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Experimental test of error-tradeoff uncertainty relation using a
continuous-variable entangled state
Yang Liu1,2, Zhihao Ma3, Haijun Kang1,2, Dongmei Han1,2, Meihong Wang1,2, Zhongzhong Qin1,2, Xiaolong Su1,2 and Kunchi Peng1,2

Heisenberg’s original uncertainty relation is related to measurement effect, which is different from the preparation uncertainty
relation. However, it has been shown that Heisenberg’s error disturbance uncertainty relation is not valid in some cases. We
experimentally test the error-tradeoff uncertainty relation by using a continuous-variable Gaussian Einstein–Podolsky–Rosen (EPR)-
entangled state. Based on the quantum correlation between the two entangled optical beams, the errors on amplitude and phase
quadratures of one EPR optical beam coming from joint measurement are estimated, respectively, which are used to verify the
error–tradeoff relation. Especially, the error–tradeoff relation for error-free measurement of one observable is verified in our
experiment. We also verify the error–tradeoff relations for nonzero errors and mixed state by introducing loss on one EPR beam.
Our experimental results demonstrate that Heisenberg’s error–tradeoff relation is violated in some cases for a continuous-variable
system, while the Ozawa’s and Branciard’s relations are valid.
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INTRODUCTION
As one of the cornerstones of quantum mechanics, uncertainty
relation describes the measurement limitation on two incompa-
tible observables.1 It should be emphasized that the uncertainty
relation actually states an intrinsic property of a quantum system,
rather than a statement about the observational success of current
technology. Uncertainty relation has deep connection with many
special characters in quantum mechanics, such as quantum
metrology,2,3 Bell non-locality and entanglement,4–6 which cannot
occur in classical world. With rapid progress in quantum
technology, such as quantum communication and quantum
computation,7,8 it is important for us to know the fundamental
limitations in the achievable accuracy of quantum measurement.
Note that there are two different types of uncertainty relations,

one is the preparation uncertainty relation, which studies the
minimal dispersion of two quantum observables before measure-
ment.9,10 The Robertson uncertainty relation,10 reads as σ(x)σ(p) ≥
ℏ/2, is a typical example in this sense, where σ(x) and σ(p) are the
standard deviations of position and momentum of a particle. For
such uncertainty relation, the measurements of x and p are
performed on an ensemble of identically prepared quantum
systems. While in the original spirit of Heisenberg’s idea,1 the
Heisenberg’s uncertainty principle should be based on the
observer’s effect, which means that measurement of a certain
system cannot be made without affecting the system. So this
leads to the second type of uncertainty relation: measurement
uncertainty relation, which studies to what extent the accuracy of
position measurement of a particle is related to the disturbance of
the particle’s momentum, so called the error–disturbance
uncertainty relation.11,12 It is also called the error–tradeoff relation
in the approximate joint measurements of two incompatible
observables.13,14

Heisenberg’s error–tradeoff uncertainty relation for joint mea-
surement is generally expressed as

εðAÞεðBÞ � CAB (1)

where CAB= |〈[A, B]〉|/2, [A, B]= AB−BA, ε(A) and ε(B) represent the
errors on observables A and B in the measurement of a quantum
state, respectively. This uncertainty relation interprets the physical
content of the non-commutativity as the limitation to our ability of
observation by quantifying the amount of unavoidable distur-
bance caused by measurement. However, it has been shown that
this relation is not valid in some cases.15 For this reason, Ozawa
and Hall proposed new measurement uncertainty relations which
have been theoretically proven to be universally valid for any
incompatible observables, respectively.11,13,16 After that, Branciard
proposed a new uncertainty relation, which is universally valid and
tighter than the Ozawa’s relation.14 There are also other types of
measurement uncertainty relations generalizing Heisenberg’s
original idea, which can be found in refs 17–22. Experimental tests
of the measurement uncertainty relations have been demon-
strated in photonic,23–28 spin-1/2,29–32 and ion trap systems.33 All
of these experiments are limited in discrete-variable systems. Up
to now, experimental test of the measurement uncertainty
relation based on continuous-variable system has not been
reported.
Here, we present the experimental test of the error–tradeoff

relation for two incompatible variables, amplitude and phase
quadratures of an optical mode, using a continuous-variable
Gaussian Einstein–Podolsky–Rosen (EPR) entangled state. Based
on quantum correlations of the EPR entangled beams, the
error–tradeoff relation with zero error (error-free) of one
observable is verified directly by performing joint measurement
on two EPR beams. In this case, Heisenberg’s error–tradeoff
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relation with continuous variables is violated, while Ozawa’s and
Branciard’s relations are valid. We also test the error–tradeoff
relations for nonzero errors and mixed state by introducing loss on
signal mode. Our experimental test of the continuous-variable
error–tradeoff relations makes the test of the measurement
uncertainty relation more complete.

RESULTS
Theoretical framework
The idea that EPR entangled state violates Heisenberg’s uncertainty
relation for joint measurement was first appeared in ref. 34. This idea
was addressed as “Schrödinger’s clever modification of the EPR
argument” and argued that this does not cause the violation of
Heisenberg’s uncertainty relation for “state preparation”, but causes,
according to Schrödinger, “hypermaximal” knowledge of the state of
one particle.35 This scenario that was naturally interpreted as the
violation of Heisenberg’s uncertainty relation for “joint measure-
ment” has been rigorously formulated later in ref. 12

A Gaussian EPR entangled state is used in the experimental test
of error–tradeoff uncertainty relations with continuous variables.
The amplitude and phase quadratures of an optical mode â are
defined as x̂ ¼ ðâþ âyÞ=2 and p̂ ¼ ðâ� âyÞ=2i, respectively.6 The
variances of amplitude and phase quadratures of two EPR modes
are σðx̂1Þ2 ¼ σðx̂2Þ2 ¼ σðp̂1Þ2 ¼ σðp̂2Þ2 ¼ ðVS þ VAÞ=2, where VS ¼
e�2r=4 and VA are the variances of squeezed and anti-squeezed
quadratures of a squeezed state, respectively, and r 0 � r < 1ð Þ is
the squeezing parameter [see the “Methods” section for details].
VA ¼ e2r=4 only if the squeezed state is pure. If the squeezed state
is not pure, we have VA> e2r=4. The quantum correlation between
two EPR modes are σðp̂2 � p̂1Þ2 ¼ σðx̂2 þ x̂1Þ2 ¼ e�2r=2 ¼ 2VS. It is
obvious that perfect quantum correlation is obtained in the case
of infinite squeezing parameter r ! 1ð Þ.
One mode of a Gaussian EPR entangled state is used as signal

mode ρ and two incompatible observables are taken as A ¼ x̂1
and B ¼ p̂1, respectively (Fig. 1a). Another mode of EPR-entangled
state with amplitude and phase quadratures x̂2 and p̂2 is used as
the meter mode ρM. In the joint measurement apparatus, two
compatible observables C and D, which belong to two EPR modes,
respectively, are jointly measured simultaneously by two homo-
dyne detectors to approximate observables A and B, respectively.
The quality of the approximations are characterized by defining
the root-mean-square (rms) errors ε(A)= 〈(C−A)2〉1/2 and ε(B)=
〈(D−B)2〉1/2. Ozawa’s error–tradeoff relation is expressed by11–13

εðAÞεðBÞ þ εðAÞσðBÞ þ σðAÞεðBÞ � CAB (2)

where σ(A) and σ(B) are the standard deviations of observables A
and B, and the parameter CAB= 1/4 denote that A and B cannot be
jointly measured on ρ simultaneously in our experiment. It is
obvious that this relation involves not only the errors, but also the
standard deviations of each observable. This relation holds for every
measurement and every input state as long as all the relevant terms
are finite.12 The Branciard’s error–tradeoff relation is given by14

½εðAÞ2σðBÞ2 þ σðAÞ2εðBÞ2 þ 2εðAÞεðBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðAÞ2σðBÞ2 � C2

AB

q
�1=2 � CAB

(3)

which is also a universally valid relation and the bound is tighter
than Ozawa’s uncertainty relation. In the experiment, we test
Heisenberg’s, Ozawa’s and Branciard’s error-tradeoff relations in
three cases, i.e., error-free measurement of one observable,
nonzero error and mixed state cases.

Experimental implementation and results
At first, we consider a situation that the observable A is measured
accurately (error-free measurement of observable A), i.e., the

optimal estimation C = A. The measured phase quadrature D ¼ p̂2
is used to approximate the observable B. Because the amplitude
quadrature x̂1 of ρ and the phase quadrature p̂2 of ρM are
compatible, they can be measured simultaneously. The errors for

approximating A and B are expressed as εðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðC � AÞ2i

q
¼ 0,

and εðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðD� BÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðp̂2 � p̂1Þ2

q
¼ ffiffiffiffiffiffiffi

2VS
p

; respectively.
Since ε(A)= 0 and ε(B) <∞, we have

εðAÞεðBÞ ¼ 0: (4)

It is obvious that Heisenberg’s relation in Eq. (1) is violated. The
violation of Heisenberg’s uncertainty relation for ‘joint measure-
ment’ of EPR-entangled state of ε(A)= 0 has been theoretically
discussed in ref. 12.
The Ozawa’s and Branciard’s relations are the same for the case

of ε(A)= 0, which are

σðAÞεðBÞ � 1=4 (5)

The amplitude quadrature x̂1 of the signal mode is measured by a
homodyne detector HD1 in the time domain, as shown in Fig. 1b,
and the standard deviation of x̂1,

σðAÞ ¼ σðx̂1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVS þ VAÞ=2

p
; (6)

is obtained. To evaluate the error ε(B), we experimentally measure
the observables B and D, i.e. the phase quadratures p̂1 and p̂2, by
two homodyne detectors (HD1 and HD2) simultaneously. The
details of experiment can be found in the “Methods” section.
In our experiment, the achievable lower bound is limited by the

quantum correlation of the EPR entangled state. In order to
demonstrate this property, we change the quantum correlation of
signal mode and meter mode by changing the relative phase
difference θ between the two modes of EPR entangled state. Thus,

Fig. 1 a Schematic of the test principle for error–tradeoff relation by
joint measurement on a continuous-variable entangled state. A
quantum state ρ is measured in a joint measurement apparatus M,
where two compatible observables C and D are measured
simultaneously to approximate two incompatible observables A
and B, respectively. The right inset describes the joint measurement
apparatus for the error-free measurement of observable A. b
Schematic of experimental setup. A Gaussian EPR entangled state
is produced by a nondegenerate optical parametric amplifier (NOPA)
operating in the state of deamplification. The two modes of EPR
state are used as the signal mode ρ and the meter mode ρM which
are detected by the homodyne detectors HD1 and HD2, respec-
tively. The lossy channel is simulated by a half-wave plate (HWP) and
a polarization beam splitter (PBS). LO local oscillator
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the error

εðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðp̂2ðθÞ � p̂1Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VA þ VS � ðVA � VSÞcosθ

p
(7)

is measured in experiment, where p̂2ðθÞ ¼ cos θp̂2 þ sin θx̂2. The
left-hand sides (LHS) of Ozswa’s and Branciard’s relations can be
obtained by substituting Eqs. (6) and (7) into Eq. (5).
When the relative phase difference θ= 0° and θ= 360°, the

minimum error is obtained [Fig. 2a] and the LHS of the relation
reaches its minimum value [Fig. 2b], which is determined by the
present squeezing level. When θ= 180°, the maximum error is
obtained. The error increases when the relative phase difference θ
varies from 0° to 180°, which simulates the results of the
decreasing of quantum correlation (squeezing) of the EPR-
entangled state. The results confirm that the Ozawa’s and
Branciard’s relations are the same and valid for the error-free
measurement of observable A.
Then, we test the error–tradeoff relation with nonzero errors.

When both errors are not equal to zero, Ozawa’s and Branciard’s
relations are different. In the experiment, we apply a linear
operation on the signal mode, which is done by transmitting the
signal mode through a lossy channel, as shown in the inset of Fig.
1b. In the lossy channel, the signal mode and a vacuum mode are
coupled via a beam splitter with transmission efficiency T. In this
case, the amplitude and phase quadratures of the signal mode are
changed to x̂01 ¼

ffiffiffi
T

p
x̂1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1� T

p
x̂v and p̂01 ¼

ffiffiffi
T

p
p̂1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1� T

p
p̂v,

respectively, after transmitted over the lossy channel, where x̂v
and p̂v represent the amplitude and phase quadratures of
vacuum. The variances of the amplitude and phase quadratures
of the vacuum and the transmitted mode ρ0 are
σðx̂vÞ2 ¼ σðp̂vÞ2 ¼ 1=4, σðx̂01Þ2 ¼ Tσðx̂1Þ2 þ ð1� TÞσðx̂vÞ2, and

σðp̂01Þ2 ¼ Tσðp̂1Þ2 þ ð1� TÞσðp̂vÞ2, respectively. By choosing C ¼
x̂01 and D ¼ p̂2, which are compatible, the errors for the two
incompatible observables A ¼ x̂1 and B ¼ p̂1 are

εðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðx̂01 � x̂1Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ffiffiffi

T
p Þ2σðx̂1Þ2 þ ð1� TÞσðx̂vÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�

ffiffiffi
T

p
Þ2ðVS þ VAÞ=2þ ð1� TÞ=4

q
; (8)

and

εðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðp̂2 � p̂1Þ2

q
¼

ffiffiffiffiffiffiffi
2VS

p
; (9)

respectively. In this case, the standard deviations of A and B are

σðAÞ ¼ σðx̂1Þ ¼ σðBÞ ¼ σðp̂1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVS þ VAÞ=2

p
; (10)

respectively.
In the experiment, since the signal mode is transmitted through

a lossy channel, we record the corresponding transmission
efficiency T and measure x̂01 in time domain by homodyne
detector HD1. We also measure the variance of x̂v and p̂v by
blocking the signal mode of homodyne detector HD1. Based on
the transformation relation of the lossy channel,
σðx̂01Þ2 ¼ Tσðx̂1Þ2 þ ð1� TÞσðx̂vÞ2, the variance of x̂1 can be
derived. So the error εðAÞ is obtained based on the information
of transmission efficiency T, σ x̂01

� �2
and σðx̂vÞ2. We measure the

phase quadratures p̂01 and p̂2 by two homodyne detectors
simultaneously. According to the relation
p̂01 ¼

ffiffiffi
T

p
p̂1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1� T

p
p̂v, the information of p̂1 is obtained, and

then the error of observable B and the variance of the phase
quadrature p̂1 are obtained experimentally.
In this case, the LHS of the error–tradeoff relations are obtained

by substituting Eqs. (8–10) into Heisenberg’s, Ozawa’s and
Branciard’s Eqs. (1–3). The error ε(A) increases with the decreasing
of channel efficiency, while the error ε(B) is not affected by the
channel efficiency according to Eq. (9) (Fig. 3a). Heisenberg’s
relation in Eq. (1) is violated when the transmission efficiency is
higher than 0.3. While the Ozawa’s and Branciard’s relations are
always valid (Fig. 3b). By comparing the LHS of Ozawa’s and
Branciard’s relations, we confirm that Branciard’s relation is tighter
than Ozawa’s relation.
Finally, we demonstrate the error–tradeoff relation for the

mixed state, i.e., the state ρ transmitted over a lossy channel. Here,
observables C ¼ A ¼ x̂01, B ¼ p̂01, and D ¼ p̂2 are chosen, and thus
errors for the mixed state are ε(A) = 0 and

εðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σðp̂2 � p̂01Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVA þ VSÞð1þ TÞ=2� ðVA � VSÞ

ffiffiffi
T

p
þ ð1� TÞ=4

q

(11)

respectively. And the standard deviation of A is

σðAÞ ¼ σ x̂01
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðVS þ VAÞ=2þ ð1� TÞ=4

p
; (12)

In this case, Heisenberg’s error–tradeoff relation is violated,
Ozawa’s and Branciard’s relations are the same as given by Eq. (5).
In the experiment, when p̂2 and p̂01 are recorded in time domain

simultaneously, the error ε(B) is obtained. We also measure x̂01 in
time domain to obtain σ x̂01

� �
. By substituting Eqs. (11) and (12)

into Eq. (5), the LHS of Ozawa’s and Branciard’s relations are
obtained. In this case, the error ε(B) and the LHS of the relations
increase along with the decreasing of transmission efficiency as
shown in Fig. 4a, b, respectively. The error and LHS of the relations
get the minimum value when the transmission efficiency is unit.
The predicted lower bounds for Heisenberg’s [Eq. (1)], Ozawa’s

[Eq. (2)], and Brinciard’s [Eq. (3)] error–tradeoff relations are
compared in the plane (ε(A), ε(B)), as shown in Fig. 5. For the
Heisenberg’s relation (bounded by the blue dashed curve), one of

Fig. 2 Results of the uncertainty relation in the case of error-free
measurement of observable A. a The error ε(B) as a function of the
relative phase difference between the two modes of EPR entangled
state. b The LHS of the Ozawa’s and Branciard’s relations as functions
of the relative phase difference. The right-hand side of the relations
CAB is indicated by the red line. The solid curves and data points are
the theoretical calculated results and experimental results, respec-
tively. The error bars are obtained by root-mean-square of repeated
measurements for 10 times. The experimentally measured results
are in good agreement with the theoretical calculations
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the error must be infinite when the other goes to zero. While in
our experiment, for the case of error ε(A)= 0, the finite error ε(B) is
observed (red circles), which violates the Heisenberg’s
error–tradeoff relation, yet satisfies the Ozawa’s and Branciard’s
error–tradeoff relations. For the case of nonzero errors, only one of
the observed values satisfies the Heisenberg’s error–tradeoff
relation (the data with 0.2 transmission efficiency), the other
values violate Heisenberg’s error–tradeoff relation, yet satisfy
Ozawa’s and Branciard’s relations.

DISCUSSION
It is important to show that the error–tradeoff relation can be
saturated, i.e., the lower bound of error–tradeoff relation can be
reached. In our experiment, the LHS of Ozawa’s and Branciard’s
error–tradeoff relations depend on the squeezing parameter of
the Gaussian EPR entangled state. With the increasing of
squeezing parameter, the lower bound of the error–tradeoff
relations can be approached. The lower bound of the
error–tradeoff relations can be reached only in the case of infinite
squeezing of the EPR entangled state.
There are some objections in the definition of the rms error in

error–disturbance relation.17 They show that for some special
cases, the error vanishes for some inaccurate measurements, in
which the meter does not commute with the measured
observable. Ozawa proposed an improved definition for the rms
error, which is state-dependent, operationally definable, and
perfectly characterizes accurate measurements.36 But in our
experiment, for the observables A and C are always commute,
the objections discussed in ref. 17 do not apply to the cases
considered in our experiment.

We experimentally test the Heisenberg’s, Ozawa’s, and Bran-
ciard’s error–tradeoff relations for continuous-variable observa-
bles, i.e., amplitude and phase quadratures of an optical mode.
Especially, we investigate the error–tradeoff relation in the case of
zero error by using Gaussian EPR entangled state. We test the
error–tradeoff relation for three different cases, which are zero
error of one observable, nonezero errors and mixed state,

Fig. 3 Results of the uncertainty relations in the case of nonzero
errors. a The errors ε(A) (red curve) and ε(B) (blue curve) as functions
of the transmission efficiency. b The LHS of the relations as functions
of the transmission efficiency. Blue curve: the Heisenberg’s relation
in Eq. (1). Yellow curve: the Ozawa’s relation in Eq. (2). Black curve:
the Branciard’s relation in Eq. (3). The right-hand side of the relations
CAB is indicated by the red line

Fig. 5 Lower bounds of the error–tradeoff relations. Blue dashed
curve: the Heisenberg’s bound. Yellow dotted curve: the Ozawa’s
bound. Gray solid curve: the Branciard’s bound. Red circles:
experimental data for error free measurement of observable A as
shown in Fig. 2. Black diamonds: experimental data for nonzero
errors condition as shown in Fig. 3

Fig. 4 Uncertainty relation for mixed state. a The error ε(B) as a
function of the transmission efficiency. b The LHS of the Ozawa’s
and Branciard’s relations as functions of the transmission efficiency.
The right-hand side of the relations CAB is indicated by the red line
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respectively. The results demonstrate that the Heisenberg’s
error–tradeoff relation is violated in some cases while the Ozawa’s
and the Brinciard’s error–tradeoff relations are valid. Our work is
useful not only in understanding fundamentals of physical
measurement but also in developing of continuous variable
quantum information technology.

METHODS
The Gaussian EPR entangled state
In our experiment, the Gaussian EPR entangled state is produced by a
nondegenerate optical parametric amplifier (NOPA) operating in the state
of deamplification. The amplitude and phase quadratures of two EPR
modes are expressed as37

x̂1 ¼ x̂1ð0Þcoshr � x̂2ð0Þsinhr;
p̂1 ¼ p̂1ð0Þcoshr þ p̂2ð0Þsinhr;
x̂2 ¼ x̂2ð0Þcoshr � x̂1ð0Þsinhr;
p̂2 ¼ p̂2ð0Þcoshr þ p̂1ð0Þsinhr:

(13)

where x̂1ð2Þð0Þ and p̂1ð2Þð0Þ are the amplitude and phase quadratures of

vacuum state, and σðx̂1ð2Þð0ÞÞ2 ¼ σðp̂1ð2Þð0ÞÞ2 ¼ 1=4. From Eq. (13), we
obtain that the variances of amplitude and phase quadratures of two EPR
modes are σðx̂1Þ2 ¼ σðx̂2Þ2 ¼ σðp̂1Þ2 ¼ σðp̂2Þ2 ¼ ðe2r þ e�2rÞ=8. The quan-
tum correlated noise between two EPR modes are
σðp̂2 � p̂1Þ2 ¼ σðx̂2 þ x̂1Þ2 ¼ e�2r=2, and the anti-correlated noise are
σðp̂2 þ p̂1Þ2 ¼ σðx̂2 � x̂1Þ2 ¼ e2r=2.
Because of imperfect factors in the experiment, for example loss, the

obtained EPR entangled state may not be pure. In this case, the variances
of the Gaussian EPR entangled state can be described by two parameters
VS and VA, which are the variances of squeezed and anti-squeezed
quadratures of a squeezed state, respectively. When the state is pure, we
have VS= e−2r/4 and VA= e2r/4. When the state is not pure, we have VA >
e2r/4. Thus, the variances of amplitude and phase quadratures of two EPR
modes are σðx̂1Þ2 ¼ σðx̂2Þ2 ¼ σðp̂1Þ2 ¼ σðp̂2Þ2 ¼ ðVA þ VSÞ=2 and the
quantum correlated noise between two EPR modes are σðp̂2 � p̂1Þ2 ¼
σðx̂2 þ x̂1Þ2 ¼ 2VS in our experiment.

Details of experiment
In the experiment, an EPR entangled state with VS= 0.129 (corresponding
to −2.9 dB squeezing) and VA= 0.619 (corresponding to 3.9 dB anti-
squeezing) is prepared by a NOPA, which consists of an a-cut type-II KTP
crystal and a concave mirror as shown in Fig. 1b.38 The front face of the
KTP crystal is used as the input coupler, and the concave mirror with
50mm curvature serves as the output coupler. The front face of the KTP
crystal has the 42% transmission at 540 nm and high reflectivity at
1080 nm. The end face of the KTP crystal is antireflection coated for both
540 and 1080 nm. The AC output signals from HD1 and HD2 are mixed
with a local reference signal of 3 MHz, and then filtered by low-pass filters
with bandwidth of 30 kHz and amplified 1000 times (Low noise
preamplifier, SRS, SR560), respectively. And then the two outputs of the
preamplifiers are recorded by a digital storage oscilloscope simultaneously.
A sample size of 5 × 105 data points is used for all quadrature
measurements with sampling rate of 500K/s. The mode-matching
efficiency between signal and local oscillator is 99% and the quantum
efficiency of photodiodes are 99.6%.
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