
Research Article Vol. 38, No. 11 / November 2021 / Journal of the Optical Society of America B 3269

Experimental study of tune-out wavelengths for
spin-dependent optical lattice in 87Rb
Bose–Einstein condensation
Kai Wen,1,2 Zengming Meng,1,2,* Liangwei Wang,1,2 Liangchao Chen,1,2

Lianghui Huang,1,2 Pengjun Wang,1,2 AND Jing Zhang1,2,3

1State Key Laboratory of QuantumOptics andQuantumOptics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 030006,
China
2Collaborative Innovation Center of ExtremeOptics, Shanxi University, Taiyuan, Shanxi 030006, China
3e-mail: jzhang74@yahoo.com
*Corresponding author: zmmeng01@sxu.edu.cn

Received 27 May 2021; revised 1 August 2021; accepted 24 August 2021; posted 27 August 2021 (Doc. ID 432448);
published 6 October 2021

We study the periodic potential of a one-dimensional optical lattice originating from a scalar shift and vector shift
by manipulating the lattice polarizations. The ac Stark shift of an optical lattice is measured by Kapitza–Dirac
scattering of 87Rb Bose–Einstein condensate, and the characteristics of a spin-dependent optical lattice are pre-
sented by scanning the lattice wavelength between the D1 and D2 lines. At the same time, tune-out wavelengths
that the ac Stark shift cancels can be probed by the optical lattice. We give the tune-out wavelengths in more general
cases of balancing the contributions of both scalar and vector shifts. Our results provide a clear interpretation for a
spin-dependent optical lattice and tune-out wavelengths, and help to design it by choosing the appropriate lattice
wavelength. ©2021Optical Society of America
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1. INTRODUCTION

The optical lattice for ultracold atoms has become an increas-
ingly important technology in many-body physics [1], quantum
simulation, quantum computation, quantum information
storage, and high precision measurements [2–6]. When neutral
atoms are trapped in periodic potentials produced by standing
waves of light fields, the trapping potentials of various atomic
internal states are manipulated by lattice polarizations, which
is called the spin-dependent optical lattice [7,8], which brings
more complicated geometry to ultracold atoms such as a spin-
dependent hexagonal lattice [9] and spin-dependent optical
superlattice [10], and has been used to study many interesting
phenomena such as controlled coherent transport [7,11], spinor
Bose-Einstein condensate (BEC) [12], spin–orbit coupling and
artificial gauge fields [13,14], spontaneous emission of matter
waves [15], and twisted-bilayer optical potentials [16].

Tune-out wavelengths that ac the Stark shift cancels were
initially introduced in species-specific optical manipulation
[17] and can be useful for optical Feshbach resonances [18] and
atomic interferometers [19]. Since tune-out wavelengths are
independent of light intensity [20–22], they can be precisely
measured by various methods [23–30]. In general, a tune-out
wavelength is utilized accurately only for the scalar shift by

canceling and neglecting the vector and tensor contributions
as much as possible [23–25,28]. In this paper, we investigate
tune-out wavelengths in more general cases of considering the
contributions from both scalar and vector shifts. The ac Stark
shift of an optical lattice is measured by Kapitza–Dirac scatter-
ing, which diffracts BEC into a number of high momentum
states, and the characteristics of spin-dependent optical lattices
are investigated by scanning the lattice wavelength between the
D1 and D2 lines. Kapitza–Dirac scattering is a standard tool
and shows many applications in calibrating the lattice depth
[31–35], detecting the lattice structure [36,37], and performing
high-resolution spectroscopy [38] and metrology [39,40]. The
periodic potential originated from scalar and vector shifts is
manipulated by controlling lattice polarizations, which is used
to generate a spin-dependent optical lattice. We can design the
special spin-dependent optical lattice with the help of tune-out
wavelengths.

2. THEORY

A. ac Stark Shift

As we know, the ac Stark effect is the result of an interaction
between atoms and a classical light field. Here, the total ac Stark
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shift for alkali–metal atoms in the ground state interacting with
a far-off-resonance light field can be expressed in terms of its
scalar, vector, and tensor components [41–45]:

1U =1U(F ,mF ;ω)

=−A
[
α(0)(ω)+ α(1)(ω)

(
ξ ê k · ê B

) mF

F

+ α(2)(ω)
3 cos2 θ − 1

2

3m2
F − F (F + 1)

F (2F − 1)

]
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where α(0,1,2)(ω) are the scalar, vector, and tensor polarizabil-
ities respectively. F is the total atomic angular momentum,
mF is the magnetic quantum number, A, is laser field intensity
with A= 2ε0c |E |2, ω and E are the frequency and amplitude
of the optical field, respectively, ê k · ê B = |e k‖e B | cos(φ), ê k

and ê B are unit vectors along the light wave vector and mag-
netic field quantization axis, respectively, φ is the intersection
angle between ê k and ê B , θ is the intersection angle between
the linearly polarized component of the light field and ê B .
This formula comes from the first non-vanishing term (second
order) of a perturbation development. Note that the range of
values of light ellipticity is ξ ∈ [−1, 1], and ξ =±1 denotes
left and right circular polarizations. Left and right elliptical
polarizations are defined in terms of the light wave vector. The
scalar shift can be interpreted as a spin-independent light shift.
The vector shift acts like an effective magnetic field to gener-
ate linear Zeeman splitting (light shift proportional to mF ),
which depends on the ellipticity of light and the intersection
angle between the laser beam wave vector and magnetic field
quantization axis ê B . The tensor shift is proportional to m2

F .
For alkali–metal atoms in the ground state, the tensor shift can
vanish once light detuning δ exceeds the hyperfine splitting
1HF. The ground state is J = 1/2, which induces the tensor
shift coefficient α(2) = 0 [44,46,47]. In this work, we consider a
far detuning of δ�1HF, so that the ac Stark shift includes only
two terms of scalarα(0) and vector shiftsα(1).

For a linearly polarized light beam (ξ = 0), the vector shift
vanishes, but the scalar shift remains. For circular polarization
light, left and right circular polarizations can change the sign
of the vector shift to be positive or negative. Therefore, the
different ac Stark shifts of two spin states can be canceled by
controlling the ellipticity, or tuning the angle between ê k and ê B

(even changing the strength of the external bias magnetic field
when considering high order contribution [42,48,49]), which
is an important technique for the atomic clock and qubit for
quantum computation.

B. Scalar and Vector Shifts

For the first excited state of alkali–metal atoms, the fine structure
induces the spectral lines of the D1 (52S1/2→ 52 P1/2 transi-
tion) and D2 (52S1/2→ 52 P3/2 transition) lines. Because the
D1 and D2 lines of the first excited state are larger detuned than
the excited-state hyperfine splitting, the coefficients of the scalar
and vector shifts in Eq. (1) are expressed as [50–53]

Fig. 1. Coefficients of scalar and vector shifts as a function of
wavelength for 87Rb atom in |F = 2,mF = 2〉 state. α(0) has a crossed
zero point at λ= 790.020 nm. When the wavelength of light is far
red-detuned from D1,α(0)� α(1) ≈ 0.
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where 0D2 is the decay rate of the excited state for the D2 line,
δD1 =ω−ωD1, and δD2 =ω−ωD2. g F is the gyromagnetic
ratio

g F = g J

[
F (F + 1)+ J (J + 1)− I (I + 1)

2F (F + 1)

]
,

g J = 1+
J (J + 1)+ S(S + 1)− L(L + 1)

2J (J + 1)
, (3)

where S is the spin angular momentum, L is the orbital angu-
lar momentum, J is the total electronic angular momentum,
and I is the total nuclear angular momentum. For the ground
states 52S1/2 of 87Rb atoms, g J = 2, g F = 1/2 for F = 2,
and g F =−1/2 for F = 1. Here, we study 87Rb atoms and
present the coefficients of scalar and vector shifts as a func-
tion of wavelength in Fig. 1. The resonant wavelengths of the
D1 and D2 lines of 87Rb atoms are λD1 = 794.98 nm and
λD2 = 780.24 nm, respectively. Obviously, α(0) has a crossed
zero point at λ= 790.005 nm, and α(1) is always negative
between the D1 and D2 lines. When the wavelength of light
is far red-detuned or blue-detuned by an amount larger than
the fine structure splitting of the excited states, the vector shift
approaches zero. Here, we study the tune-out wavelengths in
more general cases of considering the contributions from both
scalar and vector shifts. The tune-out wavelengths of the ground
hyperfine states are given in Table 1 withφ = 0, ξ = 0,±1.

To measure the tune-out wavelengths, we employ a one-
dimensional (1D) optical lattice along the external bias
magnetic field (φ = 0) with different polarization configu-
rations. Here, the two laser beams have the same intensity with
A= 2ε0c |E1|

2
= 2ε0c |E2|

2. For case 1, two laser beams with
the same linear polarization counterpropagate along the z axis.
Because of the parallel polarized beams, it can produce spatial
intensity modulation to form a 1D optical lattice:
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Table 1. Tune-Out Wavelengths of Ground States with φ = 0 in 52S1/2 − 52P1/2, 3/2 States of 87Rb

λzero (nm)

Polarization |F ,mF 〉 Calc. Using Eq. (3) Calc. in Ref. [17] Other Calc. Expt.

ξ = 0 |2, 2〉 790.005 790.04 790.01850(9) [26]
|2, 1〉 790.005 790.04 790.032439(35) [25]
|2, 0〉 790.005 790.03 790.034(7) [20] 790.032388(32) [25]
|2,−1〉 790.005 790.04 790.032602(193) [54]
|2,−2〉 790.005 790.04
|1, 1〉 790.005 790.04 789.85(1) [55]
|1, 0〉 790.005 790.04 790.018187(193) [54] 790.018(2) [56], 790.020(25)

a

|1,−1〉 790.005 790.04 790.01858(23) [26]
ξ = 1 |2, 2〉 None None None

a

|2, 1〉 792.484 792.52
|2, 0〉 790.005 790.06
|2,−1〉 787.541 787.59
|2,−2〉 785.093 785.14
|1, 1〉 787.541 787.59 787.590(31)

a

|1, 0〉 790.005 790.06 790.020(25)
a

|1,−1〉 792.484 792.53
ξ =−1 |2, 2〉 785.093 785.14 785.11516 [57] 785.146(12)

a

|2, 1〉 787.541 787.59
|2, 0〉 790.005 790.06
|2,−1〉 792.484 792.52
|2,−2〉 None None None [57]
|1, 1〉 792.484 792.53 ≈792.4 [26], 792.462(22)

a

|1, 0〉 790.005 790.06 790.020(25)
a

|1,−1〉 787.541 787.59 ≈787.620 [26]
aOur experimental measurements.

1UL1(F ,mF ;ω)=−4Aα(0) cos2 kz. (4)

The optical lattice potential for this case originates only
from the scalar shift. Therefore it can be used for measuring
the tune-out wavelength for the scalar shift. For case 2, two
counterpropagating laser beams have linear orthogonal polari-
zation (lin⊥lin polarization configuration). The orthogonally
polarized beams cannot produce spatial intensity modulation.
In contrast, they can produce the ellipticity modulation of
polarization in space. This optical lattice potential is called
Sisyphus optical potential, which has been used for Sisyphus
cooling [58]. The periodic potential is given by

1UL2(F ,mF ;ω)=−2A
[
α(0) + α(1)ξ

mF

F
sin(2kz)

]
. (5)

This periodic potential comes only from the vector shift
and the scalar term, which gives a uniformed energy shift. For
case 3, two laser beams with the same circular polarization coun-
terpropagate along the z axis, which can also produce spatial
intensity modulation to form a 1D optical lattice:

1UL3(F ,mF ;ω)=−4A cos2 kz
[
α(0) + α(1)ξ

mF

F

]
. (6)

The optical lattice potential for this case includes scalar and
vector shifts simultaneously. Therefore, we can study tune-out
wavelengths in the presence of contributions of both scalar
and vector shifts in this case. For case 4, like case 2, the scalar
shift is a constant related only to the constant intensity of two
orthogonally polarized counterpropagating laser beams. But

the difference in the former is that the vector shift becomes zero
since it produces only rotation of linear polarization in space.
Hence it cannot produce any spatial modulation to form a 1D
lattice:

1UL4(F ,mF ;ω)=−2Aα(0). (7)

Here, for a 1D optical lattice along the external bias magnetic
field (| cos φ| = 1), it is convenient to define left and right ellip-
tical polarizations in terms of the magnetic field quantization
axis.

3. EXPERIMENT

A schematic of experimental setup is shown in Fig. 2(a).
Ultracold 87Rb atoms in the |F = 2,mF = 2〉 hyperfine
state are loaded into a crossed optical dipole trap [59]. Forced
evaporation in the optical trap is used to create BEC with
up to 5× 105 atoms. To obtain the atoms in different sin-
gle spin states, BEC is transferred from |F = 2,mF = 2〉 to
|F = 1,mF = 1〉 via a rapid adiabatic passage induced by a
microwave frequency field with duration of 10 ms at 3.9 G
of the bias magnetic field, where the frequency of the cen-
ter is 6.842935 GHz, and the width is 0.25 MHz. Then the
atoms in |F = 1,mF = 1〉 can further be transferred into the
|F = 1,mF = 0〉 state using rapid adiabatic passage induced by
a radio frequency (rf ) field at 28 G of the bias magnetic field. The
lattice beam is derived from a single frequency Ti:sapphire laser
with a broad tuning range of the frequency. An acousto-optical
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Fig. 2. Schematic of experimental setup and three cases for different polarization configurations. (a) A 1D optical lattice is formed by two
counter-propagating laser fields. The external magnetic field is aligned along the z axis. (b) Case 1: counterpropagating lasers have linear parallel
polarization. Case 2: counterpropagating lasers have linear orthogonal polarization. Case 3 and Case 4: counterpropagating lasers have circular
parallel or orthogonal polarization.
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Fig. 3. 1D optical lattice with linear parallel polarization. (a) Measured data (squares, triangles, and circles) and theoretical fit (three types of lines
overlapped together) of the lattice potential depth as a function of laser wavelength for the three hyperfine states: |F = 2,mF = 2〉, |F = 1,mF = 1〉,
and |F = 1,mF = 0〉. It shows that this periodic potential is a spin-independent lattice. Each point is the average of at least three measurements.
(b) Atomic density distribution in the TOF absorption images at different wavelengths of the lattice laser.

modulator is used to control the intensity of the lattice beam.
The lattice beam passes through the polarizing beam splitter
to generate perfect polarization. The polarization extinction
ratio of the polarizing beam splitter can reach 500:1. Therefore,
the linear polarization purity of the lattice beam is about 0.2%.
Furthermore, the circular polarization purity of the lattice
beam can reach about 0.5%. A lattice beam propagates with the
z axis and converges on BEC with a waist of 100 µm by a lens
( f = 300 mm). Then the beam is reflected by a concave mirror
(curvature radius r = 300 mm) and refocused on BEC with
almost the same waist size. The advantage of this configuration
is that it can reduce phase jitter significantly. Here, we employ
Kapitza–Dirac (or Raman–Nath) scattering to measure the ac
Stark shift. Kapitza–Dirac scattering is used to diffract BEC
into a number of momentum states by a standing light wave, in
which the interaction is sufficiently short and strong [60]. In this
process, BEC is kept in a crossed optical dipole trap, and the lat-
tice potential imprints a phase modulation on a matter wave in
position space. Then the phase modulation on the matter wave
is measured in momentum space via a time-of-flight (TOF)
absorption image. It is obvious that higher momentum orders
±2N~k appear in the atomic density distribution of the TOF
absorption image, which depends on the potential depth and

interaction time. Here, we apply a 1D optical lattice short pulse
for 4 µs with a power of 80 mW on BEC, then immediately
turn off the optical trap, letting the atoms ballistically expand
in 12 ms and take the absorption images. We obtain the lattice
depth from absorption images by applying the lattice at a fixed
laser power for different intervals of time and by observing the
interval at which the n = 0 order atoms in the lattice vanish
[31–35]. We define the recoil momentum ~k = 2π~/λ and
recoil energy Er = (~k)2/2m = h × 3.67 kHz as the natural
momentum and energy units, where m is the mass of the 87Rb
atom, andλ is the wavelength of the lattice laser.

For case 1, a 1D optical lattice with linear parallel polarization
produces spatial intensity modulation, which comes only from
the scalar shift. Thus it is a spin-independent optical lattice,
and the potential depth as a function of the lattice wavelength
are plotted in Fig. 3(a). Here, the positive and negative periodic
potentials correspond to blue and red detuned lattice lasers. The
higher momentum orders ±2N~k are observed in the atomic
density distribution of the TOF absorption images as shown in
Fig. 3(b), which depends on the potential depth. We measure
the tune-out wavelengths by changing the lattice wavelength
and find its location at∼790.020 nm for all spin states, which is
in good agreement with previous works [25,26].
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Fig. 4. 1D optical lattice with linear orthogonal polarization. (a) Measured data (squares, triangles, and circles) and theoretical fit (dashed, solid,
and dotted lines) of the lattice potential depth as a function of laser wavelength for the three hyperfine states: |F = 2,mF = 2〉, |F = 1,mF = 1〉,
and |F = 1,mF = 0〉. This periodic potential is a spin-dependent lattice, which depends only on the vector shift. (b) Atomic density distribution in
TOF absorption images at different wavelengths of the lattice laser. There is no lattice potential for the |F = 1,mF = 0〉 state (1mF = 0), while the
|mF =±2〉 and |mF =±1〉 states (1mF 6= 0) always experience the lattice potential when adjusting the lattice wavelength.
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Fig. 5. 1D optical lattice with circular parallel polarization. (a) Measured data (squares, triangles, and circles) and theoretical fit (dashed, solid,
and dotted lines) of the lattice potential depth as a function of laser wavelength for the three hyperfine states: |F = 2,mF = 2〉, |F = 1,mF = 1〉,
and |F = 1,mF = 0〉. This periodic potential is a spin-dependent lattice, which depends on scalar and vector shifts. Tune-out wavelengths are
792.462(22) nm, 790.020(25) nm, and 785.146(12) nm for |F = 1,mF = 1〉, |F = 1,mF = 0〉, and |F = 2,mF = 2〉, respectively. (b) Atomic
density distribution in TOF absorption images at different wavelengths of the lattice laser. (c1)–(c3) Detailed measurements of lattice potentials for
|F = 1,mF = 1〉, |F = 1,mF = 0〉, and |F = 2,mF = 2〉 near the tune-out wavelengths, respectively.

For case 2, a laser beam with linear polarization passes
through a quarter-wave plate and is reflected by a concave
mirror, which produces the linear orthogonal polarization
configuration. We plot the potential depth versus different
wavelengths as shown in Fig. 4(a). This periodic potential is a
spin-dependent lattice, which comes only from the contribution
of the vector shift. Therefore, there is no lattice potential for the
|F = 1,mF = 0〉 state (1mF = 0) for any wavelength as shown
in Fig. 4(b). The |mF =±2〉 and |mF =±1〉 states (1mF 6= 0)
always experience the lattice potential when adjusting the lattice
wavelength.

For case 3, a 1D optical lattice with circular parallel polari-
zation produces spatial intensity modulation, which includes
the contribution of scalar and vector shifts simultaneously.
The potential depths of |F = 1,mF = 1〉, |F = 1,mF = 0〉,
and |F = 2,mF = 2〉 are given in Figs. 5(a) and 5(b). The
tune-out wavelengths are generated by balancing scalar and
vector shifts, which are 792.462(22) nm, 790.020(25) nm,
and 785.146(12) nm for |F = 1,mF = 1〉, |F = 1,mF = 0〉,
and |F = 2,mF = 2〉, respectively as shown in Fig. 5(c). Note
that the tune-out wavelengths in this case are sensitive to the
ellipticity of lattice polarization, the alignment between the
direction of the 1D optical lattice and the external bias magnetic
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Fig. 6. 1D optical lattice with circular orthogonal polarization. (a) Measured data (squares, triangles, and circles) and theoretical fit (three
types of lines overlapped together) of the lattice potential depth as a function of laser wavelength for the three hyperfine states: |F = 2,mF = 2〉,
|F = 1,mF = 1〉, and |F = 1,mF = 0〉. There is no obvious periodic potential in this spin-dependent lattice, because the scalar and vector do not
produce spatial light intensity modulation. (b) Atomic density distribution of time-of-flight absorption images. There is no lattice potential for any
state for any wavelength.
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Fig. 7. Tune-out wavelengths as a function of the amplitude of the external magnetic field for Case 3. (a)–(c) |F = 2,mF = 2〉, |F = 1,mF = 1〉,
and |F = 1,mF = 0〉, respectively. Blue (square sign) and red (circular sign) curves correspond to the residual magnetic field in the (x , y , z) direc-
tions suppressed from (0.4 G, 0.46 G, 0.38 G) to (0.25 G, 0.28 G, 0.2 G), respectively.

field. This case provides us more controlled ways to generate
the different kinds of spin-dependent optical lattice. There is an
interesting phenomenon that two neighboring spin states have
opposite lattice potential (blue and red detunings) by choosing
the appropriate wavelength; for example, |F = 1,mF = 1〉 and
|F = 1,mF = 0〉 states have opposite lattice potential at the
wavelength of 791.24 nm.

For case 4, two counterpropagating laser beams with
orthogonal circular polarization cannot generate any
spatial modulation on BEC. The potential depths for
|F = 1,mF = 1〉, |F = 1,mF = 0〉, and |F = 2,mF = 2〉
are given in Figs. 6(a) and 6(b), showing no effective potential
(no density modulation) for these states.

Furthermore, we study the dependence of tune-out wave-
lengths on the strength of the external bias magnetic field in
more detail. The intersection angle φ between ê k and ê B is
expressed as

cos(φ)=
B z

Bi + B z
Re√

(B x
Re)

2
+ (B y

Re)
2
+ (B z

Bi + B z
Re)

2
, (8)

where BBi is the external bias magnetic field, BRe is the residual
magnetic field (such as Earth’s magnetic field). We measure

tune-out wavelengths as a function of the strength of the exter-
nal bias magnetic field as shown in Fig. 7. By changing the
bias magnetic field to a small value, the direction of the total
magnetic field and the intersection angle φ can be changed.
Therefore, the tune-out wavelengths change when the strength
of the bias magnetic field is near the residual magnetic field
value. The strength of the external bias magnetic field in one
direction is gradually decreased to zero and then increased in
the opposite direction. We find that the tune-out wavelengths
for ξ = 1 jump to ξ =−1 due to inversion of the external
bias magnetic field direction for the spin |F = 1,mF = 1〉
and |F = 2,mF = 2〉 states as shown in Figs. 7(a) and 7(b).
The slope is sensitive to the strength of the residual magnetic
field in the perpendicular direction of the z axis. Here, three
pairs of Helmholtz coils are employed to compensate for the
background magnetic field. When the residual magnetic field
in (x , y , z) directions are suppressed from (0.4 G, 0.46 G,
0.38 G) to (0.25 G, 0.28 G, 0.2 G), measured by a triaxial flux-
gate magnetometer, the slope is changed from −4.054 nm/G
to −6.584 nm/G for |F = 1,mF = 1〉 and 8.108 nm/G to
13.168 nm/G for |F = 2,mF = 2〉 as shown in Figs. 7(a) and
7(b), respectively. Therefore, this method can be utilized to
calibrate and measure the residual magnetic field.



Research Article Vol. 38, No. 11 / November 2021 / Journal of the Optical Society of America B 3275

4. CONCLUSION

In conclusion, we present an experiment to measure the ac
Stark shift around the tune-out wavelengths of 87Rb BEC in
three different hyperfine ground states, |F = 1,mF = 1〉,
|F = 1,mF = 0〉 and |F = 2,mF = 2〉, between D1 and
D2 lines. Four different polarization configurations of a 1D
optical lattice, which are originated from the scalar shift, vector
shift, and both scalar and vector shifts by manipulating lattice
polarizations, are investigated. The Kapitza–Dirac scattering
technique is employed to probe the ac Stark shift of atoms in
an optical lattice, and the characteristics of a spin-dependent
optical lattice are presented by scanning the lattice wavelength.
We present tune-out wavelengths in more general cases of con-
sidering the contributions of both scalar and vector shifts. We
further study the dependence of tune-out wavelengths on the
strength of the external bias magnetic field in more detail. Our
work provides a clear interpretation of spin-dependent optical
lattices and can be used for realization of a two-species system,
or the same atoms (Rb) with different spin states, in which one
of them moves freely while the others are trapped to different
degrees of optical lattice potential. This system can be a test-bed
for observing or simulating phenomena such as entropy cooling
[20,52,55,56,61], Kondo effect [62,63], etc., and even have
application in Sr optical lattice clocks [64].
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