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Remote state preparation enables one to create and manip-
ulate a quantum state based on the shared entanglement
between distant nodes. Here, we experimentally demon-
strate remote preparation and manipulation of squeezed
light. By performing a homodyne projective measurement
on one mode of the continuous variable entangled state at
Alice’s station, a squeezed state is created at Bob’s station.
Moreover, rotation and displacement operations are applied
on the prepared squeezed state by changing the projective
parameters on Alice’s state. We also show that the remotely
prepared squeezed state is robust against loss and N− 1
squeezed states can be remotely prepared based on an N-
mode continuous variable Greenberger–Horne–Zeilinger-
like state. Our results verify the entanglement-based model
used in security analysis of quantum key distribution with
continuous variables and have potential application in
remote quantum information processing. © 2022 Optica
Publishing Group

https://doi.org/10.1364/OL.463697

With the development of the quantum network, it becomes pos-
sible for users who do not have the ability of preparing a quantum
state to obtain a quantum resource and implement quantum
information processing. Remote state preparation (RSP) enables
one to create and manipulate quantum states remotely based on
shared entanglement [1,2]. Compared with direct state trans-
mission, where a prepared quantum state is transmitted to the
user through a quantum channel, RSP offers remote control of
the quantum state and intrinsic security [3]. Compared with
quantum teleportation, RSP does not need joint measurement,
requires less classical communication [4], and offers the ability
to manipulate the quantum state remotely. Based on the RSP
protocol, the single-photon state [5], sub-Poissonian state [6],
superposition state up to two-photon level [7], cat state [8], con-
tinuous variable qubits [9], and squeezed state in the microwave
regime [3] have been experimentally demonstrated.

A squeezed state has broad applications in continuous vari-
able (CV) quantum information [10–14], quantum measurement
[15,16], and quantum-enhanced imaging [17,18]. Up to now, a
squeezed state is prepared locally based on an optical paramet-
ric amplifier [19–23], four-wave mixing [24–26], and a photonic

chip [27,28]. In addition to the local preparation, it has been pro-
posed that a squeezed state can also be prepared based on the
RSP protocol by performing homodyne measurement on one
mode of a CV Einstein–Podolsky–Rosen (EPR) entangled state
[2]. This RSP protocol corresponds to the entanglement-based
model widely used in the security analysis of CV quantum key
distribution (QKD) [29–32], where the security of CV QKD is
analyzed based on a CV EPR entangled state since it has been
shown that CV QKD with a squeezed state (coherent state) is
equivalent to homodyning (heterodyning) one mode of an EPR
entangled state [29]. However, remote preparation and manipu-
lation of squeezed states by homodyne projective measurement
have not been experimentally demonstrated.

Here, we experimentally demonstrate the remote preparation
of squeezed states based on a CV EPR entangled state distributed
between Alice and Bob. By performing homodyne projective
measurement on Alice’s state, a squeezed state with approx-
imately −1.27 dB squeezing and fidelity of 92% is remotely
prepared at Bob’s station. Then, the prepared squeezed state
is rotated and displaced by changing the parameters of the
homodyne projective measurement at Alice’s station, which
is equivalent to performing rotation and displacement oper-
ations on the squeezed state. We show that the remotely
prepared squeezed state is robust against loss in the quantum
channel. Furthermore, this scheme is extended to RSP based
on an N-mode CV Greenberger–Horne–Zeilinger-like (GHZ-
like) state

∫
dx|x, x, x, . . . , x⟩, which is the eigenstate with total

momentum (phase quadrature) zero p1 + p2 + p3 + · · · + pN =

0 and relative positions (amplitude quadratures) xi − xj = 0
(i, j = 1, 2, 3, . . .N) [33,34], where N − 1 squeezed states can
be remotely prepared simultaneously by performing homodyne
projective measurement on one mode of the CV GHZ-like state.
The presented results provide a new method to prepare and
manipulate squeezed states remotely.

As shown in Fig. 1, a CV EPR entangled state is prepared by a
non-degenerate optical parametric amplifier (NOPA) in a quan-
tum server and distributed to Alice and Bob through two lossy
channels. By measuring the phase quadrature of Alice’s state and
projecting the quadrature values to pA = 0, a phase-squeezed
state is prepared at Bob’s station remotely. By measuring the
amplitude quadrature of Alice’s state and projecting the quadra-
ture values to xA = 0, the squeezed state is rotated by 90 degrees,
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Fig. 1. Experimental setup. Two modes of a CV EPR entan-
gled state are separated by a polarization beam splitter (PBS) and
distributed to Alice and Bob. Alice performs a homodyne pro-
jective measurement on her mode. The phase-squeezed state or
amplitude-squeezed state is prepared at Bob’s station conditioned
on the measurement results of pA = 0 or xA = 0. A lossy channel is
simulated by the combination of a half-wave plate and a PBS. LO,
local oscillator.

i.e. an amplitude-squeezed state is prepared at Bob’s station. The
projective measurement is implemented by the post-selection of
quadrature values with a selection width of |δx|<0.1. By project-
ing the quadrature values to xA = α (pA = α), the displacement
operation can be applied on the remotely prepared squeezed
states.

A CV EPR entangled state can be fully characterized by its
covariance matrix which is expressed by

σAB =

⎛⎜⎜⎜⎝
∆2x̂A 0 ∆2(x̂Ax̂B) 0

0 ∆2p̂A 0 ∆2(p̂Ap̂B)

∆2(x̂Bx̂A) 0 ∆2x̂B 0
0 ∆2(p̂Bp̂A) 0 ∆2p̂B

⎞⎟⎟⎟⎠ , (1)

where x̂A(B) = (â†

A(B) + âA(B))/
√

2 and p̂A(B) = i(â†

A(B) − âA(B))/
√

2
denote amplitude and phase operators, where â†, â are cre-
ation and annihilation operators, respectively. We have ∆2x̂A

= ∆2p̂A = [ηA(Va + Vs) + (1 − ηA)]/2, ∆2x̂B = ∆
2p̂B = [ηB(Va +

Vs) + (1 − ηB)]/2, and ∆2(x̂Ax̂B) = −
√
ηAηB(Vs − Va)/2, ∆2(p̂Ap̂B)

=
√
ηAηB(Vs − Va)/2. Here, Vs and Va represent variances of

squeezed and anti-squeezed quadratures, respectively. We have
VaVs = 1/4 for a pure state and VaVs>1/4 for a mixed state. Addi-
tionally, ηA and ηB represent transmission efficiencies of Alice’s
and Bob’s modes, respectively. The corresponding Wigner
function of the CV EPR entangled state is given by [12]

WAB(xA, pA, xB, pB) =
1

√
DetσABπ2

exp
{︃
−

1
2
(︁
ξ⊤σ−1

ABξ
)︁}︃

, (2)

where ξ̂ ≡ (x̂A, p̂A, x̂B, p̂B)
⊤ is the vector of the amplitude and

phase quadratures of the entangled state. The Wigner function
of the homodyne projective measurement Πx on the amplitude
quadrature of Alice’s state is expressed by [2]

W[Πx](xA) = δ(xA − α), (3)

where α is the projective value. After Alice’s homodyne
projective measurement, Bob’s state is collapsed to

WB(xB, pB) =

∫ ∫
dxAdpAWAB × W[Πx](xA). (4)

For example, if Alice chooses xA = 0 (α = 0), Bob’s state
becomes WB(xB, pB) =

∫
dpAWAB(0, pA, xB, pB) which has unit

fidelity with an ideal amplitude-squeezed state if the entangled
state is pure. Similarly, homodyne projective measurement Πp

on phase quadrature projects Bob’s mode to a phase-squeezed
state. Furthermore, for a CV EPR entangled state with correlated
amplitude and anti-correlated phase quadratures in the case of
infinite squeezing, the projective measurement of xA = α leads
to an amplitude-squeezed state displaced by (α, 0) in phase
space at Bob’s station [29]. Similarly, by projecting on pA = α,
a phase-squeezed state displaced by (0, −α) can be prepared.

In our experiment, the NOPA is composed of a 10-mm-long
α-cut type-II potassium titanyl phosphate (KTP) crystal and a
concave mirror with 50-mm radius. The front face of the KTP
crystal is coated to be used for the input coupler and the concave
mirror serves as the output coupler of the NOPA. The details of
parameters of the NOPA have been provided elsewhere [35–37].
Our NOPA cavity is locked by using the lock-and-hold tech-
nique (see Supplement 1). The seed beam is injected into the
NOPA for the cavity locking during the locking period, while it is
chopped off to perform the measurement during the hold period.
The NOPA works at amplification status, where the relative
phase between seed and pump beam is locked to 0. A CV EPR
entangled state with correlated amplitude (⟨∆2(x̂A − x̂B)⟩ = e−2r)
and anti-correlated phase quadratures (⟨∆2(p̂A + p̂B)⟩ = e−2r) are
obtained, where r is the squeezing parameter. A CV EPR entan-
gled state with Vs = 0.24 (corresponding to −3.2 dB squeezing)
and Va = 1.3 (corresponding to 4.2 dB anti-squeezing) in the
bandwidth of 60 MHz is prepared when the NOPA is pumped
at 70 mW. We lock the relative phase between the signal and
local oscillator of the homodyne detector (HD) at Alice’s sta-
tion to 0 and 90 degrees to measure the amplitude quadrature x̂A

and phase quadrature p̂A, respectively. The output signals of two
HDs are filtered by two 60 MHz low-pass filters and recorded
simultaneously by a digital storage oscilloscope. Bob performs
quantum tomography to reconstruct the Wigner function of his
state.

The measured phase quadratures of Alice’s mode (blue data
points) in the time domain are shown in Fig. 2(a), where the
red points represent the data satisfying the condition |δx|<0.1.
Conditioned on the red data points of Alice’s quadrature values,
the selected data points of Bob’s mode are shown as the red
points in Fig. 2(b). As shown in Fig. 2(c), a phase-squeezed
state with approximately −1.27 dB squeezing is remotely pre-
pared at Bob’s station by choosing pA = 0 when the transmission
efficiency between Alice and Bob is 81% (ηA = ηB = 0.9). By
changing the projective basis to xA = 0, an amplitude-squeezed
state with a squeezing level of approximately −1.26 dB is
remotely prepared too, as shown in Fig. 2(d). This is equivalent
to applying a rotation operation of 90 degrees in phase space,
which turns a phase-squeezed state into an amplitude-squeezed
state. In principle, rotation operation with arbitrary degree can
be implemented by locking the relative phase of the HD to an
arbitrary degree (see Supplement 1).

We quantify the quality of the remotely prepared squeezed
state by the fidelity F =

∫ ∫
dxdpWx(p)

ds W(x, p) which is defined
as the overlap between the experimentally prepared state W(x, p)
and theoretically predicted state Wx

ds =
1
π

exp(− (x−a)2

e−2r −
(p−b)2

e2r )

(Wp
ds =

1
π

exp(− (x−a)2

e2r −
(p−b)2

e−2r )), where a and b represent the
displacements along the amplitude and phase quadratures,
respectively. The estimated squeezing parameter of the state
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Fig. 2. (a) Quadrature values of Alice’s mode (70,000 and 7000
for blue and red data points). (b) Quadrature values of Bob’s
mode (7000 data points). (c), (d) Reconstructed Wigner functions
of phase and amplitude squeezed states. (e), (f) Contour plots of
phase and amplitude-squeezed states displaced by (−0.01,0.17) and
(0.20,0.05), respectively, in phase space. Approximately 10,000 data
points each are used to reconstruct these Wigner functions.

corresponds to the value where the fidelity riches its maximum.
The fidelities of the prepared squeezed states with a transmission
efficiency of 81% are all above 92%.

The remotely prepared squeezed states are displaced in phase
space by changing the projective measurement to pA ≈ −0.4
and xA ≈ 0.4, as shown in Figs. 2(e) and 2(f). Squeezed states
with −1.2 dB squeezing and fidelities of 83% and 81% are dis-
placed. The displacement in the amplitude (phase) direction of
the amplitude (phase) squeezed state is limited by the squeezing
level of the entangled state (see Supplement 1). These results
demonstrate the validity of the entanglement-based model used
in security analysis of CV QKD.

To verify the dependence of remotely prepared state on chan-
nel loss, Bob’s mode is transmitted through a lossy channel when
ηA = 0.9. As shown in Fig. 3(a), it is obvious that the squeez-
ing of the remotely prepared squeezed state is robust against
loss in the quantum channel, which has the same robustness as
that of directly transmitting a squeezed state in a lossy channel
[38]. The fidelity of the prepared state decreases a little with the
increase of transmission efficiency [Fig. 3(b)], which is because
our initial entangled state is not pure and 10% loss exists in
Alice’s channel. If there is no loss in Alice’s channel and the
entangled state is pure, the fidelities of the remotely prepared
squeezed states are always near unity after the quantum channel
[dotted curve in Fig. 3(b)].

In our experiment, the success probability of the remotely pre-
pared squeezed state is 10% corresponding to the selection width
|δx|<0.1. Here, we analyze the effect of the selection width δx
on the prepared squeezed state with the transmission efficiencies

Fig. 3. (a), (b) Squeezing level and fidelity of the prepared
squeezed states as functions of the transmission efficiency of Bob’s
mode. The red and blue data points represent phase-squeezed
and amplitude-squeezed states, respectively, and the error bars are
obtained by standard deviation of measurements repeated three
times. (c)–(e) Dependence of success probability, squeezing level,
and fidelity of the prepared squeezed state on the selection width δx.
(f) Dependence of squeezing level of the prepared squeezed state
on the squeezing level of a pure entangled state.

ηA = ηB = 1. Conditioned on the homodyne projective measure-
ment, the remotely prepared state is given by WB(xB, pB) =∫ x+δx

x−δx

∫
dxAdpAWAB(xA, pA, xB, pB) when the measured quadra-

tures are selected within a range xA ∈ [x − δx, x + δx]. It is
obvious that the remotely prepared state is related to the selec-
tion width δx. The success probability is increased with the
increase of selection width, while the fidelity and squeezing
of the prepared state are decreased [Figs. 3(c)–3(e)]. Thus, it
is necessary to chose a suitable selection width to balance the
trade-off between success probability and fidelity. The squeez-
ing of the remotely prepared squeezed state can be improved
by increasing the squeezing of the entangled state, as shown in
Fig. 3(f).

We also extend this RSP protocol to an N-mode CV GHZ-
like state, which enables users in a quantum network to
obtain squeezed states. A quantum network is established by
distributing optical modes of a CV GHZ-like state to spa-
tially separated quantum nodes, as shown in Fig. 4. The
wave function of amplitude quadrature is given by ψN(x) =
( 1
π
)

N
4 exp[−e−2r 1

2N (
∑︁N

i=1 xi)
2 − e2r 1

4N

∑︁N
i,j(xi − xj)

2], which is pro-
portional to ψN(x) ∝ δ(xi − xj) in the limit of infinite squeezing
[34]. If we project one mode to xi = 0, the rest of the modes
will be proportional to ψj(x) ∝ δ(xj), i.e. amplitude-squeezed
states can be created at N-1 remote stations simultaneously. If
the user in the network needs a p-squeezed state, it requires
N-1 projective measurements collaboratively performed by
corresponding users. More details about the squeezed state
preparation from the multimode CV GHZ-like state can be
found in Supplement 1. After the RSP based on the CV
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Fig. 4. Remote preparation of N-1 squeezed states based on an
N-mode multipartite CV GHZ-like state. By performing ampli-
tude quadrature projective measurement on an arbitrary mode, for
example xA = 0, the other modes collapse to amplitude-squeezed
states.

GHZ-like state, the users can further implement quantum infor-
mation processing based on a squeezed state at their own
stations.

In summary, we prepare squeezed states remotely based on the
shared CV EPR entangled state by performing homodyne pro-
jective measurement at Alice’s station. The prepared squeezed
state is rotated and displaced by changing the parameters of
homodyne detection. More importantly, we show that the pre-
pared squeezed state is robust against loss in the quantum
channel. We also show that this RSP scheme can be extended
to the multipartite CV entangled state, where N-1 squeezed
states are prepared simultaneously by performing homodyne
projective measurement at one station based on a shared N-
mode CV GHZ-like state. Our results present evidence for the
entanglement-based model used in security analysis of CV QKD
and make a crucial step toward the remote quantum information
processing.
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