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Abstract Quantum network enables quantum communication among quantum nodes and provides advan-

tages that are unavailable in any classical network. Based on rapidly developing science and technology in

quantum communication, the studies on quantum network have also made important progresses recent years.

In this study, we briefly review the experimental progresses in building quantum network based on optical

field and discuss the challenges toward a quantum Internet.
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1 Introduction

Our world has been benefited profoundly from the present Internet. Besides the classical Internet, quan-

tum Internet in future will provide unprecedented technologies and applications. It plays an important

role in developing the distributed quantum computation [1–4] and quantum communication, such as

quantum key distribution (QKD) [5–7], quantum secure direct communication (QSDC) [8–10] and quan-

tum secret sharing (QSS) [11]. Based on the achievements in the point-to-point quantum communication,

for example, long distance quantum teleportation over 100 km [12–14] and QKD [6], building a quantum

Internet has attracted more and more attention [15–17].

Recently, Wehner et al. [17] proposed six stages of building a quantum Internet based on the function

of the Internet, which includes trusted repeater networks, prepare and measure networks, entanglement

distribution networks, quantum memory networks, fault-tolerant few qubit networks and quantum com-

puting networks. Different applications can be achieved in each stage and the function of the Internet

increases from the first stage to the sixth stage. Up to now, several QKD networks have been estab-

lished [18–24], which belong to the trusted repeater networks, i.e., the first stage of quantum Internet.

The investigation of the next five stages of quantum Internet is in progress and there are several challenges

that need to be solved. The ultimate version of a quantum Internet will consist of quantum computers

and enable access to quantum computers at different authorized quantum nodes.

The physical implementation of a quantum Internet requires exchange of information among different

physical systems [15]. Light is a natural carrier for information in communication because of the speed

of light and the mature fiber channels. Atomic ensembles and solid state system are able to be used
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Figure 1 (Color online) Schematic of quantum networks. (a) Local all optical quantum network, which consists of a

quantum server (QS) and several users; (b) local hybrid quantum network containing quantum memory (QM); (c) the

schematic of quantum Internet consisting of a quantum repeater, which enables long distance quantum communication.

for quantum memory. Superconducting system and ion system have shown their power in quantum

computation and can be applied in quantum servers. It is essential to connect these different systems

and accomplish exchange of quantum information among them to build a quantum Internet. So, the final

quantum Internet should be a hybrid quantum Internet involving a variety of physical systems.

Here, we review the progress of building quantum networks based on optical field, and discuss the

challenges toward establishing a quantum Internet. The contents about local quantum networks, hybrid

quantum networks and fully quantum Internet will be mentioned respectively.

2 The structure of quantum network

When we build a quantum network, it is essential to investigate the structure of it. For example, quantum

state transmission in a butterfly network [25–27] and entanglement deployment in a quantum multi-hop

network [28] have been investigated. According to the differences of transmission distances, quantum

networks can be divided into local quantum networks and global quantum networks (quantum Internet),

respectively. As shown in Figure 1(a), it is possible to establish a local all optical quantum network, which

consists of only optical systems and usually is used to construct a metropolitan quantum network. A

quantum server is utilized to prepare needed quantum states such as quantum entangled states and then

the prepared quantum states are distributed to different quantum nodes. And then the quantum commu-

nication among quantum nodes, for example quantum communication based on quantum entanglement

and QKD, can be implemented.

Besides, along with the development of technology of quantum memory, a local quantum network

including a quantum memory unit will be available, as shown in Figure 1(b). The quantum memory unit

involves some quantum systems other than optical systems, for example atomic [29–31] and solid state

systems [32, 33], so such a quantum network would be a hybrid quantum network consisting of different

quantum systems. By connecting space separated local quantum networks together, we will have a global

quantum Internet, as shown in Figure 1(c). The connection can be completed by quantum channels or

quantum repeaters [34, 35]. If the distance between two local networks are too far, quantum repeaters

can be used to extend the transmission distance of quantum information.



Su X L, et al. Sci China Inf Sci August 2020 Vol. 63 180503:3

3 All optical local quantum network

3.1 Quantum information with continuous variables

For quantum information based on optical systems, two different kinds of quantum variables are used,

which are discrete variables and continuous variables, respectively. Discrete and continuous variables are

quantum variables defined in finite and infinite Hilbert space, respectively. Optical quantum information

with discrete variable (DV) and continuous variable (CV) systems are developing in parallel and have their

own advantages and disadvantages respectively. DV system encodes information on discrete variables,

such as polarization of photons. For the DV optical system, the maximal entanglement can be obtained

but the generation of entanglement is probabilistic usually. While for the CV optical system, which

encodes information on the amplitude and phase quadratures (corresponding to position and momentum

respectively) of optical field, the generation of entanglement is deterministic but the perfect entanglement

is not able to be obtained [36–38]. So far, tremendous progress has been achieved for optical quantum

networks with DV and CV systems.

The amplitude and phase quadratures of an optical field â are defined as x̂ = (â+â†) and p̂ = (â−â†)/i,

respectively, where â and â† are annihilation and creation operators. In this definition, the variances of

amplitude and phase quadratures of a vacuum state are normalized to V (x̂0) = V (p̂0) = 1, where the

subscript 0 represents the vacuum state, which is named as the shot noise level (or quantum standard

limit). CV quantum states frequently applied in quantum information include vacuum state, coherent

state, squeezed state, and entangled state, which can be described in phase-space representation. These

states belong to Gaussian state, whose characteristic function is in Gaussian distribution. By preparing

Gaussian states, applying Gaussian unitaries on these states, and performing corresponding Gaussian

measurements, the Gaussian quantum information can be implemented [37]. In the measurement of

Gaussian states, homodyne and heterodyne detection systems are usually used. On the other hand, there

are also CV quantum information based on non-Gaussian states, for example cat state, whose Wigner

function is non-Gaussian.

Gaussian state can be completely characterized by the first and second statistical moments of quadra-

tures of optical field, which are denoted by vector of first moments ξ̂ = (x̂1, p̂1, x̂2, p̂2, x̂3, p̂3, . . . , x̂N , p̂N )T

and covariance matrix with elements σij = 1
2 〈ξ̂i ξ̂j + ξ̂j ξ̂i〉 − 〈ξ̂i〉〈ξ̂j〉, respectively. The covariance matrix

of Einstein-Podolsky-Rosen (EPR) entangled state, which is a two-mode entangled state, is given by

σAB =

(

V I
√
V 2 − 1Z√

V 2 − 1Z V I

)

, (1)

where V = cosh 2r (r ∈ [0,∞) is the squeezing parameter), I and Z are the Pauli matrices

I =

(

1 0

0 1

)

, Z =

(

1 0

0 −1

)

, (2)

respectively.

CV multipartite entangled state, which is more complex than the two-mode EPR entangled state,

is an important resource for quantum network. There are two kinds of well studied CV multipartite

entangled states, which are Greenberger-Horne-Zeilinger (GHZ) state and cluster state, respectively. The

CV GHZ state is an eigenstate with total momentum
∑

j p̂j = 0 (or position
∑

j x̂j = 0) and relative

positions x̂i − x̂j = 0 (or momentums p̂i − p̂j = 0) (i, j = 1, 2, . . . , N) [39], which has been applied

in quantum teleportation network [40] and controlled dense coding [41]. The quadrature correlations

(so-called nullifiers) of CV cluster state can be expressed by [42–44]

(

p̂a −
∑

b∈Na

x̂b

)

→ 0, ∀a ∈ G. (3)
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The modes of a ∈ G denote the vertices of the graph G, while the modes of b ∈ Na are the nearest

neighbors of mode â. For an ideal cluster state, the left-hand side of (3) tends to zero, so that the state is

a simultaneous zero eigenstate of these quadrature combinations in the limit of infinite squeezing [42,43].

3.2 Quantum key distribution network

QKD enables two authorized parties to share a secret key by transmitting quantum states through a

quantum channel and followed by corresponding classical data processing. With the gradual maturation

of QKD devices and technologies in recent years, the application of QKD is becoming more and more

quickly. Based on extension of the point-to-point QKD protocol, several QKD networks have been

proposed and demonstrated [18–24]. Especially, a QKD network more than 2000 km has been built

among Beijing, Jinan, Hefei and Shanghai in China.

Recently, Diamanti et al. [6] reviewed practical challenges in QKD. DV QKD [5, 6] and CV QKD

[37, 45–50] are developing in parallel. The security of the QKD system is limited by the imperfection of

the devices [6], for example side-channel attacks [51–53]. One option to overcome this limitation is by

using device-independent QKD protocol [54–56]. Since it is difficult to establish a device-independent

QKD system, where the security of QKD relies on the violation of a Bell inequality, measurement-device-

independent (MDI) QKD protocol [46, 47, 57–60], which removes the effect of measurement devices, has

been proposed and demonstrated. Thus it will be more practical to build a MDI QKD network in future.

3.3 Entanglement distribution network

Entanglement is an important quantum resource in quantum information processing, such as quantum

teleportation, quantum dense coding, quantum computation and quantum metrology. Distributing en-

tanglement in a quantum network is a precondition for complete quantum communication and quantum

computation based on entanglement. Multipartite entangled state can be used as a basic resource for

building a local quantum network by distributing entangled photon qubits or optical modes to space

separated quantum nodes. A convenient method to establish a local optical quantum network involving

quantum entanglement is to distribute a multipartite entangled state among quantum nodes [39–41,61],

where the multipartite entangled state is prepared in a quantum server. Another method is to distribute

several two-mode optical entangled states to different pairs of quantum nodes and then connect these

quantum nodes together.

Usually quantum entanglement is distributed to quantum nodes directly, which is a traditional way. For

example, the distributions of CV EPR entangled state over 20 km fiber [62] and CV quantum teleportation

in 6 km fiber channel have been demonstrated [63], which make an essential step toward a real quantum

network in fiber channel. It has also been shown that entanglement can be distributed by transmitting

separable states in quantum channels [64, 65]. In this case, the state transmitted in quantum channel is

not entangled, while entanglement is created after applying local operation and classical communications.

Successively, this proposal has been demonstrated experimentally for distributing entanglement between

two users [66–68]. It has been shown that under suitable conditions, distribution of entanglement via

separable state has advantages in the presence of noise [69]. Recently, this method has been extended

to distribute EPR steering [70], which is stronger than entanglement and has also been identified as a

valuable resource for secure quantum information tasks.

For building a quantum Internet, a key procedure is to connect local quantum networks. In 2016,

Pirandola and Braunstein [16] pointed out that one of the greatest challenges for implementing a globally

distributed quantum computer or a quantum Internet is entangling quantum nodes across the network. It

has been proposed that a global quantum Internet can be established by quantum entanglement swapping

between space-separated local quantum networks [71,72]. Quantum entanglement swapping, which makes

two independent quantum entangled states without direct interaction become entangled, is an important

technique in building quantum communication networks [73–80]. Quantum entanglement swapping is also

known as quantum teleportation of one mode (a particle) of entangled states [78–81]. It was originally

proposed and demonstrated in DV system [73,74], and then was extended to CV system [77–80]. Recently,
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Figure 2 (Color online) Schematic of connecting two local quantum networks by quantum entanglement swapping. Two

local quantum networks A and B are built by distributing two multipartite entangled states in several quantum nodes,

respectively. By performing joint measurement on two optical modes coming from two local quantum networks and feed-

forward of measurement results to other quantum nodes, two quantum networks are emerged into one quantum network

with new multipartite entangled states.

entanglement swapping between DV and CV systems has been demonstrated [82], which shows the power

of hybrid quantum information processing [83].

The quantum entanglement swapping between two multipartite entangled states has been demon-

strated experimentally [84], which shows the feasibility of connecting two local optical quantum networks

by entanglement swapping. As shown in Figure 2, the entanglement swapping is implemented deter-

ministically by means of a joint measurement on two optical modes coming from the two local networks

respectively and the classical feedforward of the measurement results. After entanglement swapping,

the two space-separated independent networks consisting of m and n quantum nodes respectively are

merged into a larger network consisting of m+ n− 2 quantum nodes, since two optical modes have been

measured (see Figure 2), in which all unmeasured quantum modes in nodes are entangled and thus an

Internet consisting of two local networks is built. In the experiment, two tripartite CV GHZ states are

used to simulate two local quantum networks, respectively, and the dependence of the resultant entan-

glement on the transmission loss is investigated [84]. This technique is then extended to connect two CV

cluster states, which can be used to build a quantum network based on CV cluster state [85]. It has also

been shown that CV GHZ and cluster states can be used in measurement-device-independent quantum

secret sharing and quantum conference network [86,87], which provide concrete quantum communication

schemes in CV quantum networks.

Besides quantum entanglement, quantum steering is another kind of quantum resource, which can be

used to implement one-sided device independent QKD [88–92], secure quantum teleportation [93–95]

and subchannel discrimination [96]. Comparing with quantum entanglement, the intrinsic character of

quantum steering is that it is asymmetric, and thus it can be one-way [97–103]. Recently, experimen-

tal observation of multipartite EPR steering has been reported in optical networks [104] and photonic

qubits [105, 106], respectively. In 2017, Deng et al. [107] experimentally demonstrated quantum steering

in a four-mode Gaussian cluster state and verified the corresponding monogamy relations. In the same

year, Qin et al. [108] realized the manipulation of the direction of Gaussian EPR steering in noisy en-

vironment. Wang et al. also proposed the swapping schemes for Gaussian EPR steering between two

space-separated entangled states [109, 110], and presented EPR steering in a Gaussian weighted graph

state [111], which can be used to construct a quantum network of quantum steering.

4 Hybrid quantum network containing quantum memory

Quantum memory is an essential building block for quantum repeater and quantum network. Various

mechanisms of quantum memory have been developed, such as electromagnetically induced transparency

(EIT) [29, 112–115], atomic Raman memory [30, 116, 117], gradient echo memory (GEM) [31, 118], and

solid system [32, 33, 119–121]. Different methods of quantum memory have their own advantages and

they are rapidly developing in recent years.
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Figure 3 (Color online) Schematic of establishing quantum entanglement among three atomic ensembles. Quantum

entanglement of three optical modes is transferred to three atomic ensembles.

In the following, we briefly introduce the progress of several typical quantum memory systems. In

2000, Fleischhauer et al. [112] reported that the optical pulses were effectively slowed down and trapped

in the rubidium vapor by EIT process. In the experiment, one external field is used as the control field to

make the opaque medium transparent. The other weak light, as the signal light, can propagate without

dissipation and loss at a specific frequency and polarization, and the group speed of propagation is greatly

reduced. Slow light is compressed greatly in space, and its signal pulse is almost completely stored in the

atomic medium.

In 2013, Ding et al. [115] realized a true single-photon-carrying orbital angular momentum (OAM)

stored in a cold atomic ensemble. In the same year, Xu et al. [122] presented a millisecond storage

system based on EIT in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman

degeneracy, and thus the photonic polarization qubit states are stored as two magnetic-field-insensitive

spin waves. Nicolas et al. [123] demonstrated the physical implementation of a quantum memory for

OAM qubits. In 2018, Vernaz-Gris et al. [124] reported a quantum memory for polarization qubits that

combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a

reversible qubit mapping where more information is retrieved than lost. Wang et al. [29] demonstrated

a quantum memory for single-photon polarization qubits with an efficiency of > 85% and a fidelity of

> 99% in 2019.

Since the bandwidth of quantum memory with EIT is limited, broad bandwidth atomic Raman memory

has been developed [30, 116, 117]. A memory efficiency of above 82% and an unconditional fidelity up

to 98% were obtained for the atomic Raman memory [30]. The GEM quantum memory provides an

efficient method to store coherent optical pulse [31], and the maximum efficiency of 87% and the storage

time of 1 ms have been achieved [118]. Besides quantum memory with atomic system, quantum memory

with solid system is also in progress [32,33,119–121]. Comparing with the shorter storage time of atomic

quantum memory, the storage time of solid state system can be up to six hours [120], and it can be used to

store optical signals near to communication wavelength in fiber [119]. Recently, multiplexed storage and

real-time manipulation based on a multiple degree-of-freedom quantum memory with solid state system

have also been demonstrated [121].

Quantum memory of non-classical states is important for building a quantum network involving en-

tanglement. In 2008, Honda et al. [125] and Appel et al. [126] realized the storage of the squeezed state,

respectively. In 2010, Jensen et al. [113] demonstrated quantum memory for two-mode CV entangled

states. In 2015, Ding et al. [117,127] realized the quantum storage of OAM entanglement by using Raman

mechanism. Recently, QSDC with single photons [9] and quantum memory [10] has been demonstrated

experimentally.

In order to build a hybrid quantum network, it is essential to establish entanglement among quantum

nodes containing quantum memory units. Yan et al. [128] demonstrated the establishment, storing and

releasing of CV tripartite entanglement among three atomic ensembles, as shown in Figure 3. At first, a

tripartite GHZ entangled state is prepared, and then the entanglement is transferred into three atomic

ensembles located 2.6 m apart from each other via EIT interaction. After a given storage time, the

preserved atomic entanglement is controllably released into three separated quantum channels. By mea-

suring the entanglement of three output optical modes, the entanglement among three atomic ensembles

is demonstrated. The method can be extended to establish entanglement among quantum nodes more

than three by storing multipartite entangled states in quantum memory units.
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5 Quantum Internet including quantum repeaters

Quantum repeater is an essential unit for long distance quantum communication and quantum networks,

which was first proposed by Briegel et al. [34] to overcome the difficulty of the exponential fidelity decay of

quantum entanglement in the channel. In 2001, Duan et al. [35] proposed a long-distance quantum com-

munication scheme with atomic ensembles and linear optics, which allows to implement robust quantum

communication over long lossy channels, which is known as Duan-Lukin-Cirac-Zoller (DLCZ) scheme.

Yuan et al. [129] realized experimental demonstration of a quantum repeater node by entanglement

swapping with storage and retrieval of light. Chen et al. [130] proposed and demonstrated a structure of

nested purification experimentally, which can be applied in the implementation of a practical quantum

repeater by combining with quantum memory. Kalb et al. [131] demonstrated entanglement distillation

on an elementary quantum network consisting of a pair of two-qubit solid-state nodes separated by 2 m.

Very recently, Bhaskar et al. [132] implemented asynchronous photonic Bell-state measurements by us-

ing a single solid-state spin memory integrated in a nanophotonnic diamond resonator, which represents

a crucial step towards practical quantum repeaters and large-scale quantum networks. In 2020, Yu et

al. [133] realized entanglement over 22 kilometers of field-deployed fibres via two-photon interference and

entanglement over 50 kilometers of coiled fibres via single-photon interference.

Besides quantum repeater involving quantum memory, all optical quantum repeater is also devel-

oping [134–137]. In 2015, the concept of all-photonics quantum repeaters based on flying qubits was

introduced by Azuma et al. [134], in which the quantum memories requirement is unnecessary. Buterakos

et al. [135] presented a protocol for the deterministic generation of all-photonic quantum repeater from

solid-state emitter. In 2019, Li et al. [136] performed an experimental demonstration of an all-photonic

quantum repeater without quantum memory. In the experiment, by manipulating a 12-photon inter-

ferometer, a 2 × 2 parallel all-photonic quantum repeater is implemented, and an 89% enhancement of

entanglement-generation rate over standard parallel entanglement swapping is observed. In the same

year, time-reversed adaptive Bell measurement towards all-photonic quantum repeater has been reported

in a proof-of-principle experiment by Hasegawa et al. [137].

6 Discussion and conclusion

The main challenge for practical applications of quantum information is how to build a quantum network

in real world out of the lab. To do so, we have to construct local quantum networks firstly and to connect

them through different channels, such as optical fiber [63,133] and free space channels [72,138]. Owing to

that the present equipments for generating entanglement in the lab have not been integrated, thus, it is

not convenient to be applied. It is necessary and significant to develop integrated quantum optical chips

to replace the current bigger elements. We are pleased to see that the integrated quantum optical chips

have had rapid progress recently [139–147]. Wang et al. [140] demonstrated a multidimensional integrated

quantum photonic platform is able to generate, control, and analyze high-dimensional entanglement. Tang

et al. [147] experimentally demonstrated quantum fast hitting by implementing two-dimensional quantum

walks on graphs with up to 160 nodes and a depth of eight layers. Llewellyn et al. [143] demonstrated

chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Besides the rapid progress

of DV integrated quantum optical chips, the CV chips are also developing [144–146].

In this manuscript, we briefly reviewed the progress of quantum networks based on non-classical light,

which includes local all optical quantum networks, local hybrid quantum networks, and quantum Internet

consisting of quantum repeater. Up to now, DV and CV quantum networks are developing in parallel.

DV and CV quantum information systems have their own advantages and disadvantages, respectively. A

hybrid quantum information processing [83], combining DV and CV units, will possibly overcome their

disadvantages and bring us flush of hope to develop perfect quantum networks and Internet with powerful

function better than any classical systems.
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