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Single-mode squeezing and Fourier transformation operations are two essential logical gates in continuous-
variable quantum computation, which have been experimentally implemented by means of an optical four-mode
cluster state. In this paper, we present a simpler and more efficient protocol based on the use of Einstein-Podolsky-
Rosen two-mode entangled states to realize the same operations. The theoretical calculations and the experimental
results demonstrate that the presented scheme not only decreases the requirement to the resource quantum states at
the largest extent but also enhances significantly the squeezing degree and the fidelity of the resultant modes under
an identical resource condition. That is because in our system the influence of the excess noises deriving from
the imperfect squeezing of the resource states is degraded. The gate operations applying two-mode entanglement
can be utilized as a basic element in a future quantum computer involving a large-scale cluster state.
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I. INTRODUCTION

Over the past few decades a variety of fundamental
protocols for implementing quantum computation (QC) have
been explored [1,2]. There are two different models in the
QC regime, which are the traditional circuit model, in which
unitary evolution and coherent control of individual qubits
are required [1], and the cluster model, in which the logical
operations are achieved through measurements and classical
feedforward of measured results on a cluster entangled state
[3]. Due to the role of measurements the QC based on cluster
entanglement is essentially irreversible, and thus, it is named
the one-way QC [3]. The one-way QC was first experimen-
tally demonstrated with a four-qubit cluster state of single
photons [4–6]. In the meanwhile, a universal QC model using
continuous-variable (CV) cluster states was proposed [7].
Applying the approach of quantum optics, CV cluster states of
optical field can be unconditionally prepared [8–11], and the
one-way CVQC can be deterministically performed [7,12].
Therefore, the probabilistic problems existing in most qubit
information systems of single photons [4–6] can be overcome.
It has been theoretically and experimentally demonstrated that
one-mode linear unitary Bogoliubov (LUBO) transformations
corresponding to Hamiltonians that are quadratic in quadrature
amplitude and phase operators of quantized optical modes
(qumodes) can be implemented using a four-mode linear clus-
ter state [13,14]. At the same time, the Deutsch-Jozsa algorithm
for CVQC has been proposed [15]. Following the theoretical
proposals, the different logical gates used for CVQC were
experimentally realized. First, a quantum nondemolition sum
gate and a quadratic phase gate for one-way CVQC were
demonstrated based on utilizing squeezed states of light by
Furusawa’s group in 2008 and 2009, respectively [16,17].
Successively, a controlled-X gate based on a four-mode optical
CV cluster state was presented by Peng’s group, in which
a pair of quantum teleportation elements were used for the
transformation of quantum states from input target and control
states to output states [18]. Later, the squeezing operation,

*suxl@sxu.edu.cn

Fourier transformation, and controlled-phase gate were also
achieved by Ukai et al., in which four-mode optical cluster
states served as resource quantum states [14,19].

Here, we present a measurement-based logical operation
scheme with which the squeezing and Fourier transformations
for a single qumode can be implemented using an Einstein-
Podolsky-Rosen (EPR) entangled state as the resource. These
operations can be achieved on a fixed experimental system only
by choosing appropriate measurement angles in homodyne
detections. Since EPR entanglement of optical modes is
deterministic and homodyne detections can be well controlled,
the presented CVQC gates are operated in a completely
unconditional and controllable version. By changing the
quadrature measurement angles of homodyne detections the
squeezing operations at three different squeezing levels (−4,
−8, −12 dB) and Fourier transformation are experimentally
performed. The experimental results and the corresponding
theoretical expectations are in good agreement. As is well
known, the EPR entanglement is equivalent to a two-mode
cluster state [8], and thus, QC using an EPR state can be
implemented on two submodes of a large cluster state as
a step of a full one-way CVQC. We also prove that the
squeezing degree and the fidelity of the output mode obtained
by using an EPR state are better than that obtained using
a four-mode cluster state if the squeezing of the initial
resource state is identical. That is because the excess noises
deriving from imperfect squeezing of the resource state in the
EPR system are less than that in the four-mode cluster-state
system. Therefore, the presented CVQC schemes not only
decreases the requirement for quantum resources and simplify
the experimental system significantly but also enhance the
quality of the output states. Finally, we point out that the setup
can be applied to perform a cascaded operation of a squeezing
gate and a Fourier gate by changing the relative phase between
the input mode and a submode of the EPR state, which shows
further the diversity of the protocol.

II. PROTOCOL AND PRINCIPLE OF QUANTUM
LOGICAL OPERATIONS

The single-mode squeezing gate in CVQC depending on
quantized optical modes is expressed by Ŝ(r) = eir(x̂p̂+p̂x̂),
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FIG. 1. (Color online) Schematic of a single-mode quantum
logic operation with an EPR entangled state. (a) Graph representation
and (b) experimental setup. The input state α is coupled to an EPR
entangled state E1-E2 via a 50% beam splitter BS1. Measurement
results from two homodyne detection systems (HD1 and HD2) are
fed forward to mode E2. The output mode is measured by HD3. LO is
the local oscillator for the homodyne detection. EOMx and EOMp are
the amplitude and phase electro-optical modulators. BS2 is a mirror
with a 99% reflection coefficient.

where r is the squeezing parameter, x̂ = (â + â†)/2 and
p̂ = (â − â†)/2i are the amplitude and phase quadratures of
an optical mode â, respectively. The input-output relation
of the squeezing gate is written as ξ̂ ′

j = Sξ̂ j , where ξ̂j =
(x̂j ,p̂j )T and

S =
(

er 0

0 e−r

)
(1)

represents the squeezing operation of the phase quadrature.
Figure 1 shows a schematic of the single-mode squeezing

and Fourier transformation gate based on applying an EPR
entangled state; Fig. 1(a) is the graph representation, and
Fig. 1(b) is the experimental setup. An input mode is coupled
to a submode of the EPR entangled state (E1) via a 50%
beam splitter BS1. The two output modes of BS1 are measured
by homodyne detection systems HD1 and HD2, respectively.
The measured results are fed forward to the other submode
of the EPR entangled state (E2) by classical feedforward
circuits and electro-optical modulators (EOM). The sum (+)
and difference (–) of the photocurrents measured by HD1 and
HD2 are only used for the single-mode squeezing gate. When
Fourier transformation is implemented, they are not utilized.
The resultant optical mode is measured by the third homodyne
detection system HD3.

In the standard CV quantum teleportation process [20],
the amplitude and phase quadratures of output modes from
BS1 are measured by two homodyne detection systems, the
measurement angles of which are chosen as 0 and π/2, re-
spectively. However, in the presented quantum logic operation
the measurement angle will be chosen arbitrarily, and the

squeezing degree of the squeezing gate will be determined by
the measurement angle. Thus, we can say that the CVQC logic
operation is implemented by means of a CV quantum telepor-
tation process with an arbitrarily chosen measurement angle.

If the input mode is coupled to mode E1 with a π/2 phase
difference on BS1, the measurement results of HD1 and HD2,
x̂d1 and x̂d2, are expressed by

x̂d1 = cos θ1(x̂in − p̂1) + sin θ1(p̂in + x̂1)√
2

,

(2)

x̂d2 = cos θ2(x̂in + p̂1) + sin θ2(p̂in − x̂1)√
2

,

where θ1 and θ2 are the measurement angles of HD1 and HD2,
respectively. Choosing θ2 = −θ1, the amplitude and phase
quadratures of the resultant mode equal to(

x̂out

p̂out

)
=

(
x̂2

p̂2

)
+ GS

(
x̂d1

x̂d2

)

=
(

cot θ1 0

0 tan θ1

)(
x̂in

p̂in

)
+

(
δ̂1

−δ̂2

)
, (3)

where

GS =
( 1√

2 sin θ1

1√
2 sin θ1

1√
2 cos θ1

−1√
2 cos θ1

)
(4)

is the corresponding gain factor and δ̂1 = x̂1 + x̂2 and δ̂2 =
p̂1 − p̂2 are the excess noises of the amplitude and phase
quadratures of the EPR entangled state, respectively, which
result from the imperfect entanglement of the resource state
and whose variances depend on the squeezing parameter rE of
the EPR state by 〈�2(x̂1 + x̂2)〉 = 〈�2(p̂1 − p̂2)〉 = e−2rE /2.
For an ideal EPR state rE → ∞ and thus δ̂1 = δ̂2 = 0. The
ideal EPR state does not exist really since it requires infinite
energy [7].

Comparing Eq. (3) in the case of ideal EPR state with
Eq. (1), we can see that the transformation corresponds to a
single-mode amplitude and phase squeezing gate with cot θ1 =
e−r and er , respectively. In this case, the transformation matrix
is given by

S =
(

cot θ1 0

0 tan θ1

)
. (5)

Equation (5) shows that the squeezing parameter r depends
on the measurement angles. When the measurement angle is
varied from 45◦ to 0◦, the squeezing degree of the squeezing
gate increases from 0 to −∞. The squeezing level can be
controlled by choosing different measurement angles. The
measurement angles (θ1,θ2) for the squeezing levels of −4,
−8, and −12 dB are (32.25◦, −32.25◦), (21.70◦, −21.70◦),
and (14.10◦, −14.10◦), respectively.

When we take θ1 = 0 and θ2 = −π/2, the amplitude and
phase quadratures of the resultant mode are(

x̂out

p̂out

)
=

(
x̂2

p̂2

)
+ GF

(
x̂d1

x̂d2

)

= F
(

x̂in

p̂in

)
+

(
δ̂1

−δ̂2

)
, (6)
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where

GF =
(

0
√

2√
2 0

)
(7)

is the corresponding gain factor of the feedforward circuit.
The transformation matrix F = (0 −1

1 0
) just corresponds to

a Fourier transformation. Thus, a Fourier transformation
operation can also be implemented with the experimental
system of Fig. 1(b) only by choosing appropriate measurement
angles and feedforward circuit.

In the one-way quantum computation scheme with the four-
mode cluster state as the resource, the excess noises of the
amplitude (δ̂xc) and phase (δ̂pc) quadratures of the output mode
for the squeezing of a dB (a < 0 and a > 0 correspond to
phase squeezing and amplitude squeezing, respectively) are
given by [14]

(
δ̂xc

δ̂pc

)
=

⎛
⎝ 1√

2
e−rc p̂0

1 −
√

5
2e−rc p̂0

2

−
√

5
2e−rc p̂0

3 + 1√
2
e−rc p̂0

4

⎞
⎠ (8)

when V = 10a/10 � 3
2 and

(
δ̂xc

δ̂pc

)
=

⎛
⎝ e−rc [3p̂0

1/V −2
√

5p̂0
2+

√
2V −3(

√
5p̂0

3+p̂0
4)/V ]

2
√

2

e−rc [
√

2V −3p̂0
1−

√
5p̂0

3+p̂0
4]√

2

⎞
⎠ (9)

when V > 3
2 , where rc is the squeezing parameter of four-

phase squeezed state p̂1−4 and the superscript 0 represents the
vacuum mode. From Eq. (8) we can calculate the variance of
the excess noise for phase squeezing: 〈�2δ̂xc〉 = 〈�2δ̂pc〉 =
3e−2rc /4, where the noise variance of the vacuum mode
is normalized to 〈�2x̂0〉 = 〈�2p̂0〉 = 1/4. In our scheme
the variance of the excess noise is the quantum correlation
variances of the EPR entangled state [21], i.e., 〈�2(x̂1 +
x̂2)〉 = 〈�2(p̂1 − p̂2)〉 = e−2rE /2. Comparing the two cases,
we find that the variances of the excess noises in the scheme
using the EPR resource state is 2/3 of that using a four-mode
cluster state if the squeezing degree of the initial resource
squeezed state is the same.

Figure 2 compares the noise powers of the output modes
of the amplitude squeezing operation implemented in the two
systems using the EPR entangled state (solid lines) and the
four-mode cluster state (dashed lines) as resource states, in
which the initial squeezing of the resource states is taken to
be the same (−5.3 dB). The noise power is calculated by
10 log10[B/B0] dB, where B represents the noise variance of
the quadrature component and B0 = 1/4 is the normalized
vacuum noise. In this case, 0 dB in Fig. 2 corresponds to the
vacuum noise level. It is obvious that both squeezed (traces i
and ii) and antisqueezed (traces iii and iv) noise powers of the
output modes obtained by the system using the EPR entangled
state are lower than those obtained by the system using the
four-mode cluster state in Ref. [14]. Therefore, for a given
initial squeezing resource, the squeezing gate based on EPR
entanglement can generate the squeezed states with a higher
squeezing degree and lower antisqueezing noises than that
obtained using the four-mode cluster state.

FIG. 2. (Color online) The dependence of the noise power of
the output mode on the amplitude squeezing level of the squeezing
operation for different resource states. The input state is a vacuum
state. Traces i and iii (solid lines) correspond to squeezed and
antisqueezed noises using an EPR entangled state as a resource state,
respectively. Traces ii and iv (dashed lines) correspond to squeezed
and antisqueezed noises with a four-mode cluster state as resource
state, respectively. The initial resource squeezing is −5.3 dB for the
two cases.

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental setup

The experimental setup is shown in Fig. 1(b). The
non-degenerate optical parametric amplifier (NOPA) is
pumped by a continuous-wave intracavity frequency-doubled
and frequency-stabilized Nd:YAP-LBO (Nd-doped YAlO3

perovskite-lithium triborate) laser with two output wave-
lengths at 540 and 1080 nm [22]. The NOPA consists of
an α-cut type-II potassium titanyl phosphate (KTP) crystal
and a concave mirror [21]. The front face of the KTP crystal
is coated to be used for the input coupler, and the concave
mirror serves as the output coupler of the squeezed states. The
transmissions of the input (output) coupler at 540 and 1080 nm
are 99.8% (0.5%) and 0.04% (5.2%), respectively. The EPR
entangled states at 1080 nm are generated via the frequency-
down-conversion process of the pump field at 540 nm inside
the NOPA. The amplitude anticorrelated (x̂1 + x̂2 → 0) and
phase correlated (p̂1 − p̂2 → 0) EPR entangled optical beams
are obtained when the NOPA is operated at the deamplification
condition, which corresponds to locking the relative phase
between the pump laser and the injected signal to (2n + 1)π
(n is the integer) [21]. The experimentally measured squeezing
of the EPR entangled state is about −4.0 dB.

B. Squeezing operation

Figures 3(a) and 3(b) show the output noise power of the
−12-dB phase squeezing operation with a vacuum input and
a p̂-coherent input, respectively. Trace i (black line) is the
shot-noise level (SNL); traces ii and iii [red and blue (medium
and dark gray) lines] are the squeezed and antisqueezed noises,
respectively. Although in the ideal case with δ̂1 = δ̂2 = 0, the
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FIG. 3. (Color online) The experimental results of the single-mode squeezing operation. (a) The −12-dB squeezing operation with a
vacuum input state and (b) −12-dB squeezing operation with a p̂-coherent state. Trace i shows SNL, trace ii shows input variances of the
p̂-coherent state, and traces iii and iv show antisqueezing and squeezing noises. (c) Experimental results (dots) and theoretical curves (lines)
for −4, −8, and −12 dB squeezing operations. Traces ii and iii show squeezing and antisqueezing with a vacuum state, and trace iv shows
squeezing for a p̂-coherent state. The measurement frequency is 2 MHz, and the parameters of the spectrum analyzer are resolution bandwidth
of 30 kHz and video bandwidth of 100 Hz.

input vacuum state should be squeezed −12 dB, in the practical
experiment the input vacuum mode is squeezed 0.6 dB below
the corresponding SNL due to the influence of the excess
noises introduced by the imperfect EPR entanglement.

In order to test the generality of the squeezing operation, we
implement a squeezing operation on a p̂-coherent input state
with a modulation signal of 20 dB on its phase quadratures. In
Fig. 3(b), trace ii [green (light gray) line] stands for the input
coherent state. The squeezing (trace iv) and antisqueezing
(trace iii) noise levels of the output mode are 8.2 and 12.2 dB
above the SNL, respectively. Figure 3(c) shows the three
different squeezing levels (−4, −8, and −12 dB) with a
vacuum state (traces ii and iii) and a p̂-coherent state (trace iv)
as input states, respectively. The measurement results agree
well with the theoretical curves (solid lines).

Besides the squeezed noise level of the output mode, we also
use the fidelity F = {Tr[(

√
ρ̂1ρ̂2

√
ρ̂1)1/2]}2, which denotes the

overlap between the experimentally obtained output state ρ̂2

and the ideal output sate ρ̂1, to quantify the performance of
the squeezing operation. The fidelity for two Gaussian states
ρ̂1 and ρ̂2 with covariance matrices Aj and mean amplitudes
αj ≡ (αjx,αjp) (j = 1,2) is expressed as [23,24]

F = 2√
� + σ − √

σ
exp[−βT (A1 + A2)−1β], (10)

where � = det(A1 + A2), σ = (det A1 − 1)(det A2 − 1), β =
α2 − α1, and A1 and A2 are for the ideal (ρ̂1) and experimental
(ρ̂2) output states, respectively. The covariance matrices Aj

(j = 1,2) for the target mode are given by

Aout1 = 4

[〈�2x̂out〉1 0
0 〈�2p̂out〉1

]
, (11)

Aout2 = 4

[〈�2x̂out〉2 0
0 〈�2p̂out〉2

]
. (12)

The coefficient 4 comes from the normalization of the SNL.
Since the noise of a vacuum state is defined as 1/4 above,
while in the fidelity formula the vacuum noise is normalized

to 1, a coefficient of 4 appears in the expressions of covariance
matrices. In the case of infinite squeezing, the fidelity for the
output state equals 1, which can be calculated from Eq. (3)
with δ̂1 = δ̂2 = 0 (r → ∞).

Figure 4 shows the fidelity as a function of the phase
squeezing. We can see that the fidelity with the −4.0-dB
EPR state as a resource state [trace i, blue (dark gray) solid
line] is higher than the classical limit, which is obtained
by using the coherent state to substitute for the EPR state
[trace iii, blue (dark gray) dashed line]. For comparison, we
calculate the fidelity based on the four-mode cluster state with
the same initial squeezing resource of −4.0 dB. Traces ii
[red (light gray) solid line] and iv [red (light gray) dashed
line] are the fidelities with and without the four-mode cluster
state (−4.0-dB initial squeezing) as a resource state. The

FIG. 4. (Color online) The fidelity as a function of phase squeez-
ing. Traces i and iii are fidelities with and without EPR entanglement
as a resource, respectively. Traces ii and iv are fidelities with and
without a four-mode cluster state as a resource, respectively. The
initial resource squeezing is −4.0 dB for traces i and ii.
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FIG. 5. (Color online) The experimental results of Fourier trans-
formation. (a) Input state and (b) output state. Trace i shows the
SNL, and traces ii and iii show the amplitude and phase quadratures,
respectively. Trace iv shows the noise power when the phase of the
homodyne detection system is scanned. The measurement frequency
is 2 MHz, and parameters of the spectrum analyzer are the resolution
bandwidth of 30 kHz and the video bandwidth of 100 Hz.

fidelity of the squeezing operation using the EPR state as a
resource state is higher than that using the four-mode cluster
state. This is because the excess noise deriving from the
squeezing operation in the scheme using the EPR state is
only 2/3 of that based on the four-mode cluster state [14].
Experimentally measured data are marked on the graph with
black dots, which are in good agreement with the theoretical
expectation.

C. Fourier operation

It has been theoretically proved in Sec. II that when the
measurement angles of HD1 and HD2 are taken as 0 and
π/2, respectively, the input mode will complete the Fourier
transformation via a teleportation process in the experimental
system of Fig. 1(b). Figure 5 shows the experimental results
of Fourier transformation with a coherent input. Figures 5(a)
and 5(b) correspond to noise powers of the input and output
states, respectively. Trace i (black line) is the SNL, and
traces ii and iii [red and blue (dark and medium gray) lines]
stand for the average noise levels of the amplitude and phase
quadratures of the input [Fig. 5(a)] and output [Fig. 5(b)]
modes, respectively. Trace iv [green (light gray) line] is the
noise power spectrum of the input [Fig. 5(a)] and output
[Fig. 5(b)] states measured by scanning the phase of the
homodyne detection system. A coherent state with a 4-dB
amplitude modulation signal on the amplitude quadrature and
a 20-dB amplitude modulation signal on the phase quadrature
is used for the input state [Fig. 5(a)]. Figure 5(b) shows the
amplitude and phase quadratures of the output state after the
Fourier transformation. Comparing Figs. 5(a) and 5(b), we
can see that the input mode has been rotated 90◦ in the phase
space, and thus, the Fourier transformation from the phase
(amplitude) quadrature to the amplitude (phase) quadrature
has been achieved.

IV. CONCLUSION

In conclusion, we have designed and experimentally
demonstrated two essential one-mode LUBO transformations
based on the use of an EPR entangled state. Squeezing and
Fourier transformation operations are implemented on an
experimental setup. These operations are easily controlled by
adjusting the phase of the local oscillator in the homodyne de-
tectors. The calculation accuracy of one-way CVQC depends
on the initial resource squeezing since an imperfect resource
state will introduce excess noises into the calculated resultant
states via the gate operations. The excess noises deriving from
the EPR system are less than those from the four-mode cluster
system, so better accuracy can be obtained by the gates using
EPR entanglement under the condition of applying the same
initial squeezing resource.

Finally, we demonstrate theoretically that the presented
experimental setup can also complete a cascaded single-mode
logic operation consisting of a squeezing operation and a
Fourier transformation, which shows further the versatility of
the system. If the phase difference between the input mode and
a submode of the EPR entangled state on BS1 is taken as zero,
the measurement results from the two homodyne detection
systems will be

x̂d1 = cos θ1(x̂in − x̂1) + sin θ1(p̂in − p̂1)√
2

,

(13)

x̂d2 = cos θ2(x̂in + x̂1) + sin θ2(p̂in + p̂1)√
2

.

Choosing θ2 = −θ1, the quadrature components of the output
mode equal to(

x̂out

p̂out

)
=

(
x̂2

p̂2

)
+ GFS

(
x̂d1

x̂d2

)

=
(

0 −1
1 0

)(
cot θ1 0

0 tan θ1

)(
x̂in

p̂in

)
+

(
δ̂1

−δ̂2

)
,

(14)

which stands for a cascaded squeezing operation followed by
a Fourier transformation, where

GFS =
( −1√

2 cos θ1

1√
2 cos θ1

1√
2 sin θ1

1√
2 sin θ1

)
(15)

is the corresponding gain factor. Equation (14) can also be
written as(

x̂out

p̂out

)
=

(− tan θ1 0
0 cot θ1

)(
x̂in

p̂in

)
+

(
δ̂1

−δ̂2

)
. (16)

Equation (16) means that the squeezing operation followed by
a Fourier transformation is equivalent to rotating the measure-
ment angle of the homodyne detection in the squeezing gate by
90◦, and thus, the two operations can be achieved in one step.
The excess noise induced by imperfect resource squeezing
only equals to that of a squeezing gate.

Although two essential single-mode LUBO transforma-
tions have been realized by the EPR system, to imple-
ment high-order and universal one-way QC, large-scale
cluster states and additional non-Gaussian operations are
required [7]. However, the presented schemes can be utilized
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as the basic modules in a full quantum computer using
CV cluster entanglement. Saving quantum resources and
decreasing excess noise are two favorite features of the
EPR system for building a practicable one-way quantum
computer with continuous quantum variables of optical
modes.
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