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Characterizing the multipartite continuous-variable
entanglement structure from squeezing coefficients and the
Fisher information
Zhongzhong Qin1,2, Manuel Gessner3, Zhihong Ren1,2,4, Xiaowei Deng1,2, Dongmei Han1,2, Weidong Li1,2,4, Xiaolong Su1,2, Augusto
Smerzi3,5 and Kunchi Peng1,2

Understanding the distribution of quantum entanglement over many parties is a fundamental challenge of quantum physics and is
of practical relevance for several applications in the field of quantum information. The Fisher information is widely used in quantum
metrology since it is related to the quantum gain in metrology measurements. Here, we use methods from quantum metrology to
microscopically characterize the entanglement structure of multimode continuous-variable states in all possible multi-partitions
and in all reduced distributions. From experimentally measured covariance matrices of Gaussian states with 2, 3, and 4 photonic
modes with controllable losses, we extract the metrological sensitivity as well as an upper separability bound for each partition. An
entanglement witness is constructed by comparing the two quantities. Our analysis demonstrates the usefulness of these methods
for continuous-variable systems and provides a detailed geometric understanding of the robustness of cluster-state entanglement
under photon losses.
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INTRODUCTION
Entanglement plays a central role in quantum information
science,1–3 in particular for quantum computation4–6 and quan-
tum metrology.7 An efficient analysis of the quantum resources for
such applications requires a detailed understanding of the
correlation structure of multipartite quantum states and the
development of experimentally feasible methods for their
experimental characterization.8

Entanglement of continuous-variable (CV) systems has been
studied intensively over the past years.2,3 The most common
method for the analysis of bi-partitions is the positive partial
transposition (PPT) criterion, which is highly efficient and easy to
implement for Gaussian states.9,10 Providing a microscopic picture
of the entanglement structure in terms of all possible combina-
tions of subsystems, i.e., multi-partitions, is a considerably more
difficult task.11 Multipartite CV entanglement criteria for specific
partitions can be derived from uncertainty relations12 or by
systematic construction of entanglement witnesses.13 While
criteria of this kind are experimentally convenient in many
cases,14–17 they require the additional effort of determining the
separability bound as a function of the observables at hand, which
can be a complicated problem in general. Moreover, abstract
entanglement witnesses usually provide little intuition about the
physical significance and origin of the entanglement.
The Fisher information relates the multipartite entanglement

between the subsystems to the sensitivity for quantum parameter
estimation.18 This approach has proven to be extremely successful
with discrete-variable systems, especially for spin systems of cold

atoms.19 The Fisher information can furthermore be efficiently
approximated for Gaussian spin states by means of experimentally
convenient spin squeezing coefficients.20,21 Using these methods,
multipartite entanglement of large numbers of particles has been
demonstrated by collective measurements.19,22–24

An extension of the theoretical framework to CV systems has
been achieved recently by combining the quantum Fisher
information with local variances18 and the development of a
bosonic multi-mode squeezing coefficient.25 The squeezing
coefficient is based on a second-order approximation of the
quantum Fisher information and represents an easily accessible
entanglement criterion. A microscopic understanding of the
inseparability properties in all possible partitions of the system is
provided by the information from local measurements on the
subsystems. Local observables are routinely measured in CV
systems, such as photonic cluster states.16,17,26 The separability
bounds for the metrological sensitivity are directly obtained from
the local data and need not be determined theoretically.
Entanglement criteria based on the quantum Fisher information
further provide a geometric interpretation in phase space.
Here, we analyze experimentally generated CV multi-mode

entangled states of two, three, and four photonic modes using the
recently developed bosonic squeezing coefficients and the CV
quantum Fisher information. Our complete microscopic mode-by-
mode study encompasses all possible multi-partitions of the
systems as well as the reduced distributions obtained by tracing
over certain modes. A controllable loss channel on one of the
modes is used to study the effect of losses on the multipartite
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entanglement structure. Our analysis is based on experimentally
extracted covariance matrices and demonstrates the applicability
of entanglement criteria based on the Fisher information to CV
systems and cluster states. Sudden transitions as a function of loss
and noise-independent partitions are explained intuitively by the
geometric interpretation of our entanglement criteria in phase
space. Finally, we show that the criteria are not equivalent to the
Gaussian PPT criterion, which can only be applied to bi-partitions.

RESULTS
CV entanglement criteria from squeezing coefficients and Fisher
information
We consider an N-mode CV system with a vector of phase-space
operators br ¼ ð̂r1; ¼ ; r̂2NÞ ¼ ðx̂1; p̂1; ¼ ; x̂N; p̂NÞ. Any real vector
g ¼ ðg1; ¼ ; g2NÞ defines a multi-mode quadrature q̂ðgÞ ¼ g �br,
which generates displacements of the form D̂ðθÞ ¼ expð�iq̂ðgÞθÞ.
The sensitivity of a Gaussian quantum state ρ̂ under such
displacements is determined by the quantum Fisher informa-
tion27–29

FQ½ρ̂; q̂ðgÞ� ¼ gTΩTΓ�1
ρ̂ Ωg; (1)

where Ω ¼ �N
i¼1

0 1
�1 0

� �
is the symplectic form and Γ�1

ρ̂ is the

inverse of the covariance matrix with elements
ðΓρ̂Þij ¼ 1

2 ĥri r̂j þ r̂j r̂iiρ̂ � ĥriiρ̂ ĥrjiρ̂. By means of the quantum
Cramér–Rao inequality, the quantum Fisher information directly
determines the precision bound for a quantum parameter
estimation of θ. It was shown in ref. 18 that an upper limit for
the sensitivity of mode-separable states is given in terms of the
single-mode variances of the same state:

FQ½ρ̂sep; q̂ðgÞ� � 4gTΓΠðρ̂sepÞg; (2)

where ΓΠðρ̂sepÞ is the covariance matrix after all elements except the
central 2 × 2 blocks have been set to zero, effectively removing all
mode correlations. This corresponds to the covariance matrix of
the product state of the reduced density matrices Πðρ̂Þ ¼ �N

i¼1ρ̂i .
Any violation of inequality (2) indicates the presence of
entanglement between the modes. To identify the contribution
of specific subsystems in a multipartite system, this criterion can
be generalized for a microscopic analysis of the entanglement
structure.25 A witness for entanglement in a specific partition of
the full system into subsystems Λ ¼ A1j¼ jAM, where Al
describes an ensemble of modes, is obtained from Eq. (2) by
replacing the fully separable product state Πðρ̂Þ on the right-hand
side by a product state on the partition A1j¼ jAM. More precisely,
any A1j¼ jAM-separable quantum state, i.e., any state that can be
written as ρ̂Λ ¼ P

γ pγρ̂
ðγÞ
A1

� ¼ � ρ̂
ðγÞ
AM

, where pγ is a probability
distribution, must satisfy25

FQ½ρ̂Λ; q̂ðgÞ� � 4gTΓΠΛðρ̂ΛÞg; (3)

where ΠΛðρ̂ΛÞ ¼ �M
l¼1ρ̂Al

and ρ̂Al
is the reduced density matrix of

ρ̂Λ on Al . The covariance matrix ΓΠΛðρ̂ΛÞ can be easily obtained
from Γρ̂Λ by setting only those off-diagonal blocks to zero which
describe correlations between different subsystems Al . The fully
separable case, Eq. (2), is recovered if each Al contains exactly one
mode.
By combining the separability criterion (3) with the expression

for the quantum Fisher information of Gaussian states (1), we find
the following condition for the covariance matrix of
A1j¼ jAM-separable states:

Γ�1
ρ̂ � 4ΩTΓΠΛðρ̂ÞΩ � 0; (4)

where we have used that both expressions (1) and (3) are valid for
arbitrary g and then multiplied the equation with Ω from both
sides using ΩTΩ ¼ I2N and ΩT=−Ω. Inequality (4) expresses that

the matrix on the left-hand side must be negative semidefinite.
Hence, if we find a single positive eigenvalue, entanglement in the
considered partition is revealed. Thus, it suffices to check whether
the maximal eigenvalue λmax is positive. The corresponding
eigenvector emax further identifies a 2N-dimensional “direction”
in phase space such that the sensitivity under displacements
generated by q̂ðemaxÞ maximally violates Eq. (3).
A lower bound on the quantum Fisher information of arbitrary

states can be found from elements of the covariance matrix
using25

FQ½ρ̂; q̂ðgÞ� � ðhTΩgÞ2
hTΓρ̂h

; (5)

which holds for arbitrary g, h. Choosing h=Ωg with |g|2= 1 leads
with (3) to the separability condition25

ξ�2
Λ ðρ̂sepÞ � 1; (6)

where

ξ2Λðρ̂Þ :¼ min
g

4 gTΩTΓΠΛðρ̂ÞΩg
� �ðgTΓρ̂gÞ; (7)

is the bosonic multi-mode squeezing coefficient for the partition
Λ. Here, the minimizing g can be interpreted as a direction in
phase space that identifies a multi-mode quadrature q̂ðgÞ with a
squeezed variance which can be traced back to mode
entanglement.25

Experimental setup
In the following, we analyze experimentally generated N-mode
Gaussian states with N= 2, 3, 4, subject to asymmetric loss using
the two entanglement criteria defined by the quantum Fisher
information, Eq. (4), and the multi-mode squeezing coefficient, Eq.
(6). The graph representations of the three classes of Gaussian
multi-mode entangled states considered here are shown in Fig. 1.
They are often referred to as CV two-mode Gaussian entangled
state (N= 2, Fig. 1a), three-mode CV
Greenberger–Horne–Zeilinger (GHZ) state (N= 3, Fig. 1b), and
four-mode square Gaussian cluster state (N= 4, Fig. 1c). The
experimental generation of the states is described in detail in the
Methods section and refs. 30,31 In all cases, the CV entangled states
are generated by nondegenerate optical parametric amplifiers
(NOPAs) with −3 dB squeezing at the sideband frequency of
3 MHz. The two-mode Gaussian entangled state is prepared
directly by a NOPA. The three-mode GHZ state is obtained by
combining a phase-squeezed and two amplitude-squeezed states
using two beam splitters with transmissivities of T1= 1/3 and T2=
1/2, respectively, as shown in Fig. 1d.30 Similarly, the four-mode
square Gaussian cluster state is prepared by coupling two phase-
squeezed and two amplitude-squeezed states on a beam-splitter
network consisting of three beam splitters with T3= 1/5 and T4=
T5= 1/2, respectively, as shown in Fig. 1e.31

To study the robustness of multipartite entanglement under
transmission losses, a lossy quantum channel for mode A is
simulated using a half-wave plate (HWP) and a polarizing beam
splitter (PBS). The output mode is given by Â0 ¼ ffiffiffi

η
p

Âþ ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
υ̂,

where η and υ̂ represent the transmission efficiency of the
quantum channel and the vacuum mode induced by loss into the
quantum channel, respectively, as shown in Fig. 1f–h. Let us now
turn to the characterization of CV entanglement based on the
experimentally generated data.

Experimental results
Figure 2a shows the inverse squeezing coefficient (7) ξ�2

AjB for a CV
two-mode Gaussian entangled state in a lossy channel (LC) for the
only possible partition A|B of the bipartite system. The coefficient
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ξ�2
AjB decreases as the transmission efficiency η decreases but it
always violates the separability condition (6) unless η= 0, i.e.,
when mode A is completely lost. This confirms that CV two-mode
Gaussian entanglement only decreases but never fully disappears
due to particle losses, i.e., CV two-mode Gaussian entanglement is
robust to loss.32 We observe the same behavior for the criterion
Eq. (4), which makes use of the Gaussian quantum Fisher
information. Figure 2b shows the maximum eigenvalue λmax of
the matrix Γ�1

ρ̂ � 4ΩTΓρ̂A�ρ̂BΩ. According to Eq. (4), a positive value
indicates entanglement. Both coefficients attain their two-fold
degenerate maximal value for the phase space directions g=
(sinϕ, 0, cosϕ,0) and g= (0, −sinϕ, 0, cosϕ), where ϕ is a function
of η (for η= 1 we have ϕ= π/4 25). These directions indicate
strong correlations in the momentum quadratures and anti-
correlations in the position quadratures, allowing us to relate the
entanglement to the squeezing of the collective variances
Δðx̂Asinϕþ x̂BcosϕÞ2 and Δðp̂Asinϕ� p̂BcosϕÞ2. It should be noted
that ξ�2

AjB and ξ�2
BjA (λAjB and λBjA) are identical because the

entanglement coefficients only depend on the partition and not
on the order in which the subsystems are labeled.
The entanglement structure becomes more interesting for the

three-mode GHZ state, exhibiting four non-trivial partitions of the
system, as well as three reduced two-mode states. The squeezing

coefficient (7), as well as the Gaussian Fisher information
entanglement criterion (4), are plotted in Fig. 3 for all four
partitions. Both show that at η= 1, the three bi-separable
partitions A|BC, B|AC, and C|AB are equivalent due to the symmetry
of the state, but as η is decreased, the entanglement in the
partition A|BC is more strongly affected by the losses than that of
the other two partitions. In the extreme case where mode A is fully
lost (η= 0) there is still some residual entanglement between B
and C.33 In this case, all partitions are equivalent to the bi-partition
B|C. The data shown in Fig. 3 confirms this: In both cases, the
entanglement witness for all partitions coincide at η= 0, except A|
BC which, as expected, yields zero.
We further notice a discontinuity for the theoretical predictions

of both witnesses regarding the fully separable partition A|B|C as a
function of η (blue lines in Fig. 3). This can be explained by
analyzing the corresponding optimal phase space direction g. In
the presence of only moderate losses, the maximal correlations
and squeezing are identified along the direction g= (0, c1, 0, c2, 0,
c2) with c21 þ 2c22 ¼ 1, i.e., the multi-mode quadrature q̂ðgÞ ¼
c1p̂A þ c2p̂B þ c2p̂C which involves all three modes. The squeezing
along this phase-space direction diminishes with increasing losses.
When the losses of mode A become dominant, the squeezing
along the phase space direction g ¼ ð0; 0; 1; 0;�1; 0Þ= ffiffiffi

2
p

, i.e., of

Fig. 2 Experimental results for the CV two-mode Gaussian entangled state in a lossy channel with transmission efficiency η. a Inverse multi-
mode squeezing coefficients (7). The plot shows the squeezing coefficient ξ�2

AjB obtained by numerically minimizing in Eq. (7), using the
experimentally measured covariance matrices (blue dots) and the theoretical prediction based on the state preparation schemes described in
Fig. 1 (blue line). Values above one violate (6) and indicate entanglement. b Gaussian quantum Fisher information entanglement criterion,
expressed by the maximum eigenvalue of the matrix on the left-hand side (l.h.s.) of Eq. (4). Positive values violate the separability condition (4).
The error bars represent one standard deviation and are obtained from the statistics of the measured data

Fig. 1 Graph representation of multipartite CV entangled states and their preparation. a CV two-mode Gaussian entangled state. b Three-
mode GHZ state. c Four-mode square Gaussian cluster state, respectively. d, e show the beam-splitter network used to generate the three-
mode GHZ state and four-mode square Gaussian cluster state, respectively. The phase shift (PS) is realized by locking the relative phase of two
light beams at the corresponding beam splitter. f–h show the schematics of preparation and measuring the two-mode Gaussian entangled
state, three-mode GHZ state, and four-mode square Gaussian cluster state, respectively. PS phase shift, NOPA nondegenerate optical
parametric amplifier, HWP half-wave plate, PBS polarizing beam splitter, LO local oscillator, HD1–4 homodyne detectors, DM dichroic mirror
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the quadrature q̂ðgÞ ¼ ðx̂B � x̂CÞ=
ffiffiffi
2

p
is more pronounced as it

does not decay with η, being independent of mode A. The
discontinuity is therefore explained by a sudden change of the
optimal squeezing direction due to depletion of mode A. We
remark that the experimentally prepared states are the same,
except for the variable η. The change of the squeezing direction
simply implies that when the local noise exceeds a critical value,
the entanglement is more easily revealed by analyzing the
quantum state from a different “perspective” in phase space.
Notice that having access to the full covariance matrix, we can
analyze both entanglement witnesses for arbitrary directions.
The change of the optimal direction is observed for both

entanglement coefficients, whereas the transition occurs at a
larger value of η for the Fisher information criterion (4) (see
Supplementary Information). There we also show the two-mode
entanglement properties after tracing over one of the modes in an
analysis of the reduced density matrices, which show that two-
mode entanglement persists after tracing over one of the
subsystems, in stark contrast to GHZ states of discrete variables.34

Finally, we analyze the four-mode square Gaussian cluster state
in Fig. 4. We find that the decoherence of entanglement depends
on the cluster state’s geometric structure. As shown in Fig. 4a, the
inverse multi-mode squeezing coefficient ξ�2

AjBjCjD for the fully
separable partition is not sensitive to transmission loss on mode A,

while decoherence affects the coefficients for other partitions
shown in Fig. 4b–d. For 1⊗1⊗2 partitions, only the results of
ξ�2
CjDjAB, ξ

�2
AjBjCD , ξ

�2
BjDjAC , and ξ�2

AjDjBC are shown in Fig. 4b (ξ�2
BjCjAD and

ξ�2
AjCjBD are shown in Fig. S3 in Supplementary Information). The
discontinuity for the A|B|CD partition is again explained by a
transition of the optimal squeezing direction at a critical value of
the transmission η for the isolated mode A (see Supplementary
Information). The two coefficients ξ�2

CjDjAB and ξ�2
AjBjCD (ξ�2

BjDjAC and
ξ�2
AjDjBC ) are equal for η= 1 because of the symmetric roles of these
modes in these partitions. As shown in Fig. 4b, c, the most
sensitive coefficients to transmission losses of mode A are those
where mode A is an individual subsystem. The coefficients ξ�2

CjABD
and ξ�2

DjABC overlap due to the symmetric roles of modes C and D.
Figure 4d shows the inverse multi-mode squeezing coefficients

for 2⊗2 partitions. It is interesting that the coefficient ξ�2
ACjBD

ξ�2
ADjBC

� �
is immune to transmission loss of mode A. This indicates

that the collective coefficients for 2⊗2 partitions, where each
partition is composed by two neighboring modes (recall the graph
representation in Fig. 1c), are not sensitive to the loss of any one
mode. In contrast, the coefficient ξ�2

ABjCD , where each subsystem is
composed by two diagonal modes, is still sensitive to transmission
loss. As before, we find that the qualitative behavior of the

Fig. 4 Experimental results for the four-mode square Gaussian cluster state in a lossy channel with transmission efficiency η. a–d Inverse
multi-mode squeezing coefficients ξ−2 for the partitions of classes 1⊗1⊗1⊗1, 1⊗1⊗2, 1⊗3, and 2⊗2, respectively. e–h The corresponding
data for Gaussian Fisher information entanglement criterion. The data points are numerically optimized coefficients from experimentally
obtained covariance matrices and the curves represent the corresponding numerically optimized predictions from the theoretical model

Fig. 3 Experimental results for the three-mode GHZ state in a lossy channel with transmission efficiency η. a Inverse multi-mode squeezing
coefficients. b Gaussian Fisher information entanglement criterion. Shown are numerically optimized coefficients for the partitions A|B|C (blue
circles), A|BC (red squares), B|AC (black diamonds), and C|AB (purple triangles) from experimentally obtained covariance matrices and the
curves represent the theoretical prediction
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squeezing coefficient ξ−2 coincides with that of λmax of the
Gaussian Fisher information criterion (4), see Fig. 4e–h.
A further understanding of the entanglement structure is

provided by an analysis of the three-mode and two-mode reduced
density matrices of the state as well as of the optimal directions. A
detailed analysis reveals that the loss-robustness is drastically
reduced for all partitions if either mode C or D is traced out (see
Supplementary Information). Moreover, for very small values of η,
the entanglement in the partitions A|CD, D|AB, and C|AB in the
reduced three-mode states is revealed by the criterion (4) but not
by the squeezing approximation (7), where we assumed h=Ωg to
simplify the optimization (see Supplementary Information).

DISCUSSION
To benchmark our CV entanglement criteria, we may compare
them to the PPT criterion, which is necessary and sufficient for 1⊗
(N− 1) separability of Gaussian states.9,10,35 For partitions into
more than two subsystems the PPT criterion cannot be applied. It
is interesting to notice that the PPT separability condition can be
expressed as

Γ�1
ρ̂PPT � 4ΩTΓρ̂PPTΩ � 0; (8)

where Γρ̂PPT is the covariance matrix after application of the partial
transposition operation. The condition (8) is the
Heisenberg–Robertson uncertainty relation for the state ρ̂PPT and
constitutes a bona-fide condition for the physicality of the
covariance matrix.36 A violation of (8) therefore indicates that
Γρ̂PPT does not correspond to a physical state, from which one can
conclude that the original state, described by Γρ̂PPT , is entangled.
The similarity of Eqs. (4) and (8) indicates the close relationship of
the two criteria with the uncertainty relation.25 Note also that all
pure Gaussian states Ψ saturate the uncertainty relation
Γ�1
Ψ ¼ 4ΩTΓΨΩ, which together with Eq. (1) allows us to recover
the relation FQ½Ψ; q̂ðgÞ� ¼ 4gTΓΨg for pure states.
The criteria employed here and the well-established PPT

condition are not equivalent. This is indicated by: (i) The
applicability of our criteria to multi-partite separability classes,
their geometric interpretation and their connection to metrologi-
cal sensitivity. For example, we analyzed a total of 44 partitions for
CV multi-mode entangled states of two, three, and four photonic
modes. Out of these, 12 are genuine multi-partitions, which
cannot be analyzed with the PPT criterion (see Supplementary
Information for more details). (ii) The ability to detect non-
Gaussian entanglement beyond the PPT condition using the CV
Fisher information18 or squeezing of higher-order observables.25

(iii) The existence of PPT-entangled states which are not revealed
by the CV squeezing coefficient or the Fisher information for
displacements. A simple class of states that belong to (iii) can be
constructed by mixing the two-mode Gaussian entangled state
with the vacuum (see Supplementary Information). Moreover, the
reduced two-mode states of the four-mode cluster state studied
here also are examples of (iii).
In conclusion, we demonstrated that the multi-mode squeezing

coefficient and the quantum Fisher information provide useful
tools to understand the entanglement structure of Gaussian N-
mode entangled states. In our microscopic analysis of CV states of
up to four modes we characterized the robustness of entangle-
ment for each partition individually. The effect of losses on more
than one mode of three-mode and four-mode entangled states
are also theoretically investigated, which confirms the resilience of
multipartite CV Gaussian entanglement to finite losses (see
Supplementary Information). The methods employed in this work
yield a geometric interpretation in terms of a phase-space
direction that identifies a strongly squeezed multi-mode quad-
rature as the origin of the mode correlations. Certain partitions
revealed sudden transitions of the optimal phase-space direction

for entanglement detection, rendering the entanglement coeffi-
cient invariant after passing a threshold value. This is strongly
reminiscent of the “freezing” behavior previously observed for
measures of entanglement,37 discord,38 and coherence39 under
incoherent dynamics. However, it is important to notice that the
entanglement criteria considered here are witnesses of entangle-
ment and do not represent quantitative measures in a strict sense.
The squeezing coefficient represents an easily accessible

entanglement criterion, based on a second-order approximation
of the quantum Fisher information, which is more involved to
extract experimentally for general states. For the specific case of
Gaussian states, both criteria are expressed in terms of moments
up to second order, but for the squeezing coefficient the
optimization was restricted to specific quadratures to reduce the
number of parameters. This was found to be a suitable
approximation in most cases, as we obtained qualitatively
equivalent results to the Fisher information. Only in the presence
of strong losses, the Fisher information reveals Gaussian
entanglement for certain partitions of the reduced states that
remains undisclosed by the squeezing coefficient.
Our detailed analysis highlights the advantages of the mode

entanglement criteria based on the quantum Fisher information
for Gaussian states, in particular, their ability to study multi-
partitions based on available data only, their geometric inter-
pretation, and their relation to the metrological sensitivity. We
have also observed their limitations, i.e., not being a necessary and
sufficient condition for all Gaussian states. However, in principle
the entanglement of arbitrary pure states can be revealed using
the Fisher information criterion.18 These methods thus comple-
ment the well-established PPT techniques for CV systems, which
are necessary and sufficient for Gaussian 1⊗(N− 1) systems but
unfitting for multi-partitions and of limited applicability for non-
Gaussian states.
The more general criterion based on the quantum Fisher

information is expected to be particularly useful for non-Gaussian
states. In this case, it is able to reveal entanglement even when
entanglement criteria based on second-order moments can no
longer be applied and the concept of squeezing is ill-defined. We
expect that these methods provide useful techniques for the
analysis of entanglement in complex CV networks.26

METHODS
Details of experiment
The experimental setup to generate the CV two-mode Gaussian entangled
state is depicted in Fig. 1f. A −3 dB two-mode Gaussian entangled state at
the sideband frequency of 3 MHz is generated directly from a NOPA I. The
LC is composed by a HWP and a PBS. Quadratures are measured via
homodyne detectors (HD)1–2 and the local oscillator (LO).
The three-mode GHZ state is generated using the experimental setup

depicted in Fig. 1g. The squeezed states are generated from the coupled
modes at +45° and −45° polarization directions of two NOPAs. Further
technical details can be found in ref. 30

Figure 1h depicts the experimental setup used to generate the four-
mode Gaussian square cluster state. A dual-wavelength laser for 540 and
1080 nm is used. Two mode cleaners are inserted between the laser source
and the NOPAs to filter higher-order spatial modes and noise of the laser
beams at two wavelengths, respectively. In addition to elements described
already for Fig. 1f, g, dichroic mirrors (DMs) are also shown. For technical
details we refer to ref. 31

Reconstruction of covariance matrices
In the experiment, the covariance matrices of the multipartite CV
entangled states are obtained from local measurements on the optical
output modes. These measurements include the amplitude and phase
quadratures Δ2 r̂i , Δ2 r̂j , and the cross-correlations Δ2 r̂i þ r̂j

� �
or Δ2 r̂i � r̂j

� �
.
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The elements of the covariance matrix are calculated via the identity

ðΓρ̂Þij ¼ 1
2 Δ2 r̂i þ r̂j

� �� Δ2 r̂i � Δ2 r̂j
	 


;

ðΓρ̂Þij ¼ � 1
2 Δ2 r̂i � r̂j

� �� Δ2 r̂i � Δ2 r̂j
	 


:
(9)

For each transmission efficiency η of mode A, three sets of covariance
matrices are reconstructed. Error bars for all the experimental data are
obtained from the statistics of the three covariance matrices.
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author on request.
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