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Topological error correction provides an effective method to correct errors in quantum computation. It allows
quantum computation to be implemented with a higher error threshold and high tolerating loss rates. We present
a topological error correction scheme with continuous variables based on an eight-partite Gaussian cluster state.
We show that topological quantum correlation between two modes can be protected against a single quadrature
phase displacement error occurring on any mode and some of two errors occurring on two modes. More
interestingly, some cases of errors occurring on three modes can also be recognized and corrected, which is
different from the topological error correction with discrete variables. We show that the final error rate after
correction can be further reduced if the modes are subjected to identical errors occurring on all modes with equal
probability. The presented results provide a feasible scheme for topological error correction with continuous
variables and it can be experimentally demonstrated with a Gaussian cluster state.
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I. INTRODUCTION

Quantum computation (QC) can solve many complex prob-
lems more efficiently than a classical computer [1]. The
measurement-based one-way QC provides a practical model
to perform the universal QC based on the cluster states with
different structures [2,3]. Quantum logic gates are realized by
measurement and feedforward of measurement results based
on the prepared cluster states in the measurement-based one-
way QC [2,3]. However, during the QC, loss and noise may
inevitably lead to errors in the computation results. Many
quantum error correction (QEC) schemes have been experi-
mentally demonstrated attempting to solve this problem [4–7].
However, most fault-tolerant QCs with a high threshold error
rate are difficult to implement in practice [8,9].

It has been shown that cluster states whenever the underly-
ing interaction graph can be embedded in a three-dimensional
cell structure, the so-called cell complex [10], can be used
for QEC and fault-tolerant QC [11–13]. With a large cell
complex, the quantum algorithms can be realized by suitable
braidinglike manipulation of the defects [11]. It is based on the
property that some topological quantum correlations hold on
defect-enclosing closed surfaces. We can use the redundancy
of the cell complex to protect the topological correlations
against local errors [12]. By using the topological properties
of the cluster states, we can realize the topological QC and
the active topological error correction (TEC) at the same
time [11–13]. This topological QC will lead to a higher error
threshold [14,15] and high tolerating loss rates [16] in the
scalable QC.

*suxl@sxu.edu.cn

So far, there are many experimental explorations about the
topological properties in a small topological quantum code
unit. The anyonic fractional statistics have been demonstrated
in different physical systems, such as the photonic system
[17,18], the superconducting quantum circuit [19,20], the ul-
tracold atom system [21], and nuclear magnetic resonance
systems [22,23]. The anyons can serve as the fundamental
units for a fault-tolerant QC. The TEC has been experimen-
tally demonstrated using a simpler eight-photon graph state
[24], where the quantum correlation is protected against a
single local Z error. This TEC method can significantly reduce
the error rate.

Continuous variable (CV) QC, where information is en-
coded in the amplitude and phase quadratures of photonic
harmonic oscillators, can be realized deterministically and
unconditionally [3,25,26]. The CV cluster state is a basic
resource for one-way CV QC [3] and quantum networks
[27,28]. Recently, large-scale CV cluster states in the time
domain [29,30] and with a frequency comb [31,32] have
been prepared experimentally and provide sufficient quantum
resources for one-way CV QC. Several basic quantum logic
operations [33–35] and even a gate sequence [36] have been
experimentally demonstrated in CV QC. What is more, sev-
eral feasible schemes for the quantum cubic phase gate have
been proposed [37,38], which indicates that the full set of the
basic operations will soon be obtained.

In the regime of CV QEC, according to the no-go the-
orem for Gaussian QEC that Gaussian errors cannot be
corrected by using only Gaussian resources [39,40], the linear
oscillator codes [40,41] are not suitable to correct generic
Gaussian errors, while the code introduced by Gottesman,
Kitaev, and Preskill (GKP code) [42], toric GKP code [40],
and the non-Gaussian oscillator-into-oscillators code [43] can
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correct generic Gaussian errors. However, stochastic errors in
CV QEC, which frequently occur in channels with environ-
ment fluctuations for example, can easily cause displacements
and any other errors decomposable into displacements (in-
cluding non-Gaussian errors) [44]. In the stochastic error
model, the input state described by the Wigner function
Win is transformed into a state Werror with probability γ ,
and it remains unchanged with probability 1 − γ [44]. Thus
the output state is given by Wout (x, p) = (1 − γ )Win(x, p) +
γWerror (x, p). Note that even in the case that Win and Werror

are two Gassian states, the output state Wout is no longer
Gaussian. Thus, this error model describes a certain, simple
form of non-Gaussian errors and it can be corrected by
Gaussian states and Gaussian operations. Some CV QEC
schemes against displacement errors have been experimen-
tally demonstrated, for example, the nine-wave-packet code
[4], the five-wave-packet code [5] and the correcting code
with the correlated noisy channels [6]. In addition, some
basic concepts related to CV topological QC have been
proposed in recent years, such as the CV anyon statis-
tics [45], the graphical calculus for CV states [46], the
CV topological codes [47] and its application in quantum
communication [48], the CV QC with anyons [49], the
exploration of CV fault-tolerant QC [50,51], and topologi-
cal entanglement entropy [52]. These works established the
foundation for the further research of CV topological QC.
However, there has been no concrete scheme for CV TEC
up to now.

In this paper, we propose a concrete scheme for CV TEC
based on an eight-partite CV cluster state. At first, we propose
the preparation scheme for a topological eight-partite CV
cluster state, which is obtained by coupling eight squeezed
states on a special beam-splitter network, and then we present
the CV TEC scheme. We show that, within the abilities of the
current technique, the quantum correlation can be protected
against a single quadrature phase displacement error occurring
on any modes. Moreover, some of the identical phase dis-
placement errors occurring on two or three modes at the same
time can also be recognized and corrected. This shows that
the final error rate can be further reduced when we consider
the phase sign of the syndrome results. The presented results
are an essential step in CV TEC and are useful for further
application in fault-tolerant CV QC.

The paper is organized as follows. In Sec. II, we present
the preparation scheme for the topological eight-partite CV
cluster state. In Sec. III, we show the details of the CV TEC
scheme for a single-mode error including the details of error
recognition and error correction procedures. In Sec. IV, we
analyze the error rate of the presented CV TEC scheme. Fi-
nally, we present the discussion and conclusion in Sec. V.

II. THE TOPOLOGICAL CV CLUSTER STATE

Similar to the discrete variable systems, the CV analog of
the Pauli operators are the Weyl-Heisenberg group of phase-
space displacements. In detail, the relationships between them
are X → X̂ (t ) = e−it p̂ and Z → Ẑ (s) = eisx̂, where the ampli-
tude (x̂) and phase ( p̂) quadratures of an optical mode â are
defined as x̂ = (â + â†)/2 and p̂ = (â − â†)/2i. The eight-
partite CV cluster state for the CV TEC is described by a

graph structure, as shown in Fig. 1(a). The CV cluster state
is defined as [46,53]

p̂a −
∑
b∈Na

x̂b ≡ δ̂a → 0, a ∈ G. (1)

In the limit of infinite squeezing, the linear combinations of
the quadrature components (so-called nullifiers) in Eq. (1)
tend to zero. The modes a ∈ G denote the vertices of the graph
G, while the modes b ∈ Na are the nearest neighbors of mode
â. The CV cluster state can be generated with offline squeez-
ing states and an appropriate beam-splitter network [54–57].

The topological cluster state can be prepared by imple-
menting an appropriate unitary transformation U on a series
of p̂-squeezed input states, âl = e+r x̂(0)

l + ie−r p̂(0)
l , where r

is the squeezing parameter, l = 1, . . . , 8, and x̂(0) and p̂(0)

represent the quadratures of a vacuum state whose variance
is 〈�2x̂(0)〉 = 〈�2 p̂(0)〉 = 1/4, which corresponds to the shot-
noise-level (SNL). Then, the output modes can be obtained
by Ĉk = ∑

l Ukl âl . According to the method of building a
Gaussian cluster state by linear optics [54], the transforma-
tion matrix U should satisfy the condition IImU = AReU ,
where I is the identity matrix and A is the adjacency ma-
trix of the graph G. Based on the unitarity of matrix U ,
we obtain ReU (ReU )T = (I + A2)−1. We need n(n − 1)/2
auxiliary conditions to get the matrix U . To make the matrix
U simple, we choose the auxiliary conditions to make more
elements of U to be zero according to symmetry of A. Finally,
we get a simple form of U as follows:⎛
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(2)

Generally, we can decompose an arbitrary n × n matrix
U into an at most n(n + 1)/2 beam-splitter network [58].
Here, we decompose it symmetrically in order to use beam
splitters as little as possible. The decomposed matrix is U =
I2(−1) F3 F4 F5 I6(−1) F7F8 B+

68(T12) B+
78(T11) B+

16(T10) B+
17(T9)

B+
26(T8) F6 B+

27(T7) B+
36(T6) F3 B−

37(T5) B−
56(T4) F5 B−

57(T3)
B−

46(T2) F4 B+
47(T1) F4. In detail, Fk denotes the Fourier

transformation of mode k, which corresponds to a 90◦
rotation in the phase space; B±

kl (Tj ) stands for the linearly
optical transformation on the jth beam-splitter with the
transmittance of Tj ( j = 1, 2, . . . , 12), where (B±

kl )kk = √
T ,

(B±
kl )kl = √

1 − T , (B±
kl )lk = ±√

1 − T , and (B±
kl )ll = ∓√

T
are elements of the beam-splitter matrix; and Ik (−1) = eiπ

corresponds to a 180◦ rotation of mode k in the phase space.
The transmittances of the 12 beam splitters are chosen as
T1 = 1/78, T2 = 6/7, T3 = 54/55, T4 = 5/6, T5 = 35/36,
T6 = 4/5, T7 = 20/21, T8 = 3/4, T9 = 9/10, T10 = 2/3,
T11 = 2/3, and T12 = 1/2, respectively. The beam-splitter
network is shown in Fig. 1(b).
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FIG. 1. (a) The graph structure of the topological eight-partite CV cluster state. The connected lines represent the interaction between the
neighbor nodes. Each node stands for an optical mode. (b) The beam-splitter network for the preparation of the cluster state. The ellipsoids
represent the input squeezing states. The spheres represent the output cluster states. Circles including i are Fourier transforms and −1 is a 180◦

rotation in the phase space.

The eight output modes Ĉk (k = 1, 2, . . . , 8) constitute the topological eight-partite cluster state. For the input states with
finite squeezing, the nullifiers of the cluster state are

δ̂1 =p̂1 − (x̂7 + x̂8) = e−r
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,

δ̂6 = p̂6 − (x̂7 + x̂8) =
√

3e−r p̂(0)
8 ,

δ̂7 = p̂7 − (x̂1 + x̂2 + x̂3 + x̂4 + x̂5 + x̂6)

= e−r 6p̂(0)
6 − √

13 p̂(0)
4√

7
,

δ̂8 = p̂8 − (x̂1 + x̂2 + x̂3 + x̂4 + x̂5 + x̂6) =
√

7e−r p̂(0)
6 , (3)

respectively. In the case of infinite squeezing (r → ∞), these
nullifiers trend to zero, which satisfies the definition of the CV
cluster state in Eq. (1).

III. TOPOLOGICAL ERROR CORRECTION

For a given cluster state, its nullifiers can be used as the
generators of the stabilizer operators for a topological code (a
stabilizer QEC code) [47]. The topological quantum correla-
tions in the qubit system are defined as CF ≡ 〈⊗ f ∈F Xf 〉 = 1
[24]. According to the corresponding relationship between
the qubit Pauli operation with discrete variables and the

single-mode Weyl-Heisenberg operation in the CV system,
the single-mode Weyl-Heisenberg operator is described as
X̂ f (t f ) = e−it f p̂ f ( f = 1, 2, . . . , 6) in the CV system, where
t f is equal to (−1) f t [45]. By substituting the single-mode
Weyl-Heisenberg operator into the topological quantum cor-
relation in the qubit system, the definition of the topological
quantum correlation in the CV system becomes CCV

F ≡
〈⊗ f ∈F X̂f [(−1) f t]〉 = 〈⊗ f ∈F e−i(−1) f t p̂ f 〉 = 1. In the CV sys-
tem, it is convenient to use the nullifiers to analyze the
protected quantum correlations when displacement errors oc-
curr. So we have 〈∑ f ∈F (−1) f p̂ f 〉 = 0 for the topological
quantum correlations in the CV cluster state. For the prepared
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FIG. 2. The circuit for error syndrome recognition and correction
for the CV TEC. Here, we take the case of an error that occurs on
mode Ĉ5 as an example.

eight-partite CV cluster state, the topological quantum corre-
lations that can be protected are
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respectively. The corresponding variances of the topological
quantum correalations are given by

〈�2( p̂1 − p̂2)〉 = 1
2 e−2r,

〈�2( p̂2 − p̂5)〉 = 1
2 e−2r,

〈�2( p̂3 − p̂6)〉 = 1
2 e−2r,

〈�2( p̂4 − p̂3)〉 = 1
2 e−2r,

〈�2( p̂5 − p̂6)〉 = 1
2 e−2r,

(5)

respectively. Obviously, in the ideal case of infinite squeezing
(r → ∞), these excess noises will vanish, and the better the
squeezing, the smaller the noise terms are.

At first, we analyze the CV TEC for a single phase dis-
placement error in the ideal case, i.e., in the case of infinite
squeezing. In the error correction procedure, any one of the
above topological quantum correlations can be protected with
the other four “redundant” topological correlations as error
syndromes in the TEC. In the process of error recognition, we
choose any one of these five topological quantum correlations
as the one needed to be protected and the other four as the aux-
iliary quantum correlations to get the error syndrome. Here,
we take the quantum correlation p̂5 − p̂6 as an example to
analyze the TEC process. Figure 2 shows the circuit for error

TABLE I. Error syndrome with a single error mode.

Error mode p̂1 − p̂2 p̂2 − p̂5 p̂3 − p̂6 p̂4 − p̂3 Requirement

1 ε 0 0 0 N
2 −ε ε 0 0 N
3 0 0 ε −ε N
4 0 0 0 ε N
5 0 −ε 0 0 Y
6 0 0 −ε 0 Y

syndrome recognition in the case of an error that occurred
on the mode Ĉ5. We use the homodyne detection systems
to measure the quantum correlation of phase quadratures of
the optical modes Ĉ1 to Ĉ6, respectively. The circuits for
measuring the error syndrome can be realized by controlling
the phase difference between the local light and the measured
mode to get the phase quadrature ( p̂) and making an appropri-
ate combination of the measured phase quadratures according
to Eq. (4) to obtain the topological correlations of p̂1 − p̂2,
p̂2 − p̂5, p̂3 − p̂6, and p̂4 − p̂3, respectively. If an error occurs
on any mode, the quantum correlations that contain this mode
will be affected at the same time. For example, when an error
occurs on mode Ĉ5, the topological quantum correlation of
p̂2 − p̂5 will not be zero anymore. So, we can locate the posi-
tion of the error based on the error syndromes of the auxiliary
quantum correlations. Then, by feedforward of the measure-
ment results of p̂2 − p̂5 to p̂5 − p̂6, the effect of error on
p̂5 − p̂6 will be corrected. Table I shows the error syndrome
results for all kinds of different single errors on modes Ĉ1 to
Ĉ6 in the ideal case. If the error ε doesn’t affect the syndrome
correlation, the measured correlation will remain unchanged.
Otherwise, the measured syndrome correlations will contain
the nonzero error signal ε. The error syndrome results are
different from each other when the error occurs on different
modes. Comparing the measured results for the corresponding
quantum correlations p̂1 − p̂2, p̂2 − p̂5, p̂3 − p̂6, and p̂4 − p̂3

with the predictions in Table I, we can identify the position
of error.

After the position of error is confirmed, we can correct
the error to eliminate the affection of error on the protected
correlation according to the requirement. The correction re-
quirements are summarized in Table I, where the symbol N
stands for no need to correct the error and the symbol Y stands
for the cases that need to correct the error. When the error
occurs on the modes Ĉ1, Ĉ2, Ĉ3, and Ĉ4, respectively, the pro-
tected quantum correlation p̂5 − p̂6 will not be affected by the
error. So we do not need to correct the error. When an error ε

occurs on the mode Ĉ5, the correlation becomes p̂5 − p̂6 → ε.
To protect the correlation, we can make an addition of the
detected term p̂2 − p̂5, which tends to −ε, with p̂5 − p̂6. We
have p̂5 − p̂6 + ( p̂2 − p̂5) → 0 in the ideal case. So, the error
influence is eliminated in this way. The error for mode Ĉ6

can be corrected similarly by subtracting the detected term
p̂3 − p̂6 from p̂5 − p̂6. We have p̂5 − p̂6 − ( p̂3 − p̂6) → 0.

Then, we analyze the TEC in the case of real experimental
parameters. We consider an error ε with a variance of ε2 =
0.315, which is 1 dB higher than the SNL, that occurred on the
phase quadrature of an optical mode. When the error occurs
on mode Ĉ5, the dependence of the protected topological
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FIG. 3. The dependence of the quantum correlation of p̂5 − p̂6

on the squeezing of the initial squeezed states for different cases.
Curve a is the corresponding shot-noise level for the protected cor-
relation. Curve b is the correlation variance when no correction is
used. Curve c is the correlation variance when no error has occurred.
Curve d is the correlation variance when the TEC is used.

quantum correlation p̂5 − p̂6 on the squeezing of the initial
squeezed states for different cases is shown in Fig. 3. The cor-
rection effect is obvious when compared with the curves with
and without correction, i.e., curves b and d in Fig. 3. To correct
the error, the measurement results of p̂2 − p̂5 is fed forward
to p̂5 − p̂6, and we have p̂5 − p̂6 + ( p̂2 − p̂5) = p̂2 − p̂6 =
e−r ( 2 p̂(0)

1√
15

−
√

7p̂(0)
2√

5
− p̂(0)

8√
3

), whose variance is 〈�2( p̂2 − p̂6)〉 =
1
2 e−2r , which is the same as the variance of 〈�2( p̂5 − p̂6)〉 =
1
2 e−2r when there is no error. Thus, the corrected correlation
variance (curve d) is exactly the same with the quantum cor-
rection when no error has occurred (curve c). This means that,
using this TEC method, the error can not only be located but
can also be eliminated absolutely.

In the experiment, the photon loss is inevitable. However,
the loss in the whole experimental setup can be estimated
and the noise will make the variance of topological quan-
tum correlation higher than that with loss. In this case, we
can evaluate the effect of loss on the topological quantum
correlation first. Then, we compare the measured variance of
topological quantum correlation with that with loss. If they
are the same, it means that there is no error. If the measured
variance of topological quantum correlation is higher than that
with loss, it indicates the existence of error caused by noise.
Finally, we implement the corresponding TEC procedure to
remove errors.

IV. ERROR RATE OF THE CV TEC

We show that the CV TEC scheme works for the case
of single phase displacement error, which usually occurs in
the Markovian environment [4,5], in the above section. How-
ever, the situation becomes more complex when more than
one error occurs simultaneously. In this case, the presented
TEC scheme protects displacement errors coming from cer-
tain noise which has special symmetry properties, such as
identical errors for different channels. Here, we consider the
CV TEC scheme in the case of identical errors that occur
simultaneously, which usually occurs in a non-Markovian
environment [6]. In practice, the noise in different quantum

TABLE II. Error syndrome with two identical errors.

The error p̂1 − p̂2 p̂2 − p̂5 p̂3 − p̂6 p̂4 − p̂3 Require-
modes ( p̂4 − p̂3) ( p̂3 − p̂6) ( p̂2 − p̂5) ( p̂1 − p̂2) ment

1, 6 (4, 5) ε 0 −ε 0 Y
2, 6 (3, 5) −ε ε −ε 0 Y
1, 4 ε 0 0 ε N
5, 6 0 −ε −ε 0 N
1, 3 (2, 4) ε 0 ε −ε N
2, 3 −ε ε ε −ε N

1, 2 (4, 3) 0 ε 0 0 N
2, 5 (3, 6) −ε 0 0 0 Y
1, 5 (4, 6) ε −ε 0 0 Y

channels exhibits correlations in time and space [6]. Thus
it is necessary to consider quantum channels with a corre-
lated noise (non-Markovian environment), which corresponds
to the case that all optical modes are subjected to identical
p̂-displacement error ε with an equal probability p simul-
taneously. When errors occur on the modes Ĉ5 and Ĉ6 at
the same time with probability p, the quantum correlation
p̂5 − p̂6 will not be influenced because the identical errors
are canceled. This shows the robustness of the topological
correlation against two identical errors on two optical modes.
So the error rate for the protected correlation without TEC
is P1 = 1 − p2 − (1 − p)2. Actually, all the topological quan-
tum correlations, p̂1 − p̂2, p̂2 − p̂5, p̂3 − p̂6, p̂4 − p̂3, and
p̂5 − p̂6, are robust to the case of errors that occurred on all
six modes Ĉ1 to Ĉ6 at the same time.

There are several possibilities for the case of more than
one error occurred simultaneously with the same amplitude
and probability. When identical errors occurred on all six
modes, we do not need to correct the errors as discussed in
the above paragraph, which corresponds to the case of zero
error. When there are five identical errors that have occurred
on five modes, this corresponds to the case that one error
occurred on one mode, which can be corrected in the way
presented in Sec. III. The situation for five identical errors
has similar syndrome results as that in Table I. We can get
the syndrome measurements table for the five identical errors
just by changing “error mode” into “mode without error” in
Table I. The correction method is exactly the same as that
of one error. The probabilities of one error and five identical
errors are 6p5(1 − p) and 6p(1 − p)5, respectively.

When there are four identical errors that have occurred
on four modes, it corresponds to the case that there are two
identical errors that have occurred on two modes simultane-
ously. Thus we only need to analyze the cases for two and
three identical errors that have occurred on two and three
modes simultaneously, respectively. The error syndrome mea-
surements with two identical errors are shown in Table II.
Please note that the error modes with and without brackets
correspond to the syndrome correlations with and without
brackets, respectively. The cases of the first six lines can be
distinguished from each other and their syndrome measure-
ments are also different from all the cases in Table I. So the
error in these cases can be recognized and corrected. The last
three lines have syndrome measurements identical to some
lines in Table I. Unfortunately, the correction requirements are
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TABLE III. Error syndrome with three identical errors.

The error p̂1 − p̂2 p̂2 − p̂5 p̂3 − p̂6 p̂4 − p̂3 Require-
modes ( p̂4 − p̂3) ( p̂3 − p̂6) ( p̂2 − p̂5) ( p̂1 − p̂2) ment

1, 3, 4 (1, 2, 4) ε 0 ε 0 N
2, 3, 4 (1, 2, 3) −ε ε ε 0 N

2, 4, 5 −ε 0 0 ε Y
3, 4, 5 0 −ε ε 0 Y

1, 4, 6 (1, 4, 5) ε 0 −ε ε Y
1, 3, 5 ε −ε ε −ε Y

5, 1, 2 0 0 0 0 Y

different absolutely. So, we cannot distinguish them (lines 7,
8, and 9 in Table II and one error on modes Ĉ5, Ĉ1, and Ĉ2 in
Table I, respectively) and make a right correction. Generally,
the error rate p is always small. When the case that errors
cannot be distinguished happens, the probability of two iden-
tical errors is smaller than that of one error. We can select
to correct the case of one error in Table I to reduce the final
error rate. A similar table for the situation of four identical
error modes can be obtained correspondingly. The correction
probabilities of two and four identical errors are 9p4(1 − p)2

and 9p2(1 − p)4, respectively.
The TEC with discrete variables presented in Ref. [24]

cannot deal with the case of three identical errors. However,
in the CV system, some of these cases for three identical
errors can be recognized and corrected. The error syndrome
measurements with three identical error modes are shown in
Table III. To distinguish them with the situations in Table II,
we can compare these nonzero syndrome measurements. For
example, the cases of errors that occurred on modes Ĉ1, Ĉ3,
and Ĉ4 simultaneously in the first line of Table III and two
errors that occurred on modes Ĉ1 and Ĉ6 simultaneously in
Table II have the same nonzero syndromes, but the syndrome
values of p̂1 − p̂2 and p̂3 − p̂6 are in-phase for the former
and out-of-phase for the latter. So, we can identify the case
of three identical errors on modes Ĉ1, Ĉ3, and Ĉ4 and correct it
correspondingly. As shown in Table III, for the cases listed in
the first six lines, errors can be recognized and corrected. This
identification method can be used for the CV TEC but cannot
be used for the qubit. For the case of the last line in Table III,
the syndrome measurements are the same as those of the
case where no error occurs. So it cannot be recognized. The
situations for the other ten possible cases for three identical
errors which are not listed in Table III are similar to the cases
listed in Table III. The total correction probability for the case
of three errors is 2 × 9p3(1 − p)3.

Figure 4 shows the dependence of the error rate
for the protected quantum correlation on the single-
mode error rate p. The error rate of TEC for a qubit
is given by P2 = 1 − p6 − (1 − p)6 − 6p5(1 − p) − 6p(1 −
p)5 − 9p4(1 − p)2 − 9p2(1 − p)4 [24], which is shown by
curve b in Fig. 4. It is obvious that the error rate of TEC
for a qubit (curve b) is reduced when compared with the
error rate P1 without TEC (curve a). The error rate of our CV
TEC scheme is P3 = P2 − 2 × 9p3(1 − p)3, which is shown in
Fig. 4. It is obvious that the error rate of our CV TEC scheme
is further reduced than that of TEC for a qubit.
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FIG. 4. The dependence of the error rates for the protected quan-
tum correlation on the single-mode error rate p. Curve a is the error
rate for the protected correlation without TEC. Curve b is the error
rate of TEC for the qubit. Curve c is the error rate of the CV TEC.

V. DISCUSSION AND CONCLUSION

In the proposed CV TEC, the local measurements of the
optical modes can be used in QC and TEC at same time. It
is different from the case in the CV QEC with a nine-wave-
packet code [4] and a five-wave-packet code [5], where the
ancillary modes are measured to identify the position of error
in the error syndrome process and to remove the displacement
error on an input mode. The finite squeezing of the ancillary
modes will introduce extra noise in these CV QEC. However,
in the proposed CV TEC, the topological quantum correla-
tions are protected against phase displacement error instead
of an optical mode. All optical modes involved in topological
quantum correlations are measured to identify the error and
correct the error. More interestingly, the error can be removed
without extra noise introduced in the case of finite squeezing.

Although the beam-splitter network for preparation of
the eight-partite topological cluster state seems a little bit
complex, it can be easily obtained by using photonic circuits.
For example, a more complex photonic circuit with a high
quality of stability, matrix randomness, and ultralow transmis-
sion loss has been used in a boson sampling experiment [59].
It is convenient to use this technique in our scheme.

The cluster state used in our scheme is similar to the
N-mode multiple-rail cluster state introduced by P. van Loock
et al. in Ref. [54], which is useful for error filtration in a
Gaussian cluster computation. The difference between the
presented TEC scheme and that of Ref. [54] is as follows.
First, as shown in Ref. [54], the multiple-rail cluster state has
the possibility of a noise reduction for the excess noise in a
phase quadrature, which is the noise added to the input state
in the quantum teleportation protocol and only depends on the
nullifiers of the imperfect ancillary cluster state. However, in
our scheme, the topological quantum correlation in an eight-
partite CV cluster state is investigated, as shown in Eq. (5),
and the TEC scheme for protecting the topological quantum
correlation against a single quadrature phase displacement
error occurring on any modes is presented. Second, an input
state is involved in the quantum teleportation in Ref. [54].
While in our scheme, no input state is involved, only the
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tolerance for noise on the topological cluster state itself is
investigated.

Recently, it has been shown that Raussendorf-Harrington-
Goyal (RHG) lattice code is a very good candidate for
fault-tolerant CV QC and it shows robustness against analog
errors during topologically protected measurement-based QC
[60,61]. However, in this paper, we propose a CV TEC scheme
to protect topological quantum correlation, which is the CV
analog of the TEC with an eight-photon graph state [24] and
different from the RHG code. How to associate the presented
TEC scheme with the measurement-based CV QC remains an
open question. It is worthwhile to investigate the possibility
of measurement-based QC with the presented TEC scheme in
the future.

In summary, the preparation scheme for a topological
eight-partite CV cluster state is proposed. Based on this
special cluster state, we show that topological quantum cor-
relation can be protected against a single phase quadrature

displacement error occurring on any modes. Some cases of
two identical errors and three identical errors occurring simul-
taneously can also be recognized and corrected. The details
of recognition, correction, and the error rate of the CV TEC
scheme are presented. We also show that the error rate of the
presented CV TEC scheme is lower than that of the TEC for a
qubit. The presented scheme has potential application in CV
TEC and it is feasible with current technology.
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