential applications in secure quantum
communication. In this paper, we present two swapping schemes of Gaussian EPR steering, single-channel and
dual-channel schemes, by the technique of entanglement swapping. Two space-separated independent EPR
steering states without a direct interaction present EPR steering after deterministic swapping. By comparing
the EPR steering of the single-channel and dual-channel schemes, we show that the transmission distance of
the single-channel scheme is much longer than that of the symmetric dual-channel scheme. Different from
entanglement swapping, one-way EPR steering is presented after swapping over lossy channels. The most
interesting thing is that the change of the EPR steering direction is observed in the dual-channel scheme. We also
show that excess noise in a quantum channel will shorten the transmission distance of the swapping, even leading
to the sudden death of EPR steering. The presented schemes provide a technical reference for remote quantum
communications with EPR steering.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering was first noted by
Einstein, Podolsky, and Rosen in their famous 1935 paper [1].
They argued the completeness of quantum mechanics by
calling this phenomenon “spooky action at a distance.” In his
response to the EPR paper, Schrödinger originally introduced
the concept of EPR steering [2,3]. Suppose Alice and Bob
share an EPR entangled state and they are separated in space.
EPR steering means that one party, say, Alice, can “steer” the
state in Bob’s station by performing a measurement on her state
at a distance, i.e., if Alice makes a measurement on her state,
the state in Bob’s station will change instantaneously. In the
hierarchy of quantum correlations, EPR steering represents
a weaker form of quantum nonlocality and stands between
Bell nonlocality [4] and EPR entanglement [5]. Concretely,
the violation of Bell inequality implies EPR steering in both
directions, and EPR steering of any direction implies that the
quantum state is entangled [6].

EPR steering has recently attracted increasing interest in the
quantum optics and quantum information communities [6–8].
EPR steering can be regarded as verifiable entanglement
distribution by an untrusted party, while entangled states need
both parties to trust each other, and Bell nonlocality is valid
assuming that they distrust each other [7]. In the field of
quantum information processing, EPR steering has potential
applications in one-sided device-independent quantum key
distribution [9], channel discrimination [10], and teleampli-
fication [11].

The inherent asymmetric feature is the unique property of
EPR steering that differs from both entanglement and Bell
nonlocality. There are situations when Alice can steer Bob’s
state but Bob cannot steer Alice’s state, or vice versa, which are
referred to as one-way EPR steering [6]. The demonstration
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of one-way EPR steering is of foundational significance in
testing the basic laws in quantum mechanics and has potential
applications in asymmetric quantum information processing.
Gaussian one-way EPR steering has been demonstrated with
a two-mode squeezed state [12] and a multipartite EPR
steering system [13], with their measurements restricted
to Gaussian measurements. Other measurement methods
used to show the property of one-way EPR steering have
been theoretically constructed, including general projective
measurements [14], arbitrary finite-setting positive-operator-
valued measures (POVMs) [8], infinite-setting POVMs [15],
and infinite number of arbitrary projective measurements [16].
Very recently, genuine one-way EPR steering was experimen-
tally demonstrated by two groups independently [17,18], based
on proposals in Refs. [16] and [14], respectively.

In a quantum network, the remote transfer of a quantum
state is an important step in quantum communication. En-
tanglement swapping [19–23], which makes two independent
quantum entangled states without a direct interaction become
entangled, is an important technique in building a quantum
information network [24]. In fact, it represents the quan-
tum teleportation of an entangled state [22]. Entanglement
swapping has been experimentally demonstrated in both
discrete and continuous-variable regions [25,26]. Recently,
entanglement swapping between discrete and continuous-
variable systems has been demonstrated [27]. Entanglement
swapping among three two-photon EPR entangled states
has been used to generate a Greenberger-Horne-Zeilinger
state [28]. The technique of entanglement swapping has been
applied to complete the remote transfer of Gaussian quantum
discord [29]. Very recently, quantum entanglement swapping
between two multipartite entangled states has been demon-
strated experimentally [30], which shows the feasibility of
connecting two multipartite entangled states by entanglement
swapping.

In this paper, we apply the technique of entanglement
swapping to realize the deterministic swapping of Gaussian
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EPR steering. We show that the steering property exists
between two independent states without a direct interac-
tion after entanglement swapping. Specifically, two kinds
of swapping schemes are compared, which are called the
single-channel scheme and dual-channel scheme, respectively.
We theoretically analyze the swapping of EPR steering in a
realistic environment, where the optical modes are transmitted
in one or two lossy and noisy channels. The dependence of EPR
steering on transmission distances and excess noise in quantum
channels is presented. The results show that the transmission
distance of a single-channel scheme is much longer than that of
a symmetric dual-channel scheme. The most interesting result
is that the change of the EPR steering direction is observed
in the dual-channel scheme, which is a phenomenon related
to the asymmetric property of the EPR state. The effect of
excess noise in a quantum channel on output EPR steering
is also analyzed. We show that excess noise can shorten the
transmission distance of the swapping scheme and lead to the
sudden death of EPR steering. The presented results provide
a realistic reference to construct a quantum communication
network with EPR steering.

II. EPR STEERING SWAPPING SCHEMES

Figure 1 shows the schematic of EPR steering swapping.
Alice and Bob own two independent EPR entangled states
(Â,B̂) and (Ĉ,D̂), which have the property of EPR steering,
respectively. There is no direct interaction between these
two space-separated EPR states. In order to establish EPR
steering between them, we apply the swapping scheme to
them. We consider two kinds of swapping schemes, i.e., a
single-channel scheme and dual-channel scheme, where the
state is transmitted over a single quantum channel and two
quantum channels, respectively.

FIG. 1. The schematic of two swapping schemes of EPR steering.
Alice and Bob own EPR entangled states (Â,B̂) and (Ĉ,D̂),
respectively. (a) Single-channel scheme. A joint measurement is
performed at Bob’s station and the measurement results are fed
forward to mode D̂. (b) Dual-channel scheme. A joint measurement
is performed at Claire’s station. HD: homodyne detector; EOMX
and EOMP: amplitude and phase electro-optical modulators; T1, T2:
transmission efficiencies of the quantum channels.

In the single-channel scheme, as shown in Fig. 1(a), Alice
sends mode B̂ of her EPR state to Bob through a quantum
channel. Bob performs a joint measurement on the received
optical mode B̂ and one of the EPR mode Ĉ hold by himself.
The joint measurement is performed by coupling them on
a 1:1 beam splitter and measuring the amplitude and phase
quadratures of the output modes Ê and F̂ by two homodyne
detectors (HDs), respectively. The measurement results are fed
forward to mode D̂ by classical channels. Bob performs phase-
space displacement on quantum mode D̂ with amplitude and
phase modulators, respectively. In the dual-channel scheme, as
shown in Fig. 1(b), Alice and Bob send one of each state (B̂ and
Ĉ) to the middle station owned by Claire through two quantum
channels, respectively. Claire performs a joint measurement on
the received optical modes B̂ and Ĉ. The measurement results
are fed forward to mode D̂ through classical channels. Finally,
EPR steering between Â and D̂′ is verified.

In the dual-channel scheme, when the transmission dis-
tances of quantum channels T1 and T2 are different, it
corresponds to an asymmetric swapping scheme. For the
asymmetric swapping scheme, the middle station is placed
near Alice’s or Bob’s station. The single-channel scheme is a
special case of the asymmetric swapping scheme. When the
transmission distances of quantum channels T1 and T2 are the
same, it corresponds to a symmetric dual-channel scheme. In
this case, the distances from the middle station to Alice’s and
Bob’s station are the same.

The amplitude and phase quadratures of an optical mode ô

are defined as x̂o = ô + ô† and p̂o = (ô − ô†)/i, respectively.
Under this notation, the variances of the amplitude and phase
quadratures for a vacuum state are V (x̂0) = V (p̂0) = 1, where
the subscript 0 represents the vacuum state. A Gaussian EPR
entangled state with a variance V = cosh 2r , where r ∈ [0,∞)
is the squeezing parameter, can be described by its covariance
matrix

σAB =
(

V I
√

V 2 − 1Z√
V 2 − 1Z V I

)
, (1)

with the matrix element σij = 〈ξ̂i ξ̂j + ξ̂j ξ̂i〉/2 − 〈ξ̂i〉〈ξ̂j 〉,
where ξ̂ ≡ (x̂A,p̂A,x̂B,p̂B) is the vector of the field quadra-
tures, and I and Z are the Pauli matrices

I =
(

1 0
0 1

)
, Z =

(
1 0
0 −1

)
, (2)

respectively.
It has been shown that the steerability of a two-mode

Gaussian state can be easily quantified by [31]

GA→B(σAB) = max

{
0,

1

2
ln

det σA

det σAB

}
, (3)

where σA and σAB are the covariance matrices corresponding
to Alice’s state and the two-mode Gaussian state, respectively.
GA→B(σAB) > 0 represents that Alice has the ability to steer
Bob’s state. Similarly, we have

GB→A(σAB) = max

{
0,

1

2
ln

det σB

det σAB

}
, (4)

which represents Bob’s ability to steer Alice’s state, where σB

is the covariance matrix of Bob’s state.
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In the ideal case, i.e., with unit transmission efficiency
and detection efficiency, the output modes from the 1:1
beam splitter are Ê = (B̂ − Ĉ)/

√
2 and F̂ = (B̂ + Ĉ)/

√
2,

respectively. The amplitude and phase quadratures of the
optical modes Ê and F̂ are measured by two homodyne
detectors, respectively. The measurement results for the optical
modes Ê and F̂ are represented by ı̂E = (x̂B − x̂C)/

√
2 and

ı̂F = (p̂B + p̂C)/
√

2, respectively. The measured results are
fed forward to optical mode D̂ through the classical channels,
respectively. The output beam is

D̂′ = D̂ +
√

2g ı̂E + i
√

2g ı̂F , (5)

where g describes the amplitude and phase gain factor in the
classical channels, and here we have assumed that the gains in
the two classical channels are equal.

The covariance matrix of the output states Â and D̂′ is
given by

σout =
(

AI CZ
CZ BI

)
, (6)

where A = V , B = (1 + 2g2)V − 2g
√

V 2 − 1, and C =
g
√

V 2 − 1. Substituting the matrix elements in Eq. (6) into
Eqs. (3) and (4), the EPR steering GA→D′

and GD′→A can be
obtained.

The gain factor in the classical channel is an important
parameter in entanglement swapping. Steerabilities between
modes Â and D̂′ also depend on the gains in the classical
channels. The optimal gains can be obtained by maximizing
the steerabilities GA→D′

and GD′→A, which are given by

gA→D′
opt = V

√
V 2 − 1

V 2 + 1
, (7)

gD′→A
opt = V√

V 2 − 1
. (8)

respectively. From the expression of gA→D′
opt and gD′→A

opt , we

see that gA→D′
opt and gD′→A

opt are smaller and larger than 1 for

any V , respectively. They gradually approach 1 from opposite
directions as V increases. In the limit of V → ∞, which
corresponds to perfect EPR entanglement, gA→D′

opt and gD′→A
opt

are both equal to 1. The difference between Eqs. (7) and (8)
comes from the asymmetric property of the output state, i.e.,
the submatrixes AI and BI are different in Eq. (6) even for
the ideal case. In the ideal case, i.e., with unit transmission
efficiency, detection efficiency, and unit gain in the classical
channel, we have B = 3V − 2

√
V 2 − 1 in Eq. (6). It is obvious

that B is equal to A only when V is infinite, which corresponds
to an infinite squeezing level. However, an infinite squeezing
level is impossible because infinite pumping power is required.
In realistic cases, modes B̂ or/and Ĉ suffer from transmission
losses, so B and A are not equal even if perfect detection
efficiency and unit gain are taken.

Loss and noise in quantum channels can lead to
decoherence of the quantum state. Especially, excess noise in
the quantum channel, which is the noise above the vacuum
noise, can lead to the disappearance of squeezing and the
sudden death of entanglement [32,33]. Here, we consider
the proposed swapping schemes for Gaussian EPR steering
in lossy and noisy channels. The losses in the quantum
channels are modeled by beam splitters with transmission
efficiencies T1 and T2, respectively. The excess noise is
modeled by environmental thermal states with noise W1 and
W2, respectively. Wi = 0 (i = 1,2) means that there is no
excess noise and only loss exists in the quantum channel.
An optical mode ô turns into

√
T ô + √

1 − T (ν̂ + ŵ) after
it is transmitted through a lossy and noisy channel, where
ν̂ and ŵ represent the vacuum state and thermal state,
respectively. The detection efficiency η of the homodyne
detector for modes Ê and F̂ is also taken into account, which
is modeled by a beam splitter with a transmission efficiency η.
Taking all imperfections into account, the covariance matrix
elements in Eq. (6) are A = V , B = V − 2g

√
ηT2

√
V 2 − 1 +

g2{2 + η[(T1 + T2)(V − 1) − T1W1 − T2W2 + W1 + W2]},
and C = g

√
ηT1

√
V 2 − 1, respectively. The corresponding

optimal gain gA→D′
opt in the classical channels can be expressed

analytically as

gA→D′
opt = V

√
ηT2

√
V 2 − 1

2V + η{V [(T1 + T2)(V − 1) − T1W1 − T2W2 + W1 + W2] − (V 2 − 1)T1} . (9)

III. RESULTS AND DISCUSSIONS

Figure 2(a) shows the dependence of output EPR steering
on gain factors in the classical channels with two different
squeezing parameters. The transmission efficiencies T1 and T2

are chosen as 1, which means that the swapping process is
implemented locally, and the detection efficiency η is chosen
as 95%. Different from entanglement swapping, the optimal
gain factors forGA→D′

andGD′→A are different, which is due to
the asymmetry of modes Â and D̂′. As r increases, the optimal
gain factors for GA→D′

and GD′→A tend to 1, and the maximum
steerabilities also substantially increase. Thus g = 1 corre-
sponds to the ideal swapping operation in the limit of infinite
squeezing.

Figure 2(b) shows the dependence of
output EPR steering on the squeezing
parameter r with optimal gain gA→D′

opt and unit gain, respec-
tively, where the transmission efficiencies T1 and T2 are chosen
as 1 and the detection efficiency η is chosen as 95%. The black
curve shows the steerability of the original EPR resource for
comparison. The steerability of modes Â and D̂′ is lower than
that of the original EPR entangled states (Â,B̂) and (Ĉ,D̂).
When the unit gain is chosen, EPR steering GA→D′

and GD′→A

exist only when the squeezing parameter r is larger than 0.72
and 0.42, respectively (blue solid and dashed curves). One-way
steering GD′→A is observed in the range 0.42 < r < 0.72.
When the optimal gain gA→D′

opt is chosen, EPR steering GA→D′
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FIG. 2. (a) Dependence of EPR steerability on gain factors
in classical channels with two different squeezing parameters.
(b) Dependence of steerability on squeezing parameter r . The red
dotted and dashed-dotted curves represent the steering between
modes Â and D̂′ when the optimal gain factor gA→D′

opt is chosen.
The blue solid and dashed curves correspond to the steering between
Â and D̂′ where the unit gain factor is chosen. The black curve shows
the steerability of the original EPR resource for comparison.

and GD′→A can be obtained when the squeezing parameter
is larger than 0.24 and 0.75, respectively (red dotted and
dashed-dotted curves). One-way steering GA→D′

is observed
in the range 0.24 < r < 0.75. As the squeezing parameter r

increases, these four curves tend to overlap each other. Please
note that although the optical mode is not transmitted over
a lossy channel in this case, one-way EPR steering is also
presented. This is because the symmetry of the output state
is broken after the swapping process, just as the previous
observed one-way EPR steering in a lossy channel [12].

Comparing the EPR steering GA→D′
with unit gain and

optimal gain gA→D′
opt , the required squeezing parameter for

GA→D′
is reduced from 0.72 to 0.24 with optimal gain

gA→D′
opt . Comparing the EPR steering GD′→A with unit gain

and optimal gain gA→D′
opt , the required squeezing parameter

for GD′→A is increased from 0.42 to 0.75 by choosing the
optimal gain gA→D′

opt . This is because the optimal gain gA→D′
opt

is the maximization of steerability GA→D′
. If we choose the

optimal gain gD′→A
opt , the required squeezing parameter for

GD′→A will be reduced while that for GA→D′
will be increased.

The physical reason for this phenomenon comes from the

FIG. 3. The transmission distance regions for output EPR steering
in lossy channels when the optimal gain factor gA→D′

opt is chosen.
(a) and (b) correspond to a detection efficiency of 95% and
99.5%, respectively. Regions I, II, and III correspond to two-way
EPR steering, and one-way EPR steering for GA→D′

and GD′→A,
respectively.

asymmetric property of EPR steering. Here, we choose the
optimal gain factor gA→D′

opt as an example to present the results.
Figure 3 shows the transmission distance regions for EPR

steering in lossy but noiseless quantum channels, where
the gain factor in the classical channel is taken as gA→D′

opt .
Here, we consider the transmission loss α = 0.2 dB/km in
the telecommunication fiber and the squeezing parameter
r = 1.15 (corresponding to 10 dB squeezing). The detection
efficiency is chosen as 95% and 99.5% in Figs. 3(a) and 3(b),
respectively. In the single-channel scheme [see the transmis-
sion distance of the T1 channel in Fig. 3(a)], the maximum
transmission distances for EPR steering GA→D′

and GD′→A

are 45 and 7.6 km, respectively. When the detection efficiency
is improved to 99.5%, the transmission distances for EPR
steering GA→D′

and GD′→A in the single-channel scheme can
be increased to 95 and 9.5 km, respectively [Fig. 3(b)]. The
longer transmission distance forGA→D′

is obtained because the
gain factor is taken as gA→D′

opt . We also see that the transmission
distance of the single-channel scheme is much longer than that
of the symmetric dual-channel scheme.

With the increase of transmission distance in the quantum
channels, two-way EPR steering (region I) can be turned to
either one-way EPR steering GA→D′

(region II) or GD′→A
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FIG. 4. Dependence of EPR steering on the transmission distance
with different excess noise for (a) the single-channel scheme and (b)
the symmetric dual-channel scheme. The excess noise is taken as
W = 0, 0.2, and 5 for comparison.

(region III), respectively. The direction of one-way EPR
steering can be changed at the crossover point of the two
boundary curves for GA→D′ � 0 and GD′→A � 0 in the dual-
channel scheme. As shown in Fig. 3(a), one-way EPR steering
GD′→A can be observed when the transmission distance of
mode B̂ is shorter than 2.9 km (region III), while one-way
EPR steering GA→D′

can be obtained when the transmission
distance of mode B̂ is longer than 2.9 km (region II).

Here, we explain the physical reason for the change of
the EPR steering direction. The EPR steering regions I, II,
and III in Fig. 3 correspond to the results of GA→D′

> 0
and GD′→A > 0, GA→D′

> 0 > GD′→A, and GD′→A > 0 >

GA→D′
, respectively. From the expression of steerabilities in

Eqs. (3) and (4), it can be clearly seen that the conditions corre-
sponding to the EPR steering regions I, II, and III in Fig. 3 are
det σA and det σD′ > det σAD′ , det σA > det σAD′ > det σD′ ,
and det σD′ > det σAD′ > det σA, respectively. Two-way EPR
steering can be transformed to one-way EPR steering A → D′
(D′ → A) if the asymmetry of the state exceeds the boundary
det σAD′ = det σD′ (det σAD′ = det σA) between regions I and
II (I and III). However, it must be pointed out that the asymmet-
ric property of the two-mode quantum state is only a necessary
condition for one-way EPR steering. In other words, a two-
mode quantum state exhibiting one-way EPR steering must be
an asymmetric state, while a two-mode quantum state exhibit-
ing two-way EPR steering may also be an asymmetric state.

The dependence of EPR steering on the transmission dis-
tance in noisy channels is shown in Fig. 4. Figures 4(a) and 4(b)
show the single-channel scheme and symmetric dual-channel
scheme, respectively. The squeezing parameter r = 1.15 is
chosen, and the excess noise W is taken as 0, 0.2, and 5 (in
units of shot-noise level), respectively. The optimal gain factor
gA→D′

opt in the classical channel is chosen, thus the steerability

GA→D′
is always larger than GD′→A at each noise level. For

simplification, the distances and noise in the two quantum
channels are chosen to be equal in the dual-channel scheme. It
is obvious that the transmission distance in the single-channel
scheme is much longer than that of the symmetric dual-channel
scheme at the same excess noise level. The transmission
distances decrease dramatically as excess noise increases in
both schemes. The sudden death of EPR steering can occur
when there is larger excess noise in the quantum channel.

IV. CONCLUSION

Comparing with the Gaussian entanglement swapping
scheme [20–23], the same procedure is used in the presented
swapping schemes of Gaussian EPR steering. There are two
differences between the swapping of Gaussian EPR steering
and Gaussian entanglement. First, in the swapping of Gaussian
EPR steering, the obtained steerabilities of the two remote
modes are asymmetric, while the obtained entanglement of
the two remote modes are the same in Gaussian entanglement
swapping. Second, the dependence on the squeezing parameter
is different when the optimal gain is chosen. When the optimal
gain in the classical channel is chosen, higher squeezing is
required to complete the swapping of Gaussian EPR steering,
while Gaussian entanglement swapping can be completed with
nonzero squeezing [23].

In conclusion, two swapping schemes of Gaussian EPR
steering, a single-channel scheme and dual-channel scheme,
are presented. EPR steering is observed between two indepen-
dent quantum modes without a direct interaction by using the
technique of entanglement swapping. The transmission dis-
tances of the single-channel scheme and dual-channel scheme
are compared, and the maximum transmission distance can be
obtained by using the single-channel scheme. The transmission
distances are limited by the squeezing of the Gaussian EPR
state and the detection efficiency of the homodyne detector in
the joint measurement. If an EPR state with higher squeezing
and a homodyne detector with higher detection efficiency are
used, a longer transmission distance can be obtained.

One-way EPR steering is presented after the swapping,
which is an inherent property of EPR steering. The change
in the EPR steering direction is observed in the dual-channel
scheme, which is related to the asymmetric property of the
output state. In noisy quantum channels, the transmission
distance decreases dramatically with an increase of excess
noise in quantum channels. The presented schemes can
be applied in quantum communication networks with EPR
steering.
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