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TOPICAL REVIEW — Quantum computation and quantum simulation
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Measurement-based quantum computation with continuous variables, which realizes computation by performing mea-
surement and feedforward of measurement results on a large scale Gaussian cluster state, provides a feasible way to imple-
ment quantum computation. Quantum error correction is an essential procedure to protect quantum information in quantum
computation and quantum communication. In this review, we briefly introduce the progress of measurement-based quantum
computation and quantum error correction with continuous variables based on Gaussian cluster states. We also discuss the
challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
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1. Introduction
Quantum computation (QC) provides an exponential

speedup over classical computing for certain problems, such
as integer factoring[1] and quantum simulation.[2] Recently,
quantum computation with several systems, such as super-
conducting systems,[3–5] ion trap systems,[6] and silicon-based
systems,[7] has made enormous progress. Generally, there are
two kinds of QC models, one is the traditional circuit model,
in which unitary evolution and coherent control of individual
qubits are required,[8] the other one is the measurement-based
QC model,[9] which is also named one-way QC since compu-
tation is implemented by performing measurement and feed-
forward of measurement results on a large scale cluster state.
The measurement-based QC is scalable and provides the abil-
ity to perform universal QC using only single-qubit projec-
tive measurement, given a specially prepared and highly en-
tangled cluster state.[9,10] In the measurement-based QC, the
resources required for QC using linear optics can be signif-
icantly reduced by first creating photonic cluster states via
nondeterministic gates.[10] Essential progress has been made
for measurement-based QC, such as measurement-based QC
with a four-qubit cluster state of single photons[11–13] and
measurement-based quantum computation with trapped ions
system.[14]

To build a quantum computer, seven stages are
involved,[15] which are (1) operations on single physical

qubits, (2) algorithms on multiple physical qubits, (3) quan-
tum nondemolition (QND) measurements for error correction
and control, (4) logical memory with longer lifetime than that
of physical qubits, (5) operations on single logical qubits, (6)
algorithms on multiple logical qubits, and (7) fault-tolerant
quantum computation. These stages are divided according
to the complexity of the task and different technologies are
required at each stage. At present, the third stage has been
attained by trapped ions[16] and superconducting system,[17]

respectively. The fourth stage, where a logical qubit can be
stored, via error correction, for a time substantially longer than
the decoherence time of its physical qubit components, has not
been reached. Recently, quantum states on 53 qubits were cre-
ated using a programmable superconducting process[18] and
Gaussian boson sampling was demonstrated using 50 single-
mode squeezed states.[19]

For quantum information based on optical systems, there
are two different systems, which are discrete variable (DV)
and continuous variable (CV) systems, respectively. Quan-
tum variables defined in finite and infinite Hilbert spaces are
used in DV and CV systems, respectively. Optical quantum
information with DV and CV systems are developing in par-
allel and have their own advantages and disadvantages. The
DV system encodes information on discrete variables, such
as polarization of photons. For the DV optical system, the
maximal entanglement can be obtained but the generation of
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entanglement is probabilistic usually. While for the CV op-
tical system, which always encodes information on the am-
plitude and phase quadratures (corresponding to position and
momentum, respectively) of an optical field, the generation of
entanglement is deterministic but the perfect entanglement is
not able to be obtained.[20,21] So far, tremendous progress has
been achieved for optical quantum networks with DV and CV
systems.

Cluster state is the basic resource for measurement-based
QC. There has been remarkable achievement in the prepa-
ration of CV cluster state, from four-mode[22–24] to eight-
mode,[25] 60-mode in frequency comb,[26] 10000-mode,[27]

one million modes,[28] and two-dimensional one in time
domain.[29,30] The successful preparation of large scale CV
cluster state makes it possible to realize the measurement-
based QC with CV cluster state. Measurement-based QC
with CV cluster states provides a feasible way for scal-
able quantum information processing.[9,10] It can be real-
ized by measurement and classical feedforward on a Gaus-
sian cluster state, which is prepared deterministically.[21,31,32]

Firstly, a quantum nondemolition sum gate and a quadratic
phase gate for measurement-based CV QC were demonstrated
based on utilizing squeezed states of light in 2008 and 2009,
respectively.[33,34] Successively, a controlled-X gate based on
a four-mode CV cluster state was presented, in which a pair of
quantum teleportation elements were used for the transforma-
tion of quantum states from the input target and control states
to the output states.[35] Later, the squeezing operation, Fourier
transformation, and controlled-phase gate were also achieved,
in which a four-mode optical cluster states served as the re-
source quantum states.[36,37] Currently, several quantum logi-
cal gates in CV QC have been demonstrated, but the realiza-
tion of an algorithm remains a challenge.

In the practical QC, the inevitable interaction between
the quantum state and environment will lead to errors. Thus,
quantum error correction (QEC) is a necessary procedure
to protect quantum state against errors. The essential idea
in QEC is to encode information in subsystems of a larger
physical space that are immune to noise.[3] In QEC, physi-
cal qubits are encoded as QEC code, which is used to iden-
tify errors and correct the corresponding errors. In fault-
tolerant QC, logical qubits are encoded within the error-
corrected system of physical qubits and are used to implement
quantum algorithms.[3] In recent years, proof-of-principle ex-
periments have been demonstrated in various experimental
systems.[16,17,38–41] Fault-tolerant QC, which implements QC
by encoding quantum states in a QEC code, enables one to
build a quantum computer which behaves correctly in the pres-
ence of errors.[42,43] Fault-tolerant measurement-based QC
with CV cluster states is possible with finite squeezed cluster
states above a threshold value by concatenating with quantum

stabilizer codes and some special ancilla-based quantum code
such as Gottesman–Kitaev–Preskill (GKP) code.[44]

In this paper, we briefly introduce the progress of CV
measurement-based QC. In Section 2, the progress of Gaus-
sian cluster state, the theoretical principle of measurement-
based CV QC, the experimental details of the related tech-
niques, and the applications of some CV quantum logical gates
are introduced. In Section 3, we introduce the progress of
CV quantum simulation. In Section 4, the progress of CV
QEC, the fault-torrent measurement-based quantum computa-
tion with two classes of QEC codes and the recent progress of
the experiment techniques are introduced. Finally, we discuss
the challenges toward fault-tolerant CV QC.

2. Measurement-based CV QC
2.1. The CV cluster state

Cluster state, which is a type of multipartite en-
tangled state with next-neighbor interactions (Ising type
interactions),[32,45] is the basic resource for measurement-
based QC[9,10] and quantum network.[46,47] In CV QC, the
quantum variables are the amplitude and phase quadratures
of the quantum electromagnetic field described as â, which
satisfies the usual bosonic commutator [â, â†] = 1. When the
convention h̄ = 1/2 is chosen, its amplitude and phase quadra-
tures can be expressed as x̂ = (â+ â†)/2 and p̂ =

(
â− â†

)
/2i,

respectively. The variance of the vacuum state is given by
σ(x̂)2 = σ(p̂)2 = 1/4. Generally, CV cluster states are de-
fined as

p̂a− ∑
b∈Na

x̂b ≡ δ̂a→ 0, a ∈ G. (1)

The modes a ∈G denote the vertices of the graph G, while the
modes b ∈ Na are the next-neighbors of mode â for ideal case,
the excess noise δ̂a tends to be zero.

As shown in Fig. 1, each node in a cluster state represents
a qubit or qumode, the edge represents the next-neighbor in-
teraction between the neighboring nodes.[32] It is obvious that
the cluster state can protect entanglement property since when
a measurement is performed on one qubit or qumode only the
interaction next to this qubit is destroyed, while the entan-
glement of other qubits not next to the measured qubit still
exists.[48] Based on this entanglement persistence property,
the cluster state is a naturally good resource for measurement-
based QC.[9,10]

(a) (c)

(b)

Fig. 1. Examples of cluster states. (a) A linear four-mode cluster state.
(b) A two-dimensional cluster state. (c) A three-dimensional cluster
state.
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There are mainly three types of experimentally pre-
pared CV cluster states, which are space-separated, frequency-
domain, and time-domain cluster states, respectively. These
three types of CV cluster states are developing in parallel and
have their own advantages and disadvantages. To prepare the
space-separated CV cluster state, a linear optical transforma-
tion of squeezed states on a specially designed beam-splitter
network is used.[22–25] The advantage of the space-separated
cluster state is that local operations can be easily applied to
each qumode. The drawback of this method is that with in-
creasing of the entangled modes the complexity of the ex-
perimental setup is also subsequently increased. Using this
method, space-separated four-mode and eight-mode CV clus-
ter states were prepared experimentally[22–25] and applied in
CV QC, respectively.

To prepare the CV cluster state in frequency domain, the
technique of the optical frequency comb is applied, with which
the lager scale cluster states can be prepared in principle.[49] In
2014, Chen et al. experimentally realized one 60-mode copy
and of two 30-mode copies of a dual-rail quantum-wire clus-
ter state in the quantum optical frequency comb of a bimodally
pumped optical parametric oscillator.[26] In 2017, Cai et al. re-
alized the construction of thirteen cluster states by measuring a
frequency comb with appropriate pulse shaped local oscillator,
which was obtained by a computer-programmed spatial light
modulator.[50] However, in this way, these entangled modes
are not easily separated and thus the schemes of utilizing them
to implement QC need to be redesigned.

To prepare the CV cluster state in time domain, two
squeezed light beams are divided into time bins and are cou-
pled on a balanced beamsplitter.[27] Then one output mode
from the balanced beamsplitter is delayed through a fibre de-
lay line. Finally, by combining the staggered states on the
second balanced beamsplitter, a cluster state in time domain
can be generated.[27] In 2016, Yoshikawa et al. demonstrated
the successive generation of fully inseparable light modes for
more than one million modes.[28] Remarkably, in 2019, two-
dimensional cluster states were experimentally prepared by
Furusawa’s group and Anderson’s group, respectively.[29,30]

Very recently, a method to generate CV three-dimensional
cluster state in time domain was proposed for topologically-
protected measurement-based QC.[51] It has been shown that
such a three-dimensional cluster state is robust against analog
errors derived from the finite squeezing during topologically
protected measurement-based QC.

2.2. The CV measurement-based QC

The CV measurement-based QC is based on the cluster
entangled state, which can be built by implementing an ap-
propriate unitary transformation on a series of input squeez-
ing state.[52] The elementary gate set which is sufficient for
universal CV QC of arbitrary multi-qumode can be chosen

as[10,53–55]

{F,D1,x̂(s),D2,x̂(s),D3,x̂(s),Cz}. (2)

Here F = e−i(π/2)ââ†
is the Fourier transformation

operator,[56] which maps between the position and momen-
tum basis states. Dk,x̂(s) = exp(isx̂k/k), for k = 1,2,3
and for all s ∈ R. For example, D1,x̂(s) = exp(isx̂) and
D1,p̂(s) = exp(−isp̂) are displacement gates which displace
a state in phase space by s in x̂ and p̂, respectively. D2,x̂(s)
is the quadratic phase gate (shear gate), and D3,x̂(s) is the
cubic phase gate, which is the single nonlinear non-Gaussian
gate. CZ = e i x̂1⊗x̂2 is the controlled-Z gate, which describes
the two-mode logical gate. The quadratic phase gate D2,x̂(s)
together with F , D1,x̂(s), and CZ is sufficient to simulate any
multiqumode Clifford (Gaussian) transformation. In order to
asymptotically achieve universal multi-qumode processing in-
cluding non-Clifford (non-Gaussian) unitaries, the additional
cubic phase gate D3,x̂(s) is needed.[54]

A Gaussian state can be described by using the covari-
ance matrix, which is defined as cov(𝑣̂)i j =

1
2

〈
𝑣̂i𝑣̂ j + 𝑣̂ j𝑣̂i

〉
−

〈𝑣̂i〉
〈
𝑣̂ j
〉
, i, j = 1,2,3, . . . ,n, where 𝑣̂ = (x̂1, p̂1, . . . , x̂n, p̂n)

T is
a vector composed by the quadrature operators.[57] In quan-
tum optics, the Hamiltonians with quadratic x̂ and p̂ can be
written as Û = exp[i ∑ j,k(α j,kx̂ j x̂k + β j,kx̂ j p̂k + γ j,k p̂ j p̂k) +

i ∑ j(δ j x̂ j + ε j p̂ j) + iφ ], α j,k,β j,k,γ j,k,δ j,ε j, φ ∈ R, which
transforms Gaussian states into Gaussian states and is called as
Gaussian transformation or linear unitary Bogoliubov (LUBO)
transformation.[56] After this transformation, we get Û†𝑣̂Û =

L𝑣̂+𝑐, Det(L)= 1, where L is a 2n×2n symplectic matrix and
𝑐 is a vector of 2n constants. The effect of the Gaussian trans-
formation L to a special Gaussian state 𝑣̂0 can be described as
cov𝑣̂ = cov(L𝑣̂0) = L(cov𝑣̂0)LT. For example, the symplectic
matrices of the Fourier transformation operator, the quadratic
phase gate, and the controlled-Z gate are given respectively by

F =

(
0 −1
1 0

)
, (3)

D2,x̂ =

(
1 0
s 1

)
, (4)

Cz =


1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1

 . (5)

Measurement-based QC is realized by measurement and
classical feedforward based on cluster state.[9,10] An arbitrary
one-mode Gaussian logical gate can be exactly and finitely
decomposed into the elementary logical gates, such as the
quadratic phase gate and the Fourier transformation gate.[56]

Here we take D2,x̂(s) as an example to present the basic prin-
ciple of the measurement-based CV QC. As shown in Fig. 2,
the initial input state |Ψin〉 is coupled with a momentum eigen-

state with eigenvalue zero |0〉p = (2π)−1/2
∫

dx̂|x̂〉x, which is
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an ideal phase squeezed state â = e+r x̂(0) + i e−r p̂(0). Af-
ter the coupling by a controlled-Z gate, one of the output
modes is measured by a homodyne detector (HD) to obtain the
quadrature of p̂′ = p̂cosθ− x̂sinθ . Then the measurement re-
sult is fedforward to the other output mode with the gain of
g = 1/cosθ and θ = tan−1(−s) by the amplitude quadratures
displacement operation D1,p̂(s) = exp(−isp̂). After the dis-
placement operation, the quadratic phase gate is realized. Usu-
ally, the controlled-Z gate illustrated in Fig. 2 is implemented
by a beamsplitter operation in the experiment.[37,58]

In 2011, Ukai et al. demonstrated the complete set of
one-mode linear unitary Bogoliubov (LUBO) transformations
for continuous variables using a four-mode cluster state.[56]

The fidelity obtained in the experiment was 0.68, which
was limited by the squeezing level of the ancillary cluster
state. In 2014, Hao et al. experimentally realized single-
mode squeezing and Fourier transformation operations by us-
ing an Einstein–Podolsky–Rosen (EPR) entangled state as
the resource.[58] The fidelity of the squeezing operation was
0.65 for 4 dB squeezing operation, which was limited by the
squeezing level of the EPR entangled state. In 2016, Mar-
shall et al. experimentally demonstrated the CV QC on en-
crypted data with Gaussian displacement and squeezing oper-
ations which can protect the security of a user’s privacy.[59]

The fidelity was > 97% for losses of up to 10 km. In 2017,
a scheme to realize a general single-mode Gaussian operation
based on an EPR entangled state was proposed[60] and it has
been shown that the classical Hadamard transform algorithm
can be implemented with CV cluster state.[61] In 2020, Zhao
et al. proposed and experimentally demonstrated a heralded
squeezing gate which achieved near unit fidelity for coherent
inputs while requiring only modest ancillary squeezing and
post-selection filter.[62]

HD

D↪p(s)

|Ψin>

|0>p ^

Fig. 2. Schematic diagram of the elementary one-mode measurement-
based QC gate. |Ψin〉 is the input state, |0〉p is a momentum eigenstate
with eigenvalue zero, HD is a homodyne detection in the phase quadra-
ture, and D1,p̂(s) is a correction displacement operator.

To realize a two-mode logical gate, such as controlled-Z
gate and controlled-X (CX = e i x̂1⊗p̂2 ) gate, two input states are
coupled with a four-mode cluster state and two quantum tele-
portation circuits need to be implemented. In 2010, Wang et
al. demonstrated a controlled-X gate based on a four-mode CV
cluster state of optical modes.[35] In 2011, Ukai et al. demon-
strated a CV cluster-based CZ gate.[37] To realize universal CV
QC based on cluster state, at least one non-Gaussian operation
is required, for example the cubic phase gate D3,x̂(s), besides
Gaussian cluster state and Gaussian measurement.[10]

2.3. Experimental realization of the logical gates for CV
QC

In the experiment, the amplitude (or phase) quadrature
displacement operation D1,x̂(s)) (or D1,p̂(s)) can be realized by
coupling the input mode with a coherent beam on a 99 : 1 beam
splitter.[54] The displacement amplitude can be controlled by
the electro-optical modulators (EOM) placed in the coherent
beam. The phase rotation operator R̂(θ) = e−iθ ââ†

whose
symplectic matrix is given by

R(θ) =
(

cosθ sinθ

−sinθ cosθ

)
, (6)

can be considered as the control of the phase of the input state.
So we can lock the relative phase between two optical beams
to implement the rotation operation. Fourier transform is the
special case of rotation operation when θ = π/2.

1%R aoutHD3

HD2

HD1

50:50

⌣

ain⌣ xd2
⌣

xd1
⌣

E2

E1
⌣

⌣

E
O
M
x

E
O
M
p

Fig. 3. The schematic of experimental setup of a squeezing gate. The
sum (+) and difference (−) of the photocurrents measured by two ho-
modyne detectors (HD1 and HD2) are fedforward to mode Ê2. The
output mode is measured by HD3. EOMx and EOMp are the ampli-
tude and phase electro-optical modulators. 1%R is a mirror with a 1%
reflection coefficient. Revised from Fig. 1 in Ref. [58].

Squeezing operation and Fourier transform have been
efficiently realized based on EPR entangled state.[58] The
schematic of experimental setup of a squeezing gate is shown
in Fig. 3. The quantum correlations for amplitude and phase
quadratures of the EPR entangled state are x̂1 + x̂2 ≡ δ̂1 and
p̂1− p̂2 ≡ δ̂2, respectively, where δ̂1 and δ̂2 represent excess
noises with variances of σ(δ̂1)

2 = σ(δ̂2)
2 = e−2rE/4 intro-

duced by finite squeezing. For an ideal EPR entangled state
(in case of infinite squeezing), we have δ̂1 = δ̂2 = 0. The input
mode âin is coupled with the submode Ê1 by a 50 : 50 beam
splitter with a π/2 phase difference. The coupled modes of the
beam splitter are measured by two homodyne detectors HD1

and HD2, respectively. The measurement results x̂d1 and x̂d2

are given respectively by

x̂d1 = [cosθ1(x̂in− p̂1)+ sinθ1(p̂in + x̂1)]/
√

2,

x̂d2 = [cosθ2(x̂in + p̂1)+ sinθ2(p̂in− x̂1)]/
√

2, (7)

where θ1 and θ2 are the measurement angles of HD1 and HD2,
respectively. Choose θ2 = θ1 and feed forward the measure-
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ment results to the submode Ê2, which is implemented by cou-
pling the displaced coherent beam and submode Ê2 on a beam
splitter with reflectivity of 1%. The output state is given by(

x̂out
p̂out

)
=

(
x̂2
p̂2

)
+Gs

(
x̂d1
x̂d2

)
= L

(
x̂in
p̂in

)
+𝛿, (8)

where Gs is the gain factor in the feedforward circuit, which
can be described as

Gs =


1√

2sinθ1

1√
2sinθ1

1√
2cosθ1

−1√
2cosθ1

 , (9)

L is the transformation matrix of the squeezing gate

L =

(
cotθ1 0

0 tanθ1

)
, (10)

and 𝛿 = (δ̂1,−δ̂2)
T is the excess noise coming from the EPR

entangled state.
The standard squeezing gate Ŝ(r) = e ir(x̂ p̂+p̂x̂), whose

transformation matrix is

S =

(
er 0
0 e−r

)
. (11)

Comparing the matrixes of L and S, we can see that the squeez-
ing gate can be obtained when er = cotθ1 and the squeezing
parameter r depends on the measurement angle θ1.

50%R 99%R

input α intput βsix-mode cluster state

HD

xd1
^ xd2

^ xd3
^ pd4

^p2
^ p3

^

E
O
M
x
E
O
M
p

E
O
M
x

E
O
M
p

µ

ν

C1 C2 C3 C4 C5 C6

Fig. 4. Schematic of experimental setup of the gate sequence. The in-
put states α and β are coupled to a six-mode CV cluster state via two
50 : 50 beam-splitters, respectively. Measurement results from HD sys-
tems are fedforward to modes C4 and C5. The output modes µ and ν

are measured by two HD systems. EOMx and EOMp: amplitude and
phase EOM. 99%R, a mirror with 99% reflection coefficient. Revised
from Fig. 3 in Ref. [63].

Arbitrary Gaussian QC can be implemented sufficiently
by a sequence of one-mode and two-mode logical gates. Here,
a gate sequence consisting of a one-mode squeezing gate
Ŝ(rs) = e irs(x̂ p̂+p̂x̂) and a two-mode controlled-Z gate ĈZ jk =

e2i x̂ j x̂k based on a six-mode CV cluster state is taken as an
example.[63]

As shown in Fig. 4, the input mode α (target mode) and
the other input mode β (control mode) are coupled with the
sub-mode C1 and C6 of the six-mode cluster state by 50 : 50
beam splitters, respectively. In the experiment, the ampli-
tude and phase quadratures x̂d1, x̂d2, x̂d3, and p̂d4 of the output
modes of two 50 : 50 beam splitters are measured by homo-
dyne detectors, respectively, where the measurement angles
θ1 and θ2 in the homodyne detection for x̂d1 and x̂d2 deter-
mine the squeezing operation. The other two phase quadra-
tures p̂2 and p̂3 coming from the sub-modes C2 and C3 of the
six-mode cluster state are also measured. These measured re-
sults are fedforward to the amplitude and phase quadratures
of modes C4 and C5 through classical feedforward circuits by
using the amplitude and phase EOM, respectively. In this way,
the squeezing gate on input mode α is performed firstly to pro-
duce a phase-squeezed state. Then a CZ gate is performed on
the output mode from the squeezing gate and the other input
mode β coming from outside of the sequence. The whole gate
sequence is described as

x̂µ

p̂µ

x̂υ

p̂υ

 =


x̂C4
p̂C4
x̂C5
p̂C5

+G


p̂3− cscθ2(x̂d1 + x̂d2)/

√
2

p̂2 + secθ2(x̂d1− x̂d2)/
√

2√
2x̂d3√
2 p̂d4



= U


x̂α

p̂α

x̂β

p̂β

+


δ̂1− δ̂3

δ̂4− δ̂2− δ̂6

−δ̂6

δ̂1 + δ̂5− δ̂3

 , (12)

where

G =


−1 0 0 0
0 −1 1 0
0 0 1 0
−1 0 0 1

 (13)

is the feedforward gain factor, and

U =


1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1




cotθ2 0 0 0
0 tanθ2 0 0
0 0 1 0
0 0 0 1

 (14)

is the transformation matrix of the gate sequence. δ̂i (i =
1,2, . . . ,6) are the corresponding excess noise terms for each
mode of the CV six-mode linear cluster state. The quantum
property of this gate sequence is confirmed by the fidelities
and the quantum entanglement of the two output modes, which
depend on both the squeezing and controlled-phase gates.[63]

This experiment demonstrates the feasibility of implementing
Gaussian quantum computation by means of accessible gate
sequences.

2.4. Non-Gaussian gate for CV QC

Non-Gaussian gate is a key part in CV QC for expo-
nential speedup to solve certain computational problems.[54]

Bosonic operators of annihilation â and creation â† are es-
sential non-Gaussian operations. The annihilation operation
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can be realized by transmitting the target state through a low
reflectivity beam splitter. Once a single photon in the reflec-
tion channel is detected, it can be treated that the annihila-
tion operation is conditionally realized.[64,65] Photon creation
operation can also be conditionally achieved with the help
of a low-amplitude spontaneous parametric down-conversion
progress.[64,65]

It has been shown that in order to achieve arbitrary uni-
tary operations for CV QC, it is essential to add a cubic gate to
other Gaussian operations.[55] Gottesman, Kitaev, and Preskill
proposed a scheme to realize a cubic gate with Gaussian op-
erations, Gaussian measurement, quadratic feedforward, and
an ancillary cubic state, which is based on the two-mode
squeezed vacuum and photon number resolving detectors.[66]

In 2011, Marek et al. proposed a scheme to achieve weak non-
linearity with single-mode squeezed vacuum state and pho-
ton subtraction or addition technique.[67] In 2015, Marshall
et al. introduced a “repeat-until-success” approach to gener-
ate the cubic phase gate by using sequential photon subtrac-
tions and Gaussian operations.[68] In 2016, Miyata et al. pre-
sented the implementation of a quantum cubic gate by an adap-
tive non-Gaussian measurement which composed of a non-
Gaussian ancillary state, linear optics, and adaptive heterodyne
measurement.[69] In this scheme, the nonlinearity is generated
by a classical nonlinear adaptive control in a measurement-
and-feedforward process, while the nonclassicality is obtained
by the cubic state.

Non-Gaussian ancilla is important to complete the cubic
phase gate. It has been shown that the weak cubic nonlinearity
can be prepared within reach of current technologies.[70] The
nonclassicality of the approximative weak cubic state lies in
the superposition of |1〉 and |3〉. So, it can be heralded pre-
pared as a superposition of Fock states. In detail, the idler
mode from an entangled two-mode squeezed state is split into
three by a pair of beam splitters, after which the states of the
three modes are displaced in phase space. Simultaneous detec-
tion of a photon by the three detectors then heralds approxima-
tive preparation of the superposition state in the signal mode.

3. CV quantum simulation
Quantum simulation enables one to mimic the evolu-

tion of other quantum systems using a controllable quantum
system.[71–74] A CV quantum computer may be more suitable
for simulating CV quantum systems.[75] A scheme for simulat-
ing the Kitaev lattice model and detecting statistics of Abelian
anyons is proposed, where a quadratic phase gate is used to de-
tect the important feature of anyons, that is the nontrivial sta-
tistical phase obtainable through braiding.[76] In 2015, a quan-
tum simulation scheme of quantum field theory using continu-
ous variables was proposed.[77] Huh et al. proposed a quantum
simulation scheme with modification of boson sampling, in

which squeezed states of light are coupled to a boson sampling
optical network to simulate the molecular vibronic spectra.[78]

In 2018, Arrazola and Bromley showed that Gaussian boson
sampling is a useful tool for dense subgraph identification.[79]

In the same year, Brádler et al. proposed a method to estimate
the number of perfect matchings of undirected graphs based
on the relation between Gaussian boson sampling and graph
theory.[80] Very recently, Gaussian boson sampling was exper-
imentally demonstrated using 50 single-mode squeezed states
as the input states,[19] which shows the advantage of QC. In the
experiment, 50 indistinguishable single-mode squeezed states
are sent into a 100-mode ultralow-loss interferometer with full
connectivity and random matrix. The output states are sam-
pled using 100 high-efficiency single-photon detectors, and
the average fidelities around 0.99 are achieved in the experi-
ment.

The experimental demonstration of CV quantum simu-
lation is in progress. For example, quantum simulation for
time evolution of quantum harmonic oscillators has been ex-
perimentally demonstrated by Deng et al.[81] According to the
Hamiltonian of a quantum harmonic oscillator Ĥ = h̄ω(â†â+
1/2) in an open system with vacuum environment, the time
evolution of the dimensionless position and momentum oper-
ators is given by(

x̂(t)
p̂(t)

)
=

(
cosωt sinωt
−sinωt cosωt

)[(
x̂(0)e−Kt

p̂(0)e−Kt

)
+

(
F̂x(t)
F̂p(t)

)]
,

(15)
where K is the decay rate, and F̂x(t) and F̂p(t) are the noise
operators depending on the reservoir variables.

Generally, the time evolution matrix can be mimicked us-
ing the rotation gate, while the interaction between the input
state and vacuum environment resulting in the linear attenua-
tion of the amplitude of the qumode can be mimicked by an
adjustable beam-splitter composed by a half wave plate and a
polarization beam-splitter. The rate of the attenuation is pro-
portional to the strength of the interaction and the change of
the interaction coefficient is mimicked by adjusting the trans-
mittance

√
T = e−Kt of the beam-splitter. The whole process

is described as(
x̂out
p̂out

)
=

(
cosθ sinθ

−sinθ cosθ

)(√
T
(

x̂in
p̂in

)
+
√

1−T
(

x̂υ

p̂υ

))
+

(
δ̂1

−δ̂2

)
. (16)

In the experiment, the Wigner function of the output
state in phase space at different time points is measured to
show the time evolution of a quantum harmonic oscillator
in an open system for an initial coherent state and an initial
amplitude-squeezed state, respectively. The measured fidelity,
which is used for quantifying the quality of the simulation,
is higher than its classical limit. This scheme may be used
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to simulate more complicated dynamical processes of quan-
tum systems, whose Hamiltonian is described by the position
and momentum operators. Generally, the Hamiltonian of the
simulated system can be decomposed into a set of unitary
transformations,[82] so its dynamic behavior will possibly be
simulated by a sequence of quantum logic operations in CV
QC and the coupling of qu-modes. For example, the simula-
tion of interaction between two bosonic oscillators with strong
coupling[83] could be implemented by CV quantum simula-
tion.

4. CV quantum error correction
QEC is a necessary procedure to protect quantum in-

formation against errors in QC.[3] In the framework of CV
error correcting codes, one class generalizes qubit stabilizer
codes which is referred as linear oscillator codes to a CV
system.[84,85] This class falls in the Gaussian quantum infor-
mation. The other class encodes a discrete system into a CV
system and this class of codes requires using non-Gaussian
states. A scalable fault-tolerant architecture can be obtained
by concatenating these two classes of codes.[86]

In the regime of CV QEC, according to the no-go theorem
for Gaussian QEC that Gaussian errors cannot be corrected
by using only Gaussian resources.[87] However, non-Gaussian
stochastic errors, which frequently occur in free-space chan-
nels with atmospheric fluctuations for example,[88,89] can
be corrected by Gaussian schemes. Different types of CV
QEC codes for correcting single non-Gaussian error have
been proposed, such as nine-wave-packet code,[85,90] five-

wave-packet code,[84,91] entanglement-assisted code,[92] and
erasure-correcting code.[93] Some CV QEC schemes against
displacement errors have been experimentally demonstrated,
for example, the nine-wave-packet code,[94] the five-wave-
packet code,[95] and the correcting code with the correlated
noisy channels.[96] It has been shown that in fault-tolerant
CV QC with cluster state, initial squeezing in the cluster
above a threshold value of 20.5 dB ensures that errors from
finite squeezing acting on encoded qubits are below the fault-
tolerance threshold of known qubit-based error-correcting
codes.[44]

The general process of QEC for QC and quantum com-
munication is shown in Figs. 5(a) and 5(b), respectively. As
shown in Fig. 5(a), in the QEC with stabilizer codes,[97] the
encoded logical state |ψ〉L is subject to an error process. Next,
the code stabilizers are measured and the results are copied to
a register of ancilla states |A〉⊗m. The ancilla states are then
read out to give the syndrome result S. In the decoding pro-
cess, the syndrome result is used to determine the best recover
operation to correct the errors. As shown in Fig. 5(b), in the
QEC for quantum communication, an input state |ψ〉in and a
set of ancillary states are encoded into a QEC code by the en-
coding circuit. The QEC code is transmitted through quantum
channels where errors are introduced due to the noise in the
environment. After the decoding circuit, the decoded ancillary
states are used to identify the type and position of the error.
By implementing a suitable error correction procedure based
on the information in the syndrome procedure, the error will
be corrected.

|ψ>L

|ψ>in

|ψ>out

|ψ>out

|Α > ⊕m

|Α > ⊕m

errors
(a)

(b)

syndrome

sy
n
d
ro
m
e

recovery
operation

decoder

error

correction
decoding

noise

quantum

channels
encoding

S

Fig. 5. The general process of QEC. (a) The QEC for errors in QC with stailizer codes. (b) The QEC for errors in quantum communication.

4.1. CV QEC with five-wave-packet code

Here, we take the example of CV QEC with five-wave-
packet code to show the concrete QEC procedure in quantum
communication.[95] This five-wave-packet belongs to the QEC
code [n,k,d] = [5,1,3], where n = 5 denotes the number of
used wave packets, k = 1 is the number of logical encoded
input state, and d = 3 is the distance, which indicates how
many errors can be tolerated, a code of distance d can correct

up to (d− 1)/2 arbitrary errors at unspecified channels. The
schematic of the QEC with five-wave-packet code is shown
in Fig. 6, which contains five steps. (1) Encoding. The in-
put state is coupled with four auxiliary squeezed states using
a beam-splitter network consisting of four beam-splitters. The
encoded five modes is a five-mode CV linear cluster entan-
gled state as shown in Fig. 6(a). (2) Error channel. The noise
is randomly coupled into any one of the encoded five wave
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packets. (3) Decoding. The decoding circuit is the inverse of
the encoding circuit, which also contains four beam-splitters.
(4) Syndrome recognition. Measuring the decoded auxiliary
modes by homodyne detectors. The error in different channels
results in different outputs of the homodyne detectors, which is
used to identify the position of the error. (5) Error correction.
Feedingfoward the corresponding measurement results of ho-
modyne detectors to the output mode by the EOMs according
to the error syndrome results.

After the error correction, single displacement error in
phase space caused by channel noise is corrected. In this CV
QEC experiment, the information of the input state is only dis-
tributed on three of the five channels and thus any error ap-
pearing in the remained two channels never affects the output
state, i.e., the output quantum state is immune from the error
in the two channels. The stochastic error on a single channel

is corrected for both vacuum and squeezed input states and the
achieved fidelities of the output states are beyond the corre-
sponding classical limit.

Topological code is a special stabilizer QEC code whose
generators are local but logical operators are topologically
nontrivial and nonlocal.[98] Errors can be detected by measur-
ing stabilizer operators. CV topological codes require new fea-
tures such as the direction of edges, signs for anyonic charges,
and more complicated string operators, such as fusion rules,
and braiding rules.[98] In addition, some other concepts related
to it have been proposed in recent years, such as the CV anyon
statistics,[76] the graphical calculus for CV states[99] and its
application in quantum communication,[100] the CV QC with
anyons,[101] the exploration of CV fault-tolerant QC,[102] and
topological entanglement entropy.[103]

error correction
syndrome
recognition

decode

EOMx EOMp

error encode

(a)

(b)

c1
^ c2

^ c3
^ c4

^ c5
^

a1
^

a2
^

a3
^

ain
^

aout
^

a4
^

T1

T1

D1

D2

D3

D4

T3

T3

T2

T4

T2

T4

Fig. 6. The schematic of CV QEC with five-wave-packet code. (a) The graph representation of the five-wave-packet code. The input state is encoded
on submodes ĉ3, ĉ4, and ĉ5 of a five-partite linear cluster state ĉ1−5. (b) The schematic of experimental set-up. EOM: electro-optical modulator, T1−4:
beam-splitters with 25%, 33%, 50%, and 50% transmission, respectively. D1−4: homodyne detectors. Revised from Fig. 1 in Ref. [95].

4.2. CV QEC with correlated noisy channel

Noise is a main obstacle for the realization of CV quan-
tum information processing. It has been shown that the noise
in today’s communication system exhibits correlations in time
and space, thus it will be relevant to consider channels with
a correlated noise.[104–106] In 2013, Lassen et al. experimen-
tally realized CV QEC in a correlated noisy channel, in which
a communication protocol relying on simple linear optics that
optimally protects quantum states from correlated noise (non-
Markovian) was proposed.[96] This QEC scheme protects ar-
bitrary quantum states in a noisy non-Markovian environment
by establishing a correlated Gaussian noisy channel. Using a
simple linear optical encoding and decoding scheme, the near-
ideal protection of coherent and entangled states from a highly
noisy environment was demonstrated.

In 2016, Deng et al. experimentally demonstrated the

disappearance and revival of the squeezing in quantum com-
munication with squeezed state by using a correlated noisy
channel.[107] In 2017, the disentanglement and the entan-
glement revival of a tripartite entangled state were also ex-
perimentally demonstrated.[108] Disentanglement is observed
when the excess noise exists in the quantum channel. By cre-
ating a correlated noisy channel, entanglement of the tripar-
tite entangled state is preserved, thus disentanglement can be
avoided with the correlated noisy channel.

4.3. Fault-tolerant architecture

It has been shown that fault-tolerant linear optical quan-
tum computing can be realized using two coherent states as a
qubit basis.[102] Noiseless linear amplification (NLA) is the
key operation to correct the error introduced by Gaussian
noise.[109] In 2011, Ralph proposed a CV QEC protocol that
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can correct the Gaussian noise induced by linear loss on Gaus-
sian states.[110] This protocol is based on CV quantum telepor-
tation and heralded NLA, which can be implemented by using
linear optics and photon counting. A probabilistic NLA was
experimentally demonstrated to amplify coherent states at the
highest levels of effective gain based on a sequence of pho-
ton addition and subtraction.[111] It has also been shown that
measurement-based NLA, which is equivalent to the herald-
ing NLA, can be implemented by performing a post-selective
filtering on the measurement results.[112]

The non-Gaussian operations are critical to fault toler-
ance of CV QC. The hybrid approach that takes advantage
of both deterministic CV operations and robust qubit en-
coding becomes a trend in CV QEC.[66,86] Many different
encoding schemes for CV QEC have been proposed such
as GKP code,[66] encoding in cat states[102] and binomial
states.[113,114] For these codes, a qubit is encoded on a square
lattice in phase-space in a way that allows for the suppres-
sion of relevant errors (such as loss) to a certain extend.[115]

Concatenating the GKP code with other qubit error correction
code, for example toric GKP code,[86] surface-GKP code,[116]

and the non-Gaussian oscillator-into-oscillators code,[117] pro-
vides a feasible method to correct general errors. It has been
shown that initial squeezing in the cluster state above a thresh-
old value of 20.5 dB ensures that errors from finite squeezing
acting on encoded qubits are below the fault-tolerance thresh-
old of known qubit-based error-correcting codes, which is a
necessary condition for fault-tolerant measurement-based CV
QC.[44]

5. Discussion and conclusion
Tremendous progress has been made in CV QC and QEC

in recent years, as we reviewed in this manuscript. However,
there are still some challenges for realization of universal and
practical CV QC. Firstly, the cubic phase gate, which is a
necessary quantum gate for universal CV QC, still remains
a challenge although several proposals have been presented.
Secondly, fault-tolerant CV QC is another challenge which
is worth of further study. Thirdly, toward practical QC, it
is essential to develop integrated quantum chips that include
quantum source, circuits, and detectors for CV system. For
example, CV chips for entangled state[118,119] and squeezed
state[120–123] have been demonstrated, which demonstrate the
feasibility of integrated quantum chips for CV system.

In summary, we briefly reviewed the progress of
measurement-based CV QC and QEC, including the theoreti-
cal proposals and experimental demonstrations. We also dis-
cussed the fault-tolerant structure of CV QC and challenges
ahead for realization of universal and practical CV QC. As the
large scale CV cluster state in time domain has been achieved,
it provides sufficient quantum resource for CV QC. Since non-

Gaussian operation is required for universal measurement-
based CV QC, it is essential to develop hybrid quantum in-
formation processing system that combines both DV and CV
systems.[124]
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