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Abstract: Continuous variable quantum key distribution (CV QKD) is a promising candidate
for the deployment of quantum cryptography. At present, the longest distance is limited to ∼100
km at fiber-based quantum channel. We investigated in depth the realistic rate–distance limit
(RDL) of CV QKD, considering reconciliation efficiency, finite-size effect, and realistic excess
noise under collective attack. It is shown that the excess noise generated on Bob’s side degrades
significantly the transmission distance and we verify it in experiment. The improvement in
RDL by reconciliation efficiency depends on the excess noise level, considerable increase of
RDL by improving the reconciliation efficiency occurs only for relative large excess noises. A
convergence modulation variance, useful in calculation simplification, is found. Furthermore,
we restudy the finite-size analysis and eliminates a loophole arising from the Holevo-bound
information monotonicity and a safe RDL is guaranteed. Based on the revised finite-size analysis,
the optimum ratio determining the amount of data used for parameter estimation is analyzed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum key distribution (QKD) allows two distant parties to share secret keys based on the
laws of quantum physics. Eavesdropping on the key information are inevitably discovered, and
the eavesdropped information can be eliminated to ensure security. This technology can provide
an effective solution for high-security applications. Current QKD protocols can be divided
into three categories [1–8]: discrete-variable (DV), continuous-variable (CV), and distributed
phase-reference (DPR) protocols. The DV QKD protocol employs the discrete variables of a
quantum state, such as the polarization or phase of single photons, whereas in the CV scheme,
the key information is encoded in continuous variables, such as the quadratures of quantized
electromagnetic modes (coherent states or squeezed states). The DPR coding scheme resorts to
the phase difference between two successive signal pulses or the photon arrival times to encode
the key information. In the paper, we focus on CV protocols.

Early CV protocols primarily focused on squeezed and entangled states [9–12]. In 2002,
Grosshans and Grangier proposed the famous GG02 protocol [13], which realized QKD using only
a coherent state instead of nonclassical states. Then reverse reconciliation method was designed
to beat the 3-dB limit. In 2003, the GG02 protocol was demonstrated experimentally [14];
afterward, CV QKD entered a period of rapid development. Various protocols were proposed
and realized experimentally [15–27]. Prototypes were also developed, and some field tests were
reported [28–31]. At present, CV QKD can be realized using low-cost off-the-shelf components
with good compatibility with classical communications. Thus, it is considered a promising
candidate for enabling the deployment of quantum cryptography in future networks. Currently,
the longest distance of CV QKD remains limited to ∼100 km in experiments. The performance
of the CV QKD system depends mainly on the reconciliation efficiency, finite-size effect, and
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excess noise. In this work, we investigated in depth the realistic rate-distance limit (RDL) of CV
QKD, considering reconciliation efficiency, finite-size effect, and realistic excess noise under
collective attack.

At present, a reconciliation efficiency of 99%, near the Shannon limit, can be achieved [32].
In this study, it is found that improvements in the rate-distance limit (RDL) by increasing
reconciliation efficiency depend on the excess noise. When the excess noise is larger, the
improvement is more obvious. A convergence modulation variance is found and can be used to
substitute the optimal modulation variance, especially for long transmission distances. Revisiting
the finite-size effect, we reveal a loophole from the monotonicity of the Holevo bound. A safe
and tight RDL is then used to ensure the security of system. The optimal ratio determining
the amount of data used for parameter estimation is analyzed. The statistic effect and privacy
amplification effect due to finite size are analyzed and we found that statistic effects are dominant.
Based on a detailed investigation of the CV QKD system, we find that the excess noise generated
on Bob’s side is the main factor restricting the RDL and verify it in experiment. Finally, we
discuss the possible ways to break the realistic RDL.

In Sec. 2, RDLs of several typical CV QKD protocols and the related experimental results
are reviewed. In Sec. 3, the RDLs for different reconciliation efficiencies are analyzed. In Sec. 4,
the finite-size effect on the RDL is analyzed. A loophole due to the monotonicity of the Holevo
bound was revealed and eliminated and a safe and tight RDL was established. Section 5 focuses
on the excess noise analysis model and the realistic RDL is presented. Finally, Sec. 6 presents
the conclusions and the methods to break the realistic RDL are discussed.

2. Review of the RDL under realistic parameters

Presently, various CV QKD protocols have been proposed, such as one-way, two-way, and
measurement-device-independent (MDI) protocols. Hereafter, we focus on the one-way coherent-
state protocols that have been experimentally demonstrated in all-fiber systems. The secret key
rate ∆I under collective attack and reverse reconciliation condition can be calculated by

∆I = βIAB − χBE , (1)

where IAB is the Shannon mutual information between Alice and Bob, β is the reverse reconcilia-
tion efficiency, and χBE is the maximum information accessed by Eve bounded by the Holevo
quantity. The RDLs of several typical protocols with realistic parameters in the asymptotic
case are presented in Fig. 1, as well as some representative experimental results. Notably, only
collective attack is considered in our study.

To achieve reasonable RDLs under realistic conditions, typical parameters are used: rec-
onciliation efficiency β = 0.95 , excess noise ε = 0.01 (shot noise units, SNU), detection
efficiency η = 0.6, electronic noise νe = 0.1, and a transmission loss of 0.2 dB/km. The modula-
tion variance is optimized according to the transmission distance (or the transmission efficiency T).
All variances are normalized to the shot noise N0. The inset figure shows that the coherent-state
protocol with heterodyne detection performs slightly better than the coherent-state protocol with
homodyne detection (GG02 protocol) at a short distance. With increasing distance, their RDLs
nearly converge. The unidimensional coherent-state protocol [26,33] with advantages of easy
modulation, low cost, and fewer random number requirements, has comparable performance
with the above two-dimensional coherent protocols. The non-Gaussian-state protocols could
realize high-speed gigahertz quantum communication using phase-shift keying technology [34].
It mainly includes two-state, four-state, and eight-state protocols. The number of states is larger,
the performance is better. For eight-state protocol, the performance approaches the GG02
protocol [35]. Here, the typical four-state protocol is presented.

In Fig. 1, we can see that the transmission distances achieved in various experiments are less
than 100 km, although the theoretical maximum transmission distance approaches ∼400 km with
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Fig. 1. RDLs and experimental results for typical CV QKD protocols.

the secret key rate of 10−9 in the asymptotic case. In this case, with a pulse rate of 1 GHz and
secret key rate of 10−9, a secret key bit rate of approximately 10 bit per second can be achieved.
There is a large gap between the currently achieved distances of ∼100 km and the theoretically
maximum transmission distance of 400 km. In the following, we analyze three fundamental
factors which affect the RDL.

3. Improvement in RDL by enhancing reconciliation efficiency

One method for improving the RDL is to enhance the reconciliation efficiency. The reconciliation
efficiency recently reached 0.99 [32], which is close to the Shannon limit. In the following, we
investigate the RDL of the GG02 protocol with different reconciliation efficiencies.

In Fig. 2, the red lines present the RDLs at a reconciliation efficiency of β = 0.99 under
different excess noise levels. Comparing them to the blue lines representing the performance
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Fig. 2. RDLs at different reconciliation efficiencies of 0.99 (red lines) and 0.95 (blue lines).
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at an efficiency β = 0.95, we observe that the improvement in the RDL is dependent on the
excess noise level. When the excess noise is larger, the improvement of the performance is more
obvious. Table 1 presents the performance improvement arising from the enhanced reconciliation
efficiency (from 0.95 to 0.99) versus different excess noise levels at a constant distance or
secret key rate. For fixed distances, the larger the excess noises, the better the secret key rate

Table 1. Performance improvement arising from the enhanced reconciliation efficiency
(from 0.95 to 0.99) versus different excess noise levels at a constant distance or secret
key rate.

Excess noise The secret key rate ratio (dB) Improved distance (km)

(SNU) @50 km @100 km @10−5 bit/pulse @10−8 bit/pulse

0.01 2.99 3.88 21.6 26.1

0.02 3.45 4.93 31.5 67.9

0.03 4.03 6.78 52.7 164.4

0.04 4.81 11.97 84.3 193.2

improvement. The reason of this phenomena is because that higher excess noise degrades βIAB,
whereas increases χBE , which makes the value of the latter approaches that of the former. In
this case, the enchancement of β is more favorable to the secret key rate improvement. It is also
noted that for a constant secret key rate, the distance improvement is more evident for a higher
excess noise level.

From Fig. 2, the decreased performance due to using lower reconciliation efficiency at the
excess noise level 0.01 is not obvious. The theoretically achievable distance at β = 0.95 and
ε = 0.01 is still far longer than the real transmission distance of ∼100 km; therefore, we infer
that the reconciliation efficiency is not the primary contributor to the largest achievable distance
at ε = 0.01.

Usually in theoretical analysis, the reconciliation efficiency of 1 is used to achieve the best
performance of a protocol. In this case, larger modulation variance is better. In the above
analysis under realistic conditions, realistic efficiency of < 1 is used. In order to achieve the best
performance, an optimal modulation variance is adopted according to the transmission distance.
For sufficiently large distances, the optimal modulation variance converges to a constant value
that depends on the reconciliation efficiency, as shown in Fig. 3(a).

Figure 3 presents the optimal modulation variance versus the transmission distance. In Fig.
3(a), from top to bottom, the reverse reconciliation efficiencies are 0.99, 0.97, 0.95, and 0.93,
with convergence variances of 10.07, 5.20, 3.71, and 2.92, respectively. To plot Fig. 3(b), the
same efficiency β = 0.99 is used for different excess noise levels. It is shown that the optimal
modulation variance and convergence variance remain almost unchanged for different excess
noise levels. Upon reaching a maximum transmission distance which depends on the excess noise
levels, the convergence variances suddenly disappear at the stop lines, as marked in Fig. 3(b).

Figure 4 plots the RDLs with optimal modulation variances and convergence variances at
different excess noise levels. We observe that little difference appears between the RDLs of the
optimal modulation variance and the convergence variance at the same excess noise (Fig. 4(a)).
Even for short distances, the difference is not significant, as shown in Fig. 4(b). In some cases,
particularly for long transmission distances, the convergence variance can be used to simplify the
calculation. In the following calculation considering the finite-size effect and realistic excess
noise, the convergence modulation variance is used instead of the optimal modulation variance.
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Fig. 3. Optimal modulation variance versus the transmission distance at different reconcilia-
tion efficiencies and different excess noise levels. (a) The curves at different reconciliation
efficiencies where ε = 0.01. (b) The curves at different excess noise where β = 0.99.

Fig. 4. The RDLs with optimal modulation variances and convergence variances at different
excess noise levels. (a) The y-axis is the secret key rate. (b) The y-axis is the ratio of the
secret key rate at optimal modulation variance (OMV) to that at convergence modulation
variance (CMV).

4. RDL considering the finite-size effect

In the above analysis, we mainly consider the RDLs in the asymptotic case. As the total number
of data samples in real scenarios is always finite, the finite-size effect must be considered. The
expression used to calculate the secret key rate considering the finite-size effect is [33, 36–38]

∆I f
AB
= (n/N) ·

(
βIδPE

AB
− χδPE

BE − ∆ (n, δPA)

)
, (2)

where ∆I f
AB

is the secret key rate in a finite-size situation. δPE is the distribution probability of
the estimated parameters such as the channel efficiency T and noise variance σ2, that is beyond
the confidence intervals when considering the finite-size effect. It is different from the asymptotic
case in which the channel parameters can be perfectly estimated. In this case, the minimum
Shannon mutual information IδPE

AB
and the maximum Holevo information χδPE

BE can be calculated
based on the confidence intervals of the estimated parameters.

n is the number of data samples used to distill the secret key rate, N represents the total
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number of samples, and the rest of the data samples with numbers m = N − n are used for
parameter estimation. ∆ (n, δPA) is a correction term for the achievable mutual information in
the finite case, and δPA is the probability of an error during privacy amplification. Usually,
conservative values of δPE = δPA = 10−10 are utilized.

The monotonicity of information IAB and χBE is the basis for analyzing the finite-size effect.
In our review of the finite-size effect, we find that one assumption in the finite-size analysis is
incorrect which generates a loophole. In the original analysis [34], a conclusion is achieved that
the information χBE eavesdropped by Eve obeys the following inequalities:

∂ χBE

∂t

����
σ2

< 0 and
∂ χBE

∂σ2

����
t

> 0 , (3)

where the variable t is the square root of transmission efficiency T , σ2 = N0 + νe + ηTε is the
noise variance of Bob’s data. The variable η is the detection efficiency, N0 is the shot noise, νe
is the electronic noise, and ε is the excess noise. More details can be seen in [39]. However,
through a detailed numerical analysis, we find that the curve representing Holevo information
versus T is not monotonically decreasing. The calculation method in Appendix can be used to
verify the convexity of χBE . Thus, we should restudy the finite-size effect.

The results of numerical calculations are presented in Fig. 5. The blue dot, black dashed,

Fig. 5. Various kinds of information versus the transmission efficiency.

and red solid curves represent the secret key rate ∆IAB, Shannon mutual information IAB, and
the Holevo bound information χBE , respectively. We can see clearly that χBE versus T is not
monotonically decreasing. A red circle is used to mark the peak. The three curves are based on
the condition that the variable σ2 is constant.

To calculate the secret key rate, the variables t and σ2 should be evaluated from the experiment
data. Because of the finite-size effect, the estimated values t̂ and σ̂2 may have any value in the
confidence ranges [tmin, tmax] and [σ2

min, σ
2
max], respectively, with the probability 1 − δPE . In

order to calculate a safe secret key rate, calculating the maximum value of χBE should be divided
into two situations because of its convex function character versus T . In this case, the expressions
used to calculate the secret key rate in the regime of finite-size effect can be written as

∆I f
AB
= n

N

[
β · IAB

(
tmin, σ

2
max

)
− χBE

(
tmax, σ

2
max

)
− ∆ (n, δPA)

]
, tmax < tpeak

∆I f
AB
= n

N

[
β · IAB

(
tmin, σ

2
max

)
− χBE

(
tmin, σ

2
max

)
− ∆ (n, δPA)

]
, tmin > tpeak

(4)
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where tpeak is the square root ofTpeak, which corresponds toT where Eve eavesdrops the maximum
information. When the transmission efficiency is larger than tpeak, tmin is used to maximize the
information χBE . When the transmission efficiency is smaller than tpeak, tmax is used to maximize
the information χBE . If tpeak is located within [tmin, tmax], we can move the value of tpeak out of
the region by changing the modulation variance. On the other hand, the information χBE versus
noise σ2 is a monotonic increasing function, and σ2

max is used in any case. Because the mutual
information IAB has the following properties

∂IAB
∂t

����
σ2

> 0 and
∂IAB
∂σ2

����
t

< 0 , (5)

Thus tmin and σ2
max are used to calculate the minimum mutual information IAB in any cases.

Using Eq. (4), safe and tight RDLs can be achieved as shown in Fig. 6(a). The dashed

Fig. 6. (a) Tight and loose RDLs with different numbers of total samples. (b) The
corresponding optimal ratio.

curves are loose RDLs, and the solid curves are tight RDLs. From left to right, the numbers
of total samples are 108 (blue lines), 1010 (green lines), and 1012 (red lines). When the total
number of samples is larger, the difference between the solid and dashed lines of the same color
is minimized and the red dashed and solid lines nearly overlap. The black line represents the
asymptotic case. Here, the tight or loose RDLs are drawn with optimal ratios, as shown in
Fig. 6(b). The ratio is defined as dividing m by the total number N , where m is the amount
of data used for the parameter estimation. When the distance or total number N varies, the
optimal ratio R corresponding to the largest secret key rate varies accordingly. Here, the optimal
ratio can be determined by scanning all possible ratios at a fixed distance and total number N .
Obviously, the optimal ratio Rimp = m/N with the improved tight calculation method has the
same variation tendency as the ratio Rori = m/N in the original loose calculation method. Both
ratios increase with increasing transmission distance for a constant number of total samples.
For a fixed transmission distance, the optimal ratios decrease with increases in the number of
total samples. This is a very useful rule in determining the number of data used for parameter
estimation in experiment.

The solid lines in Fig. 6(a) only reflect the expected case E(t̂) or E(σ̂2) . In fact the estimated
values t̂ or σ̂2 can take any values in the confidence regions [tmin, tmax] and [σ2

min, σ
2
max] with a

probability of 1 − δPE in realistic conditions. For example, when the total number of samples is
on the order of 1012, the RDL should be distributed between the red dotted line (Lmin bound) and
the red dotted-dashed line (Lmax bound). The longest transmission distance is nearly 190 km.

In the above, the finite-size effect is analyzed by analyzing two main factors simultaneously.
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One is the statistics effect generated by βIδPE

AB
− χδPE

BE ; the other is the privacy amplification
effect generated by ∆ (n, δPA). In the following, we investigate the effect of them on the key rate
individually. The reduction of the secret key rate due to the statistic effect is defined as

∆ST = βIAB − χBE −

(
βIδPE

AB
− χδPE

BE

)
, (6)

and the reduction of the secret key rate due to the privacy amplification effect is defined as

∆PA = ∆ (n, δPA) . (7)

The total reduction is therefore
∆ = ∆PA + ∆ST . (8)

Then reduction ratios are defined by

RST = ∆ST /∆ and RPA = ∆PA/∆ . (9)

Figure 7 plots the reduction ratios versus the transmission distance at different total numbers
of samples. From left to right, the numbers of total samples of the blue, green, and red lines
are 108, 1010, and 1012, respectively. The solid lines are the reduction ratios due to the statistics
effect. The dot lines are the reduction ratios due to the privacy amplification effect. Comparing
the solid and dashed lines, the statistic effect is more important than the privacy amplification
effect. When the number of total samples is fixed, the ratios RST and RPA decrease and increase,
respectively, with the transmission distance. When the transmission distance is fixed, the ratios
RST and RPA increase and decrease, respectively, with the number of total samples.

Fig. 7. The reduction ratios RST and RPA versus the transmission distance with different
total numbers of samples.

5. Realistic RDLs

In the above analysis, we can see that the finite-size effect play a key role in limiting the
transmission distance. In this section, the RDLs considering realistic excess noise are analyzed
and realistic RDLs are achieved.

In general, the estimated excess noise in CV QKD system increases with the distance.
Controlling the excess noise to less than 0.01 for long transmission distances in experiments is
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extremely challenging [19, 25]. It is shown that the excess noise εl from the fiber based quantum
channel is usually small [40] and the excess noise εa generated on Alice’s side is usually constant.
In this case, we find that the excess noise εb generated on Bob’s side mainly contribute to above
phenomenon. The excess noise εb can be attributed to the measurement error, such as the error
due to the fluctuations of the relative phase (between the signal and the local oscillator) and the
drift of the homodyne output. To illustrate this question clearly, a typical model for describing
Alice’s and Bob’s variable in CV QKD is as follows:

y = t · x + z , (10)

where the variable y represents the measured quadrature of the signal field by Bob, and its
variance is denoted as VB. The variable x is Alice’s variable encoded on the quadrature of
prepared quantum states, and its variance is VM . The variable z follows a Gaussian distribution
with the variance σ2 = ηT (εa + εl) + εb + N0 + νe and a mean of zero, where the excess noise
εb generated on Bob’s side is introduced to reflect the measurement error. Eq. (10) can be
transformed into a variance form as

VB = ηTVM + ηT (εa + εl) + εb + N0 + νe . (11)

The realistic excess noise εr can be calculated by

εr = (ηT (εa + εl) + εb) /ηT = εa + εl + εb/ηT . (12)

Notably, the excess noise is referred to the input port of the channel for security. From
Eq. (12), we can see that the excess noise increase with the transmission efficiency T and
the detection efficiency η due to the term εb/ηT . This is due to the fact that εb generated on
Bob’s side occurs after the transmission of the quantum state and thus doesn’t attenuate with
the channel transmission efficiency. When referred to the input port of the quantum channel,
it will be amplified by a factor of 1/ηT . In order to verify the above theoretical analysis, the
excess noises at different transmission distances were measured using a CV QKD prototype [30].
The traditional method to estimate the excess noise can be seen in [36]. In our experiment, the
parameters are set to VM = 10, νe = 0.1, η = 0.6. The measurement results are shown in Table 2,
from which we can see that the estimated excess noise increases with the transmission distance.
For comparison, Fig. 8 shows the experimental outcomes (black square points) and the simulated
realistic excess noise εr (cyan solid line) as a function of the transmission distance. The relevant
parameters for simulation of εr are εa + εl = 0.005, εb = 0.0005, and η = 0.6. We find that the
experimental results agree with the theoretical predictions approximately.

The realistic RDLs versus the distance for a GG02 protocol in both the asymptotic (black

Table 2. Excess noises at different transmission distances.

Distance (km) 0 20 50 80 100

Excess noise 0.00517 0.01337 0.01582 0.07212 0.09791

Standard Deviation 0.00233 0.0042 0.00972 0.02419 0.02916

dashed line) and finite-size cases (blue, green and red lines) are also illustrated in Fig. 8. For
comparison, the performance of the system at a fixed excess noise of ε = 0.01 in asymptotic
case is also presented (black solid line). For the realistic RDL, because the realistic excess noise
rapidly increases with the transmission distance, the maximum transmission distance is limited
to approximately 100 km. It is very different from the case with a fixed excess noise. The blue,
green, and red lines are the conditions considering the finite-size effect. From left to right, the
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total numbers of samples are 108, 1010, and 1012, respectively. When the total number is 1012,
the red line nearly overlaps with the black dashed line, indicating that further increases in the
total number of samples have no effect on the RDL. The results of Fig. 8 reflect the limitations of
the CV QKD system under realistic excess noise.

Fig. 8. Realistic excess noise and RDLs as a function of distance in asymptotic (asy) and
finite-size cases.

6. Conclusions and discussion

In this study, we investigate the realistic RDL of CV QKD. At first, we present the RDLs
considering the fixed excess noise and the experimental results of several typical protocols.
Theoretical calculations indicate that the longest distance of 400 km can be achieved with a
secret key rate of 10−9 bits/pulse. However, the real transmission distance is limited to ∼100
km with the channel loss of 0.2 dB/km. In order to find the reasons for this gap, the RDLs
considering reconciliation efficiency, finite-size effect, and realistic excess noise are analyzed
under collective attack. We find that the improvement in RDL by enhancing reconciliation
efficiency is dependent on the excess noise. If the excess noise is larger, the improvement is
more obvious. The convergence modulation variance is found as a substitute for the optimal
modulation variance, thus simplifying the calculation. Furthermore, the RDL considering the
finite-size effect is restudied; a loophole due to the monotonicity of χBE is eliminated and a
tight RDL is presented. The optimal ratios determining the number of data used to evaluate the
parameters are analyzed in different conditions. The reduction ratios due to the statistic and
privacy amplification effects are analyzed individually, we find that the statistical effect is more
important than the privacy amplification effect. More importantly, the excess noise generated on
Bob’s side play a crucial role on the realistic RDL, which was verified by our experiment.

The above simulations are based on standard telecom single-mode fibers with a typical
attenuation of 0.2 dB/km. If ultralow-loss fiber with attenuation of < 0.16 dB/km, or satellite-
based free-space quantum communication technology are exploited, a longer distance could
be anticipated. For future experimental research, some approaches can be attempted to break
the realistic RDL, such as precisely calibrating the excess noise generated on Bob’s side and
attributing it to virtual electronic noise. Innovative methods to accurately characterize the excess
noise of the system may also be developed. On the other hand, the realistic RDL in the regime of
composable security against coherent attacks will be considered in a further theoretical analysis.
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Appendix: calculation of the secret key rate

To calculate the secret key rate ∆I, an Entanglement-based scheme as shown in Fig. 9 was used.
On Alice’s side, an Einstein-Podolsky-Rosen (EPR) state ρAB0 is used. It can be determined by
its covariance matrix γAB0 , with the following form

γAB0 =


V · I

√
V2 − 1 · σz

√
V2 − 1 · σz V · I

 , (13)

where

I =


1 0

0 1

 and σZ =


1 0

0 −1

 . (14)

After the transmission of mode B0 through the channel characterized by efficiency T and

Fig. 9. Entanglement-based scheme.

excess noise ε , the covariance matrix γAB1 has the following form

γAB1 =


V · I

√
T

(
V2 − 1

)
· σz√

T
(
V2 − 1

)
· σz T (V + χline) · I

 , (15)

where χline = (1 − T) /T + ε is the total noise added relative to channel input and (1 − T) /T is
losses-induced vacuum noise. The balanced homodyne detector (BHD) with detection efficiency
η can be model as a beam splitter with transmission η and a perfect BHD. The electronic noise
νe of it can be modelled by a thermal state ρR0 with variance VN entering the other input port of
the beam splitter, which is given by

VN = 1 + νe/(1 − η). (16)

The thermal state ρR0 could be considered as the reduced state obtained from an EPR state ρR0H .
Then the covariance matrix γAB characterizing the state ρAB after the beam splitter is given by

γAB =


V · I

√
ηT

(
V2 − 1

)
· σz√

ηT
(
V2 − 1

)
· σz T (V + χtot) · I

 , (17)
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where χtot = χline+ χhom/T is the total added noise between Alice and Bob relative to the channel
input, and χhom = (1 − η) /η + νe/η is the total noise introduced by the BHD relative to Bob’s
input.

Usually, the secret key rate considering reverse reconciliation under collective attack in the
asymptotic limit can be calculated by the following expression

∆I = βIAB − χBE, (18)

where IAB is the Shannon mutual information between Alice and Bob, β is the reverse reconcilia-
tion efficiency, and χBE is the maximum information accessed by Eve bounded by the Holevo
quantity.

IAB can be calculated directly using Shannon’s equation as follows

IAB =
1
2

log2
VA

VA|B
, (19)

where VA is the quadrature variance for Alice, being the diagonal element of matrix γA describing
mode A . Further, VA|B is the conditional quadrature variance which is equal to the diagonal
element of the conditional matrix γA|B and given by

γA|B = γA − σAB (XγBX)MP σT
AB, (20)

where

X =


1 0

0 0

 ; (21)

γA , γB , andσAB are all submatrices of the covariancematrix γAB and appear in the decomposition
of matrix γAB in Eq. (21); and MP represents the Moore-Penrose matrix inverse.

γAB =


γA σAB

σT
AB γB

 . (22)

Eve’s accessible information can be calculated using

χBE = S (ρE ) − S
(
ρxBE

)
, (23)

where S (ρ) is the von Neumann entropy of the quantum state ρ. For an n-mode Gaussian state
ρ, this entropy can be calculated using the symplectic eigenvalues of the covariance matrix γ
characterizing ρ as follows

S (ρ) =
∑
i

G
(
λi − 1

2

)
, (24)

where G (x) = (x + 1) log2 (x + 1) − x log2 x. The symplectic eigenvalues of a covariance matrix
γ with N modes can be calculated by finding the absolute eigenvalues of the matrix iΩγ.

As states ρAB1E and ρxB
ARHE

are pure, S (ρE ) = S
(
ρAB1

)
and S

(
ρxB
ARH

)
= S

(
ρxBE

)
. The

entropy S (ρAB) can be calculated from the symplectic eigenvalues λ1,2 of the covariance matrix
γAB. In order to present the expression of λ1,2 concisely, the covariance matrix γAB is rewritten
as

γAB =


a · I c · σz

c · σz b · I

 . (25)
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From Eq. (24), the symplectic eigenvalues can be written as

λ1,2 =

√
1
2

[
∆ ±

√
∆2 − 4D2

]
, (26)

where
∆ = a2 + b2 − 2c2 and D = ab − c2. (27)

Similarly, the entropy S
(
ρxB
ARH

)
can be determined from the symplectic eigenvalues λ3,4,5

of the covariance matrix γxB
ARH

. The matrix γxB
ARH

characterizing the state ρxB
ARH

after Bob’s
projective measurement can be determined using the following equation

γxB
ARH

= γARH − σARH ;B(XγBX)MPσT
ARH ;B . (28)

Matrices γARH , γB and σARH ;B appear in the decomposition of matrix γARHB, i.e. ,

γARHB =


γARH σARH ;B

σT
ARH ;B γB

 , (29)

which can be obtained by rearranging the lines and columns of matrix γABRH describing the
state ρABRH . Specifically, γABRH can be obtained by applying a beam splitter transformation
SB1R0 to modes B1 and R0, as follows

γABRH =
[
I ⊕ SB1R0 ⊕ I

] [
γAB1 ⊕ γR0H

] [
I ⊕ SB1R0 ⊕ I

]T
, (30)

where

SB1R0 =


√
ηI

√
1 − ηI

−
√

1 − ηI
√
ηI

 . (31)

Finally, the symplectic eigenvalues λ3,4,5 of the covariance matrix γxB
ARH

can be derived as

λ3,4 =

√
1
2

[
A ±

√
A2 − 4B2

]
and λ5 = 1, (32)

where
A =

1
b + χhom

[b + aD + χhom∆] and B =
D

b + χhom
[a + χhom∆] . (33)

Base on the above expressions, we can calculate the Shannon mutual information IAB, and
the Holevo bound information χBE . Finally, the secret key rate can be obtained. Using these
expressions we can conveniently verify the convexity of χBE .
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