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We produce two strings of quantum random numbers
simultaneously from the intensity fluctuations of the twin
beams generated by a nondegenerate optical parametric
oscillator. Two strings of quantum random numbers with
bit rates up to 60 Mb/s are extracted simultaneously with a
suitable post-processing algorithm. By post-selecting the
identical data from two raw sequences and using a suitable
hash function, we also extract two strings of identical quan-
tum random numbers. The obtained random numbers pass
all NIST randomness tests. The presented scheme shows the
feasibility of generating quantum random numbers from
the intensity of a macroscopic optical field. © 2017
Optical Society of America

OCIS codes: (190.4970) Parametric oscillators and amplifiers;

(270.2500) Fluctuations, relaxations, and noise; (270.6570) Squeezed

states.
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Random numbers have significant applications in science and
engineering [1,2], such as cryptography, statistical analysis,
numerical simulation, etc. There are two main categories of
random numbers, which are pseudorandom numbers and true
random numbers. Pseudorandom numbers are generated with
a given software algorithm and finite length seed, which is easy
to achieve a high bit rate, but powerless in some stringent
occasions. True random numbers, which are generated from
the measurement of unpredictable physical processes, are more
secure and reliable. There are various methods to produce true
random numbers, such as chaotic systems [3–5], thermal noise
in electronic circuits [6], and optical noise of superluminescent
LEDs [7].

True randomness is an essential part of quantum mechanics.
A quantum random number generator (QRNG) exploits the
inherent randomness of a quantum event to produce true ran-
dom numbers. Several optical QRNGs have been proposed and
demonstrated, such as QRNGs based on photon counting
[8–12], attenuated pulse [13–15], phase noise of a laser [16–21],
quantum vacuum fluctuations [22–26], Raman scattering

[27,28], and optical parametric oscillators (OPO) [29,30].
Up to now, the QRNGs with bit rates up to Gbit/s have been
achieved [19–22]. Recently, a QRNG based on the photonic
integrated circuit has been demonstrated [31], which shows the
feasibility of integrated QRNGs.

In the previous QRNG based on an OPO, the phase of the
macroscopic field is used to produce random numbers, where
two independent cavities of the same output power are used
and two output fields interfered at a beam splitter [29]. In
another QRNG based on an OPO, the frequency-degenerate
bi-phase state of a dual-pumped degenerate OPO in a silicon
nitride microresonator is used to produce random numbers
[30]. The twin beams generated in the parametric down-
conversion process are well known to have intensity correlation
[32–37] and quantum entanglement [38–40]. In the sponta-
neous parametric down conversion, a nonlinear medium con-
verts a photon at frequency ω0 into two photons at frequency
ωs andωi with ω0 � ωs � ωi. In a nondegenerate optical para-
metric oscillator (NOPO), a type-II crystal is inserted into
an optical cavity. When a NOPO is operated above threshold,
the vacuum fluctuations are amplified and the continuous en-
tangled twin beams are obtained. The vacuum fluctuations are
a fundamental quantum effect, which cannot be influenced by
a potential adversary. The previous QRNG based on an OPO
only outputs one string of random numbers. However, based
on the twin beams generated by NOPO, two strings of quan-
tum random numbers can be produced simultaneously.

In this Letter, we demonstrate an efficient method to pro-
duce quantum random numbers from twin beams, which are
generated by a NOPO. The true randomness is guaranteed by
the inherited quantum fluctuations of the twin beams. The
intensity fluctuations of the twin beams are measured directly
by two photodetectors in the time domain, respectively. With
post-processing, we extract two strings of quantum random
numbers simultaneously. Based on the quantum correlation
of the twin beams, we also extract two strings of identical quan-
tum random numbers by post-selecting the identical bits from
two raw sequences. Using Toeplitz hashing, the self-correlation
of each individual random string is reduced. The obtained ran-
dom numbers pass all NIST randomness tests.
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Figure 1 shows the schematic of the QRNG based on twin
beams. A continuous-wave laser beam at wavelength of 540 nm
is used as the pump beam of a NOPO. The NOPO consists of
an α-cut type-II KTiPO4 (KTP) crystal and a concave mirror,
which is a semimonolithic configuration. The front face of the
KTP is coated as the input coupler and the concave mirror with
50 mm curvature serves as the output coupler of the twin
beams. The front face of the KTP crystal is coated with a trans-
mission of 7% at 540 nm and high reflectivity at 1080 nm. The
output coupler is coated with a transmission of 12.5% at
1080 nm and high reflectivity at 540 nm. The cavity length is
54 mm. In our experiment, the threshold of the NOPO is
about 50 mW.

The cavity length of the NOPO is locked on the pump res-
onance using a feedback servo system. With a pump power of
80 mW, the NOPO emits two continuous orthogonally polar-
ized twin beams with near degenerate wavelength at 1080 nm.
The twin beams are separated by a polarization beam splitter
and then focused on a pair of detectors with carefully balanced
amplifications. A half-wave plate is inserted before the polari-
zation beam splitter. When the polarization of the twin beams
is rotated by an angle of 45°, the measured noise in the intensity
difference is the shot noise limit (SNL). When the polarization
of the twin beams is rotated by an angle of 0°, the measured
noise in the intensity difference is the intensity difference spec-
trum of the twin beams [32].

Theoretically, the measured intensity difference spectrum of
the twin beams generated by the NOPO is expressed as [32,39]

S�Ω� � SSNL

�
1 −

ηξ

1�Ω2τ2c

�
; (1)

where SSNL is the shot noise limit (usually normalized to 1);
Ω is the measured noise frequency; τc is the cavity storage time;
η is the total efficiency of the detection system (including quan-
tum efficiency of photodiode and transmission efficiency of
twin beams); ξ � T ∕�T � δ� is the output coupling efficiency
of NOPO, in which T is the transmission coefficient of the
output coupling mirror; and δ is the loss of the cavity. With
parameters Ω � 4 MHz, τc � 0.0196 μs, η � 89.3%, and
ξ � 95.3%, the theoretical noise reduction for the intensity
difference of the twin beams is 8.1 dB. Figure 2(a) shows the
measured intensity difference noise of the twin beams in the
frequency domain. The intensity difference noise between
the twin beams is 6.3 dB below the SNL around 4 MHz, where
the electronic noise is about 27.6 dB lower than the SNL. The
difference between the experimentally measured squeezing and

the theoretical squeezing mainly comes from the imperfection
of the experimental system, for example, the thermal effect of
the NOPO and fluctuation of the locking system.

To exploit the correlated intensity fluctuations of the twin
beams to generate quantum random numbers, we use the de-
tected intensity noise at 4 MHz with a bandwidth of 600 kHz.
The ac output of each detector is mixed with a 4 MHz sinusoid
signal and then filtered by a low-pass filter whose cutoff
frequency is 300 kHz [22–24]. The intensity noises of twin
beams are sampled and digitized with a 8-bit ADC (National
Instrument 5153) using the sampling frequency of 10 MHz.
The bit rate of the produced quantum random numbers de-
pends on the bandwidth of the NOPO, photodetector, and
low-pass filter used in the measurement device. If a broadband
NOPO and photodetector are used, and the photocurrents
are filtered with a broadband low-pass filter, the bit rate of the
produced random numbers can be increased.

Figure 2(b) shows the measured intensity noises of twin
beams in the time domain. The intensity fluctuations of twin
beams are correlated for about 75%. The statistical histograms

Fig. 1. Schematic of the QRNG based on twin beams. HWP: half-
wave plate, PBS: polarization beam-splitter, MIX: mixer, LPF: low-
pass filter.

Fig. 2. (a) Measured intensity difference noise in the frequency do-
main. The traces from top to bottom are the SNL, intensity difference
noise, and electronic noise, respectively. (b) Measured intensity noises
in the time domain. Red and black lines correspond to ac outputs
of the two detectors with a sample size of 2000 points, respectively.
(c)–(d) Statistical histograms corresponding to each one of the mea-
sured intensity noises of the twin beams with 20,000 data digitized by
the 8-bit ADC, respectively. The mathematically fitting curves are
plotted with the Gaussian outlines.
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of the digitized intensity noises of twin beams are shown in
Figs. 2(c) and 2(d), respectively. It is obvious that the distribu-
tion of the measured intensity noise of each one of the twin
beams is Gaussian.

In order to extract quantum random numbers, we apply the
min-entropy to quantify the quantum randomness of the ob-
tained raw data. In some sense, the min-entropy is a measure of
the maximum amount of information that can be obtained
under a single attack [41]. The min-entropy is exploited to
quantify the extraction ratio between the raw random bits and
the final random bits given a probability distribution of f0; 1gN
[42], which is evaluated as

Hmin�X � � −log2� max
X∈f0;1gN

Pr�X � x��: (2)

For a given sequence X , the min-entropy is determined by the
sample point with maximal probability Pmax � maxX∈f0;1gN
Pr�X � x�.

It is reasonable to assume the quantum noise of the intensity
fluctuation is perfectly random over all frequencies and inde-
pendent of the classical noise. We describe the variance of the
ac output voltage from the detector as σ2total � σ2quant � σ2c ,
where σ2quant and σ2c are variances of the quantum signal and
the classical signal, respectively [22,26]. We obtain σ2total as
4768.44 mV2 for the measured intensity noise. In our system,
the classical noise mainly comes from the electronic noise of the
detector, which is about 3.18 mV2. Therefore, the quantum
variance is σ2quant � 4765.26 mV2. Assuming the quantum
signal follows Gaussian distribution, the corresponding maxi-
mum probability of the raw data is Pmax � 0.00993296.
Consequently, the quantum min-entropy in our experiment
is estimated to be 6.65 bits per sample [20].

The raw random data cannot pass any randomness tests,
mainly because the classical noise is mixed into the raw data
and the sample points follow the Gaussian distribution rather
than the uniform distribution [20]. In order to distill the ran-
domness of the raw random data, we utilize the Toeplitz hash-
ing to eliminate the classical noise and improve the statistical
quality of the random numbers [20,42]. Given m × n binary
Toeplitz matrix, m random bits are extracted by multiplying
the Toeplitz matrix with n raw bits. We choose m � 1024
and n � 1360 > 1024 × 8∕6.65 � 1232 to obtain nearly per-
fect random bits. We use n� m − 1 � 2383 pre-stored true
random bits as seed to construct the Toeplitz matrix. There-
fore, two strings of quantum random numbers are extracted
simultaneously at rates up to 60 Mb/s.

Based on the correlated intensity fluctuations of the twin
beams, we also distill two strings of identical quantum random
numbers by changing the post-processing algorithm. We post-
select identical bits between the raw data sequences and discard
the different bits. After post-selection, 70% of the raw random
bits are selected as the input string of the Toeplitz hashing. We
set m � 1024 and n � 1920 to construct the Toeplitz matrix.
Consequently, two strings of identical quantum random num-
bers are extracted simultaneously at rates up to 29.8 Mb/s. The
bit rate of identical quantum random numbers depends on the
quantum correlation between intensity fluctuations of the twin
beams. The higher the quantum correlation of the twin beams,
the higher the bit rate; this is because there are more identical
bits to be selected between two raw data sequences (less differ-
ent bits are discarded).

The self-correlation of the obtained quantum random num-
bers is verified by self-correlation coefficient R�k� of a sequence
X , which is defined as [20,26]

R�k� � E ��X i − μ��X i�k − μ��
E ��X i − μ�2�

; (3)

where E �·� is the expected value operator, k is the sample delay,
and μ is the mean of X . Figure 3 shows that the self-correlation
of the random numbers is reduced by post-processing. The
average values (k ≠ 0) of Figs. 3(a)–3(d) are −3.64 × 10−5,
−1.09 × 10−5, 3.59 × 10−6, and 3.59 × 10−6, respectively.

The NIST test [43] is widely considered as one of the most
stringent randomness test suites. It has 15 statistical tests to
evaluate the performance of a given random number generator.
Each test output a p-value. A significance level α is chosen for
the test. For cryptographic application, α is mostly set as 0.01.
A tested sequence is considered to pass the test if the p-value
≥α; otherwise, the sequence appears to be nonrandom. We rec-
ord two random sequences of 1 Gbits. Each sequence is chopped
into 1000 smaller sequences for the NIST test. Each test cal-
culates 1000 p-values, and we use the chi-square test to calculate
the final P-value, which indicates the uniformity of p-values.
Figure 4 shows the results of NIST statistical test suites for two
strings of quantum random numbers and two strings of identical
quantum random numbers. All of them pass these tests.

In summary, we demonstrate an efficient method to pro-
duce quantum random numbers from intensity fluctuations
of twin beams. The true randomness is guaranteed by the in-
herited quantum fluctuations of the twin beams. We observed
75% quantum correlation between the intensity fluctuations of
the twin beams in the time domain. The intensity fluctuations
of the twin beams are measured directly by two photodetectors,
and two strings of quantum random numbers with bit rates up
to 60 Mb/s are extracted simultaneously with a suitable post-
processing algorithm. By post-selecting identical bits, we also
extract two strings of identical quantum random numbers with
bit rates of 29.8 Mb/s using the same device. The obtained
random numbers pass all NIST randomness tests, which con-
firms the randomness of the generated random numbers.

Fig. 3. Results of self-correlation analysis. Data size is 80 Mbits.
(a)–(b) Results corresponding to each string of quantum random numbers
with a bit rate of 60 Mb/s, respectively. (c)–(d) Results corresponding to
each of two strings of identical quantum random numbers, respectively.
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The advantage of the presented scheme is that two strings of
random numbers can be extracted simultaneously, especially
two strings of identical quantum random numbers which are
extracted by post-selection. The bit rate of the quantum random
numbers produced in this scheme is limited by the bandwidth
of the preparation and measurement systems of the twin beams.
To obtain a higher bit rate of two strings of identical quantum
random numbers, twin beams with higher quantum correlation
are required, which means that lower intracavity losses of
NOPO and a detection system with better performance are re-
quired. It has been shown that twin beams can be generated by
an on-chip monolithically integrated optical parametric oscilla-
tor [44], which shows the possibility of an integrated QRNG
based on twin beams. Our work also shows the possibility to use
entangled lights to generate quantum random numbers.
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