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The measurement-device-independent quantum key distribution (MDI-QKD) protocol is immune to imperfect
measurement devices. However, its practicality and performance when implemented in continuous-variable (CV)
mode are still not satisfactory. We propose a CV-MDI-QKD protocol based on modulated squeezed states, and
analyze its security against two-mode Gaussian attack. The results show that the protocol can achieve a higher
secret key rate and transmission distance than previous coherent-state and squeezed-state protocols. A method
to compensate the imperfection of a practical homodyne detector using phase-sensitive optical amplifiers is
also presented. By setting an appropriate optical amplification gain, realistic detectors with ordinary quantum
efficiency can be employed. In addition, we discuss the impact of finite-size effects on the secret key rate of the
protocol. The methods presented may aid in the practical application of the CV-MDI-QKD protocol.
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I. INTRODUCTION

Quantum key distribution (QKD), one of the most practical
areas in quantum information technology, allows two distant
parties, Alice and Bob, to establish a common secret key over
an insecure quantum channel with the aid of an authenticated
classical channel [1–3]. Its security is guaranteed by the basic
principles of quantum mechanics, and any eavesdropping
behaviors are detectable due to the inevitable perturbation of
the quantum states on which the key information is encoded.
Continuous-variable (CV) QKD protocols, promising higher
secret key rates by using multiphoton quantum states and
homodyne (heterodyne) detection at metropolitan distances,
have received extensive attention over the past decade [4–20].

Under some ideal assumptions, the CV-QKD protocols
can be strictly proved to be unconditionally secure. How-
ever, in realistic implementations, the discrepancy between
practical devices and their ideal models may lead to some
potential security loopholes. The eavesdropper can exploit
these loopholes to carry out attacks and acquire secret key
information without being noticed. In order to fill the gap be-
tween theoretical assumptions and physical implementations,
device-independent (DI) QKD [21] and measurement-device-
independent (MDI) QKD [22,23] schemes were proposed.
The former is still impractical for its low secret key rate and
short distance. A more practical solution is the latter, which is
immune to all side-channel attacks on measurement devices,
the crucial security loophole of QKD implementations. This
protocol, in which the measurement is fulfilled by an untrusted
relay, has been experimentally demonstrated with discrete
variables [24,25]. As a counterpart, based on the principle
of CV entanglement swapping [26], the notion of MDI was
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subsequently extended to CV systems [27–30]. In CV-MDI-
QKD protocols, both Alice and Bob send their quantum states
to an untrusted third party, Charlie, who performs a CV Bell
detection, broadcasts the outcome to the parties, and, in this
way, a secret key between the parties is established.

It has been shown that the squeezed-states-based CV-QKD
protocol can outperform the coherent-states-based protocol
[12,30], but under the conditions of pure and strong squeez-
ing. In order to release these stringent restrictions, the mod-
ulated squeezed-states one-way protocol was proposed and
demonstrated [31,32]. By combining the advantages of both
the squeezed and coherent states, it shows that even mixed
squeezed states with moderate squeezing can provide better
performance compared with the coherent-states protocol. In
this paper, we extend the ideal of a one-way modulated
squeezed-states protocol to the MDI framework, and propose
a CV-MDI-QKD protocol based on the modulated squeezed
states. We prove the security of the protocol against two-mode
Gaussian attack, which has been proven to be the optimal
attack for CV-MDI protocols [33]. In contrast, only single-
mode Gaussian attack was analyzed in previous work [30].
Our results show that both the secret key rate and transmission
distance of the proposed protocol are improved compared with
the previous coherent- and squeezed-state protocols.

In order to compensate the imperfections of the realis-
tic detectors, which are crucial to the system, two optical
phase-sensitive amplifiers are added to the output ports of
the quantum channel. It is shown that the inefficiency and
dark noise of the practical homodyne detector are dramatically
compensated under the condition of realistic optical amplifi-
cation gain. We also analyze the impact of finite-size effects
on the key rate of the proposed protocol.

The rest of this paper is organized as follows. In Sec. II,
we present the details of the CV-MDI-QKD protocol with
modulated squeezed states and derive the asymptotic secret
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FIG. 1. Prepare-and-measure scheme (PM) of the CV-MDI-
QKD protocol with modulated squeezed states. Alice (Bob) gener-
ates either an amplitude or a phase quadrature-squeezed vacuum state
(Sqz), and modulates the quadrature of the state with a Gaussian
modulation using two modulators, the amplitude modulator (AM)
and the phase modulator (PM). Then Alice and Bob send their
states via a quantum channel to an untrusted third party, Charlie,
who performs homodyne detections on the amplitude and phase
quadratures of the combined modes and broadcasts the measurement
outcomes.

key rate of the protocol. A method for compensating the
imperfection of the practical homodyne detectors is described
in Sec. III. In Sec. IV, we analyze the impact of finite-size
effects on the secret key rate of the protocol. Finally, we draw
conclusions in Sec. V.

II. CV-MDI-QKD PROTOCOL WITH MODULATED
SQUEEZED STATES

In this section, we first introduce the notion of the CV-
MDI-QKD protocol with modulated squeezed states. We then
establish an equivalent entanglement-based (EB) scheme of
the protocol, and present the security analysis against a two-
mode Gaussian attack.

The schematic of the modulated squeezed-states CV-MDI-
QKD protocol is illustrated in Fig. 1. Alice and Bob generate
x or p quadrature-squeezed vacuum states independently and
randomly. To encode the key information, they use amplitude
and phase modulators (AM and PM) to displace (indepen-
dently) the quadratures x and p of their states with a Gaus-
sian modulation. We assume a x quadrature-squeezed state
is prepared; the modulation variances VAM and VPM should
satisfy s + VAM = 1/s + �V0 + VPM to prevent a potential
eavesdropper from obtaining any information on Alice’s
choice of encoded quadrature, where s and 1/s + �V0 denote
the squeezing and antisqueezing variances of the states, re-
spectively, and �V0 is the excess noise of the antisqueezing.
The resulting states are sent to an untrusted quantum relay,
Charlie, via two unsecure lossy and noisy quantum channels,
respectively. On Charlie’s station, the two input modes are
interfered at a 50:50 beam-splitter (BS). The output states
are subsequently detected by using two realistic homodyne
detectors: One detects the amplitude quadrature and the other
detects the phase quadrature, and the final measurement re-
sults are revealed.

For convenience of security analysis, the equivalent
entanglement-based (EB) scheme of the CV-MDI-QKD

protocol with modulated squeezed states is established
(Fig. 2). Alice starts with an Einstein-Podolsky-Rosen (EPR)
state ρA0A with variance VA and applies a BS transformation
with transmission efficiency 1/2 onto modes A0 and I , where
I is one mode of the EPR state ρI0I with variance WI . Then,
she performs homodyne detection on the output mode a,
which projects mode A onto modulated squeezed states (see
Appendix A for further details). Mode A is sent to an untrusted
quantum relay, Charlie, via a quantum channel with length
LAC, which is assumed to be controlled by a potential eaves-
dropper, Eve, and is characterized by the transmission TA and
excess noise εA. Likewise, Bob does the same. On Charlie’s
station, a CV Bell measurement is performed. To this end, the
two received modes A′ and B′ are interfered at a 50:50 BS,
and the output two modes C and D are transformed further
into the modes C2 and D2 to model the realistic homodyne
detector with efficiency η and electronic noise vel. Then, both
the x quadrature of mode C2 and p quadrature of mode D2

are measured by Charlie through perfect homodyne detection
and the outcomes are combined into a complex variable r :=
(xC2 + ipD2 )/

√
2, which is publicly announced to Alice and

Bob over an authenticated classical channel. Here, knowledge
of r enables each party (Alice or Bob) to infer the measure-
ment results of the other party by data postprocessing [27]. As
a result, the correlation between Alice and Bob is established
and results in mutual information Iab|r > 0. Finally, by im-
plementing parameter estimation, information reconciliation,
and privacy amplification procedures, the secret keys can be
extracted.

Next, we derive the secret key rate of the protocol. Since
the protocol is symmetric, for convenience, we assume that
Alice is the encoder of information and Bob is the decoder.
After communication of Charlie’s outcome r, the asymptotical
secret key rate against collective attacks is given by [27]

K∞ = βIab|r − χaE |r, (1)

where β is the reconciliation efficiency, Iab|r the Shannon mu-
tual information between Alice and Bob, and χaE |r the Holevo
bound between Alice and Eve, representing the maximum
information of Eve has stolen.

In this paper, we consider a joint two-mode Gaussian attack
(see Appendix B for more details), which is the most general
eavesdropping strategy for the CV-MDI protocol [33,34]. As
shown in Fig. 2, Eve mixes her two ancillary modes E1 and E2

with the two incoming modes A and B, respectively, by using
two BSs with transmittance TA (TB). The optimal correlated
attack has proven to be the “negative EPR attack” [27].

Without loss of generality, we assume that the x quadrature
is measured by the trusted parties, Alice and Bob. Then the
Shannon mutual information between the trusted parties is
given by

Iab|r = 1

2
log2

Vb|r
V xa

b|r
, (2)

where Vb|r and V xa
b|r are the variances of the covariance matrices

(CMs), γb|r and γ
xa
b|r for the amplitude quadrature, respectively.

These CMs are given in Appendix B.
The Holevo bound χaE |r is given by

χaE |r = S(ρE |r ) − S
(
ρ

xa
E |r

)
, (3)
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FIG. 2. Entanglement-based scheme of CV-MDI-QKD protocol with modulated squeezed states. Both Alice and Bob prepare a modulated
entangled state, then each performs a homodyne detection on one mode of the entangled state and sends the other mode to an untrusted third
party, Charlie, through quantum channels with length LAC (LBC), respectively. On Charlie’s station, the realistic homodyne detector is modeled
by a BS transformation with transmission efficiency η and the thermal state VN that simulates the electronic noise vel of the detector.

where S(ρ) is the von Neumann entropy of the quantum state
ρ. First, we use the fact that Eve is able to purify the system
A0A′B0B′ and, after Charlie’s Bell measurement with outcome
r, the system A0B0E is pure, so that S(ρE |r ) = S(ρA0B0|r ).
Second, after Alice’s projective measurement resulting in xa,
the system B0I0I ′E is pure and we have S(ρxa

E |r ) = S(ρxa
B0I0I ′|r ).

Thus, Eq. (3) becomes

χaE |r = S(ρA0B0|r ) − S
(
ρ

xa
B0I0I ′|r

)
. (4)

The first part can be calculated from the symplectic eigen-
values λ1,2 of the CM γA0B0|r , and the second part is deter-
mined from λ3,4,5 of the CM γ

xa
B0I0I ′|r (Appendix B). Then, we

have

χaE |r =
2∑

i=1

g

(
λi − 1

2

)
−

5∑
i=3

g

(
λi − 1

2

)
, (5)

where g(x) = (x + 1)log2(x + 1) − xlog2x.
We first consider the performance of the protocol in the

symmetric case, which means LAC = LBC. The secret key rates
K∞ as a function of the transmission distance L = LAC + LBC

(a channel loss of 0.2 dB per km is assumed hereafter) for
different CV-MDI-QKD protocols are shown in Fig. 3. To
simulate the performance of the 5.2-dB (s = 3) modulated
squeezed-state protocol (red dotted-dashed line), a realistic
antisqueezing excess noise of �V0 = 3.2 is used. In compari-
son with the coherent-state protocol with optimal modulation
variance (black solid line), the squeezed-state protocol with
pure 5.2-dB (blue dashed line) and 7-dB squeezing (blue
short-dashed line, equivalent to 10-dB two-mode squeezing
analyzed in Ref. [30]), both the secret key rate and transmis-
sion distance are improved with a total maximal transmis-

sion distance increase of 4.2, 3.2, and 1.5 km, respectively.
Notably, the performance of the protocol almost reaches that
of the squeezed-state protocol with a pure 10-dB squeezing

FIG. 3. Secret key rate vs transmission distance in symmetric
case for different CV-MDI-QKD protocols: coherent state with op-
timal modulation variance (solid line), squeezed states with a pure
5.2-dB squeezing (dashed line), squeezed states with a pure 7-dB
squeezing (short-dashed line), squeezed states with a pure 10-dB
squeezing (dotted line), and modulated squeezed states with optimal
modulation variance (dotted-dashed line). Here, we set the reconcil-
iation efficiency β= 0.99 [35], excess noise εA = εB = 0.002 shot
noise units (SNUs), and ideal detection η = 1, vel = 0.
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FIG. 4. Comparison between three different protocols in the most asymmetric case: coherent states (solid line), squeezed states with 5.2-dB
squeezing (dashed line), and modulated squeezed states with 5.2-dB squeezing (dotted-dashed line). Bold lines and light lines represent two
situations using ideal homodyne detectors with η = 1, vel = 0 and imperfect detectors with η = 0.9, vel = 0.01, respectively. (a) Secret key
rate vs transmission distance, where green (upper) solid line is PLOB bound. Excess noise is εA = εB = 0.002. (b) Tolerable excess noise vs
transmission distance. In (a,b), reconciliation efficiency is set to β= 0.99.

(blue dotted line). These results reveal the advantages of the
modulated squeezed-state protocol.

For CV-MDI-QKD protocols, it has been proved that the
performance of the asymmetric case (LAC �= LBC) is supe-
rior to the symmetric case (LAC = LBC) [27]. When Alice
is the encoder of information, the transmission distance LBC

increases significantly as LAC decreases. If Charlie’s location
is close to Alice, the total transmission distance L will in-
crease to its maximal value with the same parameters. Next,
we investigate the performance of the protocol in the most
asymmetric case (LAC = 0), in which the two-mode Gaussian
attack degenerates into two independent Gaussian attacks
[36]. In Fig. 4(a), the secret key rates K∞ as a function
of transmission distance L for different CV-MDI-QKD pro-
tocols are shown. The Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound [37], representing the maximum secret key
rate achievable in the repeaterless and lossy channel system,
is also plotted for comparison. We find that the secret key
rate of the modulated squeezed-state protocol is closest to
the PLOB bound, which manifests the superior performance
of our protocol. The total maximal transmission distances
can reach up to approximately 100 and 15 km under ideal
homodyne detection (η = 1, vel = 0) and imperfect detection
(η = 0.9, vel = 0.01) conditions, respectively. Figure 4(b)
shows the relationship between the maximum tolerable excess
noise ε = εA = εB and the transmission distance L. It is clear
that our protocol improves resistance to the excess noise;
therefore, a higher secret key rate and transmission distance
can be achieved. In the above comparisons, we have optimized
the modulation variances for both the coherent-state and mod-
ulated squeezed-state protocols.

Figure 4 reveals that the imperfection of the homodyne
detector decreases the maximal transmission distance dra-
matically. In Fig. 5, we plot the achievable secret key rate
vs detection efficiency η and transmission distance L. The
protocol requires a minimum of 76% detection efficiency
for a positive key rate under the conditions of L= 0, β= 1,
εA = εB = 0.002, and vel = 0. For a transmission distance

of 20 km, the protocol requires a higher detection efficiency
(>90%), which is difficult to achieve in current fiber-based
optical detection.

III. MODIFIED PROTOCOL WITH OPTICAL AMPLIFIERS

As mentioned above, the imperfection of a practical homo-
dyne detector has a significant impact on the secret key rate
and transmission distance of the CV-MDI system. To over-
come this limitation, we use the phase-sensitive amplifiers
(PSAs) in front of the homodyne detector, as shown in Fig. 6.
The PSA [38,39] is a degenerate optical parametric amplifier
that permits noiseless amplification of a chosen quadrature
(x or p) and squeezing of the orthogonal quadrature. The
behaviors of the PSA are described by the transformations[

xC1

pC1

]
= γPSA1

[
xC

pC

]
=

[√
k 0

0 1/
√

k

][
xC

pC

]
, (6)

FIG. 5. Secret key rate vs detection efficiency and transmission
distance under the most asymmetric case (5.2-dB squeezing). Sim-
ulation parameters are reconciliation efficiency β= 1, modulation
variance VM = 104, excess noise εA = εB = 0.002, and electronic
noise vel = 0.
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FIG. 6. Model of phase-sensitive amplifiers placed at front of
homodyne detectors.

and [
xD1

pD1

]
= γPSA2

[
xD

pD

]
=

[
1/

√
k 0

0
√

k

][
xD

pD

]
, (7)

where k � 1 denotes the gain of the amplification, and the
amplitude quadrature of the mode C and the phase quadrature
of the mode D are amplified. Combined with the calculations
presented in Sec. II, we find that the usage of the PSAs
modifies θ1 and θ ′

1 into

θ2 = u − 2
√

1 − TA

√
1 − TBg + 2χhom/k,

(8)
θ ′

2 = u + 2
√

1 − TA

√
1 − TBg′ + 2χhom/k,

where

u = (TA + TB)V + (1 − TA)ωA + (1 − TB)ωB. (9)

In this scenario, the asymptotical secret key rate against
collective attacks becomes

K∞
PSA = βIab|r − χaE |r . (10)

In Fig. 7, we plot the secret key rate K∞
PSA as a function

of the transmission distance L for different gain factors k
under the condition of practical homodyne detectors (η =
0.6, vel = 0.1). It is clear that larger amplification gain causes
a more pronounced improvement effect. As k increases, the
secret key rate of the protocol becomes closer to the PLOB
bound. When k tends to infinity, the secret key rate and total
maximal transmission distance are the same as those of ideal
homodyne detection.

In practice, the usage of PSA would introduce small
amounts of excess noises, which could be modeled by an
ideal PSA followed by a BS (with nearly perfect transmission
efficiency) with a thermal state injecting. From the view of
Alice and Bob, the added noises are indistinguishable from the
electronic noises that introduced by the practical homodyne
detector, both increasing the noises of the detection system.
Therefore, we could attribute the added noises to virtual
electronic noises of the homodyne detector. The effects of the
imperfect PSAs on the secret key rate are shown in Fig. 7
(dashed lines). As predicted, the added noises reduce the
secret key rate and transmission distance slightly. However,
the usage of practical PSAs still effectively compensates the
imperfection of practical homodyne detectors and boosts the
performance of the CV-MDI-QKD.

FIG. 7. Secret key rate vs transmission distance for different
gains of amplification with the most asymmetric case (5.2-dB
squeezing). From left to right, the lines correspond to gain factors
of 10, 20, 100, ∞ (equivalent to an ideal homodyne detection case),
and PLOB bound [the green (upper) line]. The solid and dashed lines
represent perfect PSAs (no excess noise) and realistic PSAs (with
excess noise of 0.2 SNU), respectively. The modulation variance
has been optimized. Other parameters are set to β= 0.99, εA = εB =
0.002.

IV. SECURITY ANALYSIS IN FINITE-SIZE SCENARIO

In a practical implementation of any protocol, the total
number of signals exchanged by Alice and Bob is always
finite. Here, we analyze the impact of finite-size effects on
the key rate of the proposed CV-MDI protocol. The secret key
rate in the finite-size scenario can be written as [40]

Kfinite
PSA = n

N
[βIab|r − χaE |r − �(n)], (11)

where N is the total number of signals exchanged between
Alice and Bob, n is the number of signals used to extract the
key, and the remaining (N − n) signals are used for parameter
estimation. �(n) is the parameter related to the security of the
privacy amplification and is given by [40]

�(n) ≈ 7

√
log2(2/ε̄)

n
, (12)

where ε̄ is the probability of error during privacy amplifica-
tion.

Here, we exploit the recent results of Ref. [41]. The output
variables of the relay (Charlie) are

xC2 = 1√
2

(√
tBxM

B − √
tAxM

A

) + xN ,

(13)

pD2 = 1√
2

(√
tB pM

B + √
tA pM

A

) + pN ,

where tA/B = ηkTA/B, xM
A/B (pM

A/B) are the displacement variables
used for Gaussian modulation with zero mean and variance
VAM (VPM). xN and pN are noise terms and their variances are
given by

σ 2
xN

= ηk

2
(l1 − 2

√
1 − TA

√
1 − TBg) + ηχhom,

(14)

σ 2
pN

= ηk

2
(l2 + 2

√
1 − TA

√
1 − TBg′) + ηχhom,
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where

l1 = (TA + TB)s + (1 − TA)ωA + (1 − TB)ωB,

l2 = (TA + TB)(1/s+�V0) + (1 − TA)ωA + (1 − TB)ωB.

(15)

Using Eq. (14), Eq. (8) can be rewritten as

θ2 = 2

ηk
σ 2

xN
+ (TA + TB)VAM,

θ ′
2 = 2

ηk
σ 2

pN
+ (TA + TB)VPM. (16)

From Eq. (16), we find that the secret key rate depends on
the unknown parameters TA, TB, σ 2

xN
, and σ 2

pN
. By estimating

these parameter values, we can obtain the confidence intervals
(CIs) (see Appendix C for further details),

CI(T̂A) = [
TA − zδPE /2σA/ηk, TA + zδPE /2σA/ηk

]
,

CI(T̂B) = [
TB − zδPE /2σBηk, TB + zδPE /2σB/ηk

]
,

(17)
CI

(
σ̂ 2

xN

) = [
σ 2

xN
− zδPE /2sx, σ 2

xN
+ zδPE /2sx

]
,

CI
(
σ̂ 2

pN

) = [
σ 2

pN
− zδPE /2sp, σ 2

pN
+ zδPE /2sp

]
,

where zδPE /2 = √
2erf−1(1 − δPE ), 1 − δPE is the confidence

level, and er f −1(x) is the inverse function of the error func-
tion.

In the following, we calculate the secret key rate in the
finite-size scenario for the symmetric and most asymmetric
cases. In the symmetric case, the lower bound of the secret
key rate is

K low = Kfinite
PSA

[
T low

A , T low
B ,

(
σ 2

xN

)up
,

(
σ 2

pN

)up]
. (18)

However, in the most asymmetric case the situation is
different. The lowest transmittance T low

B does not mean Eve’s
strongest attack. In contrast, there is an optimal TB = T max

B for
Eve’s attack. This means that the minimum value of the secret
key rate is described by

K low = n

N

{
βIab|r

[
T low

A , T low
B ,

(
σ 2

xN

)up
,

(
σ 2

pN

)up]
−χaE |r

[
T low

A , T up
B ,

(
σ 2

xN

)up
,

(
σ 2

pN

)up] − �(n)
}
,(

TB < T max
B

)
,

K low = Kfinite
PSA

[
T low

A , T low
B ,

(
σ 2

xN

)up
,

(
σ 2

pN

)up]
,(

TB > T max
B

)
. (19)

Figure 8 shows the secret key rate K low as a function of
transmission distance L in the symmetric and most asym-
metric cases considering the finite-size effect. The modula-
tion variance is optimal for each distance. In addition, we
optimize the ratio n/N to obtain the largest secret key rate
with N total samples. Results show that the influence of
the finite-size effect cannot be neglected. The fewer signals
exchanged, the more pronounced this effect. As the number
of exchanged signals increases, more signals can be used
for parameter estimation and key extraction, and the secret
key rate approximates to the asymptotic scenario. When the
number of exchanged signals is 1010, the performance of the
protocol almost reaches that of the asymptotic scenario, and

FIG. 8. Secret key rate vs transmission distance with finite-size
effect in (a) symmetric and (b) the most asymmetric cases (5.2-dB
squeezing). From left to right, the block length N is equal to 107,
108, 109, 1010, and ∞. Modulation variance is optimal, and other
parameters are set to δPE = ε̄ = 10−10, εA = εB = 0.002, β = 0.99,
η = 0.6, and vel = 0.1.

total maximal transmission distances up to approximately 10
and 56 km can be achieved for practical homodyne detections
in the symmetric and most asymmetric cases, respectively.
Obviously, if a higher k value is used, the performance can
be improved further.

V. CONCLUSIONS

In summary, we have proposed a CV-MDI-QKD scheme
using modulated squeezed states and investigated its security
under a two-mode Gaussian attack. The results show that the
proposed protocol outperforms the coherent- and squeezed-
state protocols in terms of the secret key rate and maximal
transmission distance. It was found that the imperfection of
a practical homodyne detector has a significant impact on
the performance of the protocol. To overcome this limitation,
we applied the PSA technology to the proposed protocol.
Furthermore, we analyzed the security of the protocol in the
finite-size scenario. Further theoretical studies including the
composable security analysis [42–46] and Gaussian postse-
lection [47] are expected. For the experimental realization,
even though the experimental preparation of squeezed states
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is more complex than that of coherent states, the technol-
ogy of generating squeezed states has become relatively
mature. For instance, the technology of generating a mixed
5.2-dB squeezed state is now readily available. In addition,
15-dB squeezing has been observed in experiment [48]. On
the other hand, optical phase-sensitive amplifiers have been
demonstrated in various experiments. Therefore, the proposed
protocol is feasible in principle.
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APPENDIX A: EQUIVALENT EB SCHEME OF
MODULATED SQUEEZED-STATES PROTOCOL

In this Appendix, we establish an equivalent EB schem-e of
the modulated squeezed-states protocol. In Fig. 9, Alice (Bob)
starts with an EPR state ρA0A with variance VA and applies
a BS transformation with transmission efficiency 1/2 onto
modes A0 and I . The output mode a is detected by a homodyne
detector, and the mode A of the EPR state is sent to Charlie via
a quantum channel.

To establish the equivalence of the PM and the EB
schemes, the following conditions should be satisfied:

VA = s+VAM, VA|a = s. (A1)

To meet the second condition, two additional modes, I0 and
I , are introduced. The covariance matrix γI0I describing the
EPR state with variance WI is given by

γI0I =
⎡
⎣ WI I

√
W 2

I − 1σz√
W 2

I − 1σz WI I

⎤
⎦. (A2)

Using the relation a = (A0 + I )/
√

2, we have

CAa = 〈xAxa〉 = 1√
2

〈
xAxA0

〉 = 1√
2

√
V 2

A − 1,

Va = 〈
x2

a

〉 = 1

2

(〈
x2

A0

〉 + 〈
x2

I

〉) = 1

2
(VA + WI ). (A3)

The conditional variance is therefore given by

VA|a = VA − C2
Aa

Va
= VAWI + 1

VA + WI
. (A4)

FIG. 9. Equivalent EB scheme of the modulated squeezed-states
protocol. The preparation of the modulated squeezed states is re-
placed by an EPR source combined with a homodyne detection.

Then, applying Eq. (A1), we finally obtain

WI = VAs − 1

VA − s
. (A5)

APPENDIX B: CALCULATION OF THE SECRET
KEY RATE

We consider a joint two-mode Gaussian attack. Eve mixes
her two ancillary modes together with the incoming modes.
Here, the two ancillary modes are extracted from a reservoir of
entangled ancillas, {E1, E2, e}, and have the covariance matrix
of the form [33]

γE1E2 =
[
ωAI G

G ωBI

]
, G =

[
g 0

0 g′

]
, (B1)

where ωA and ωB are the variances of the thermal noise
introduced by E1 and E2, respectively. g and g′ represent
the quantum correlations between the two modes and must
satisfy the physical constraints imposed by the Heisenberg
uncertainty principle. In addition, the optimal correlated at-
tack has proven to be the “negative EPR attack,” in which Eve
injects EPR entanglement into the channels to destroy the Bell
detection [27]:

g′ = −g = φ,

φ = min{
√

(ωA − 1)(ωB + 1),
√

(ωA + 1)(ωB − 1)}. (B2)

We assume that VA = VB = V and WI = WJ . Then, the
resulting covariance matrix γab|r is

γab|r = 1

2

[
(V + WI )I 0

0 (V + WI )I

]

− (V 2 − 1)

2

⎡
⎢⎢⎢⎢⎣

TA
θ1

0 −
√

TATB

θ1
0

0 TA
θ ′

1
0

√
TATB

θ ′
1

−
√

TATB

θ1
0 TB

θ1
0

0
√

TATB

θ ′
1

0 TB
θ ′

1

⎤
⎥⎥⎥⎥⎦,

(B3)

where

θ1 = (TA + TB)V + (1 − TA)ωA + (1 − TB)ωB

− 2
√

1 − TA

√
1 − TBg + 2χhom,

θ ′
1 = (TA + TB)V + (1 − TA)ωA + (1 − TB)ωB

+ 2
√

1 − TA

√
1 − TBg′ + 2χhom. (B4)

Here, χhom = (1 − η)/η + vel/η is the total noise intro-
duced by the realistic homodyne detector relative to the sig-
nal’s input (C1 or D1).

The covariance matrix of the state, conditioned on Alice’s
measurement result (xa), can be written as

γ
xa
b|r = γb|r − σab|r (Xγa|r X )MPσ T

ab|r, (B5)

where γb|r , σab|r , and γa|r are the submatrices of the covariance
matrix γab|r , MP denotes the Moore-Penrose inverse of a
matrix, and X = diag(1, 0). After some simple algebra, we
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obtain the explicit form of γ
xa
b|r ,

γ
xa
b|r =

[
ξ1 0
0 ϕ1

]
, (B6)

where

ξ1 = (V + WI )[ξ + (V 2 − 1)TB]/2ξ,

ξ = −(V + WI )θ1 + (V 2 − 1)TA,

ϕ1 = [V + WI − (V 2 − 1)TB/θ ′
1]/2.

The Shannon mutual information between the trusted par-
ties can be calculated by the first diagonal elements of the
matrices γb|r and γ

xa
b|r :

Iab|r = 1

2
log2

Vb|r
V xa

b|r
= 1

2
log2

ϕ2

ξ1
, (B7)

where ϕ2 = [V + WI − (V 2 − 1)TB/θ1]/2.

The Holevo bound χaE |r is given by

χaE |r = S
(
ρA0B0|r

) − S
(
ρ

xa
B0I0I ′|r

)
, (B8)

where the entropy S(ρA0B0|r ) can be calculated from the sym-
plectic eigenvalues λ1,2 of the covariance matrix γA0B0|r ,

γA0B0|r =
[
V I 0
0 V I

]

− (V 2 − 1)

⎡
⎢⎢⎢⎢⎣

TA
θ1

0 −
√

TATB

θ1
0

0 TA
θ ′

1
0

√
TATB

θ ′
1

−
√

TATB

θ1
0 TB

θ1
0

0
√

TATB

θ ′
1

0 TB
θ ′

1

⎤
⎥⎥⎥⎥⎦.

(B9)

The symplectic eigenvalues are given by

λ2
1,2 = 1

2 (A ±
√

A2 − 4B), (B10)

where A = 2V 2 + [ξ 2
2 − V (θ1 + θ ′

1)ξ3]/θ1θ
′
1, B = V 2(ξ3 − V θ1)(ξ3 − V θ ′

1)/θ1θ
′
1, ξ2 = (V 2 − 1)TA − (V 2 − 1)TB, and ξ3 =

(V 2 − 1)TA + (V 2 − 1)TB.
Similarly, the entropy S(ρxa

B0I0I ′|r ) is determined from the symplectic eigenvalues λ3,4,5 of the covariance matrix γ
xa
B0I0I ′|r ,

γ
xa
B0I0I ′|r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V − φ1

τ
0 −

√
2WI φ2

τ
0 −φ2φ5

τ
0

0 V − (V 2−1)TB

θ ′
1

0 φ2√
2θ ′

1
0 0

−
√

2WI φ2

τ
0 2WI φ3

τ
0

√
2φ3φ5

τ
0

0 φ2√
2θ ′

1
0 φ4

2 0 − φ5√
2

−φ2φ5

τ
0

√
2φ3φ5

τ
0 WI − φ2

5θ1

τ
0

0 0 0 − φ5√
2

0 WI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B11)

where

φ1 = (V + WI )(V 2 − 1)TB,

φ2 = (V 2 − 1)
√

TATB, φ3 = V θ1 − (V 2 − 1)TA,

φ4 = V + WI − (V 2 − 1)TA/θ ′
1, φ5 =

√
W 2

I − 1,

τ = (V + WI )θ1 − (V 2 − 1)TA. (B12)

The symplectic eigenvalues λ3,4,5 can be calculated by
finding the (standard) eigenvalues of the matrix i�γ

xa
B0I0I ′|r ,

where

� = n=3⊕
k=1

[
0 1

−1 0

]
. (B13)

At this stage, the Holevo quantities χaE |r are given by

χaE |r = S
(
ρA0B0|r

) − S
(
ρ

xa
B0I0I ′|r

)
=

2∑
i=1

g

(
λi − 1

2

)
−

5∑
i=3

g

(
λi − 1

2

)
. (B14)

APPENDIX C: PARAMETER ESTIMATION IN
FINITE-SIZE SCENARIO

We assume that m = N − n number of signals are used for
parameter estimation. Then, we can write the estimator of the

transmissivity tA as follows:

t̂Ax = 2

[∑
m
i=1xM

A,ixC2,i∑
m
i=1

(
xM

A,i

)2

]2

, t̂Ap = 2

[∑
m
i=1 pM

A,i pD2,i∑
m
i=1

(
pM

A,i

)2

]2

.

(C1)
We assume that t̂Ax and t̂Ap have the following normal

distribution,

t̂Ax ∼ N [E(t̂Ax ), Var(t̂Ax )], t̂Ap ∼ N [E(t̂Ap), Var(t̂Ap)],

(C2)

where the mean and variance of t̂Ax and t̂Ap are given, respec-
tively, by [41]

E(t̂Ax ) = tA, E
(
t̂Ap

) = tA,

Var(t̂Ax ) = 8tA
m

(tA + tB/2)

[
1 + σ 2

xN

(tA + tB/2)VAM

]
,

Var(t̂Ap) = 8tA
m

(tA + tB/2)

[
1 + σ 2

pN

(tA + tB/2)VPM

]
. (C3)

The optimal estimator of the variance is then given by [49]

Var(t̂A) = Var(t̂Ax )Var(t̂Ap)

Var(t̂Ax ) + Var(t̂Ap)
:= σ 2

A . (C4)
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Similarly, we have Var(t̂B) = σ 2
B . In addition, the unbiased

estimator of σ 2
xN

is

σ̂ 2
xN

= 1

m − 2

m∑
i=1

[
xC2,i − 1√

2

(√
t̂BxM

B,i −
√

t̂AxM
A,i

)]2

, (C5)

which has the following distribution:

(m − 2)σ̂ 2
xN

σ 2
xN

∼ χ2(m − 2). (C6)

Then, the mean and variance of σ̂ 2
xN

are

E
(
σ̂ 2

xN

) = σ 2
xN

, Var
(
σ̂ 2

xN

) = 2

m − 2

(
σ 2

xN

)2
:= s2

x . (C7)

Similarly, Var(σ̂ 2
pN

) = s2
p. Furthermore, we have T̂A/B =

t̂A/B/ηk. Finally, we obtain the confidence intervals (CIs) with
confidence level 1 − δPE ,

CI(T̂A) = [TA − zδPE /2σA/ηk, TA + zδPE /2σA/ηk],

CI(T̂B) = [TB − zδPE /2σB/ηk, TB + zδPE /2σB/ηk],

CI
(
σ̂ 2

xN

) = [
σ 2

xN
− zδPE /2sx, σ 2

xN
+ zδPE /2sx

]
,

CI
(
σ̂ 2

pN

) = [
σ 2

pN
− zδPE /2sp, σ 2

pN
+ zδPE /2sp

]
. (C8)
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