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Measurement-device-independent quantum key distribution (MDI-QKD) can remove all side-channel attacks on
detectors. In the context of the dramatic progress of discrete-variable MDI-QKD and twin-field QKD, owing to the
critical challenge of continuous-variable (CV) Bell-state measurement (BSM) of two remote independent quantum
states, experimental demonstration of CV-MDI-QKD over optical fiber has remained elusive. To solve this problem, a
technology for CV-BSM of remote independent quantum states is developed that consists of optical phase locking, phase
estimation, real-time phase feedback, and quadrature remapping in the present work. With this technology, CV-BSM is
accurately implemented, and the first CV-MDI-QKD over optical fiber is demonstrated, to our knowledge. The achieved
secret key rates are 0.43 (0.19) bits per pulse over a 5-km (10-km) optical fiber. Our work shows that it is feasible to build
a CV-MDI-QKD system over optical fiber. Further, the results pave the way towards realization of a high secret key rate
and low-cost metropolitan MDI-QKD network, and serve as a stepping stone to a CV quantum repeater. © 2022 Optica

PublishingGroup under the terms of theOptica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.450573

1. INTRODUCTION

Quantum key distribution (QKD) can generate information-
theoretical secure keys between two parties over an insecure
quantum channel, in which the security of the shared keys is guar-
anteed by the fundamental laws of quantum mechanics [1–5].
However, in practice, the gap between idealized models and real-
istic devices for QKD implementations opens various security
loopholes [6] that result in a variety of targeted attacks.

Inspired by the idea of entanglement swapping, measurement-
device-independent QKD (MDI-QKD) has been proposed [7,8],
in which an untrusted third party, Charlie, is introduced to cou-
ple the quantum signals sent by Alice and Bob and implement
Bell-state measurement (BSM). MDI-QKD can naturally remove
all side-channel attacks on the measurement apparatus, which
arguably comprise the most critical security loophole in QKD
implementations.

Continuous-variable (CV) QKD protocols [9–12] encode the
key information on quadratures of quantized light fields, which
are measured by low-cost and high-efficiency balanced homodyne
detectors (BHDs) instead of dedicated single-photon detectors
(SPDs). The high-speed coherent detection technology and
infinite-dimensional Hilbert space of the encoding promise poten-
tial higher secret key rates over a metropolitan area [13]. Moreover,
because of the spatial and temporal filtering of the local-oscillator

(LO) field, CV-QKD is robust against noise photons in various
quantum channels [14–16].

Similar to discrete-variable (DV) QKD, CV-QKD also suffers
from detection side-channel attacks, e.g., wavelength [17,18],
calibration [19], and saturation attacks [20]. In contrast to the
remarkable development of DV-MDI-QKD [21–31] and twin-
field QKD [32–39], only a proof-of-principle demonstration of
CV-MDI-QKD has been reported [40], despite CV-MDI-QKD
making significant progress in theory [40–49]. Furthermore, this
demonstration utilizes only one laser source for both parties, which
is unsuitable for realistic MDI-QKD scenarios in which Alice and
Bob are far from each other. On the other hand, this experiment
exploited two short and lossless free-space quantum channels, and
the losses in the links were simulated by attenuating the variances of
the modulation signals. At present, a full experimental demonstra-
tion of CV-MDI-QKD over long-distance telecom single-mode
optical fiber is still missing.

Two key issues make the experimental demonstration of CV-
MDI-QKD over long-distance fiber challenging. The first is how
to faithfully establish a reliable phase reference between two spa-
tially separated lasers and achieve CV-BSM. Notice that CV-BSM
not only requires single-photon-level interference of two remote
independent lasers, but also demands dual-homodyne detection,
in which simultaneous measurement of a pair of conjugate quadra-
tures is performed. In this case, precise control of the relative phase
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between the signal and LO for dual-homodyne detection should be
ensured.

Another challenge arises from the untrusted and imperfect
BHDs at Charlie’s site. Note that the imperfect quantum effi-
ciency of BHDs is equivalent to optical losses that inevitably
induce vacuum fluctuation noises, which, along with detector
electronic noises, both contribute to detection noises. These noises
can be fully controlled and exploited by Eve to mask her attacks.
Hence, the performance of CV-MDI-QKD heavily depends on
the detection efficiency of BHDs.

In this paper, we demonstrate the first experimental CV-
MDI-QKD over 10 km of telecom single-mode fiber (SMF)
with high-efficiency free-space BHDs. To this end, a systematic
approach for various phase-reference establishments required by
CV-BSM between two remote independent quantum states is
proposed and implemented that consists of optical phase lock-
ing, phase estimation, real-time phase feedback, and quadrature
remapping. Furthermore, a free-space time-domain BHD with a
quantum efficiency of 99% was developed. The peak value of each
output electric pulse of the time-domain BHD yields a single value
of the signal field quadrature, which significantly simplifies the
subsequent data-acquisition procedure.

2. PROTOCOL AND SYSTEM

The preparation and measurement scheme of the CV-MDI-QKD
protocol is briefly described as follows.

Step 1. Alice and Bob randomly and independently pre-
pare their Gaussian-modulated coherent states, |X A + i PA〉,
|X B + i PB 〉, with variance VA, VB . Subsequently, Alice and
Bob send their coherent states to Charlie through independent
quantum channels.

Step 2. Charlie couples the received signal states of Alice
and Bob at a 50:50 beam splitter (BS). Then Charlie uses two
BHDs to measure the amplitude quadrature XC and phase
quadrature PC of the output modes. The measurement out-
comes for an ideal CV-BSM are XC = (1/

√
2)(X A − X B ) and

PC = (1/
√

2)(PA + PB ). After the data transmission phase
is completed, Charlie announces his measurement results:
r = (XC + i PC )/

√
2.

Step 3. Based on the measurement results published by
Charlie, Alice and Bob displace their respective raw data
as X dA = X A − g X A (r ), PdA = PA − g PA (r ) and X dB =

X B − g X B (r ), PdB = PB − g PB (r ). g ∗, ∗= X A, PA, X B , PB , is
the displacement function (see Supplement 1 for details).

Step 4. Alice and Bob perform parameter estimation, data
reconciliation, and privacy amplification through an authenticated
public channel to generate the final secret key.

In our experimental realization, we implement the Gaussian-
modulated coherent-state CV-MDI-QKD scheme. A schematic
of the experimental setup is illustrated in Fig. 1. Alice exploits a
single-frequency continuous-wave (cw) 1550-nm laser with a
linewidth of approximately 2 kHz. Two cascaded amplitude mod-
ulators (AM1 and AM2), are used to generate 50-ns light pulses at a
repetition rate of 500 kHz. The light pulses are split into signal and
phase-reference pulses by a 1:99 BS. AM3 and a phase modulator
(PM) are adopted to modulate the signal field randomly with zero-
centered Gaussian distributions in phase space. A combination of
a polarizing BS (PBS), SMF, and Faraday mirror (FM) is employed
to delay signal pulses by 300 ns to realize time-multiplexing. A
variable optical attenuator (VOA) further attenuates the inten-
sity of the signal pulses to a suitable level. Finally, the signal and
phase-reference fields are polarization-multiplexed via a PBS and
transmitted through a SMF-28 fiber spool to Charlie. A portion
of Alice’s laser is sent to Bob and interferes with Bob’s laser, the
resulting interference signal is fed into an optical phase-locked loop
(OPLL) to stabilize the relative phase between Alice’s and Bob’s
lasers.

At Bob’s site, a single-frequency cw laser with a linewidth of 4
kHz is employed, and operations similar to Alice’s are performed.
Instead of generating the signal and phase-reference fields, Bob
prepares the signal and LO fields.

At Charlie’s site, the signal and LO (reference) beams are
polarization-de-multiplexed via a PBS and then temporally aligned

Fig. 1. CV-MDI-QKD setup. BS, beam splitter; AM, amplitude modulator; AOM, acousto-optic modulator; PM, phase modulator; FM, Faraday mir-
ror; VOA, variable optical attenuator; PBS, polarizing beam splitter; PD, photodetector; PC, polarization controller; FC, fiber collimator; DL, delay line;
OH, optical hybrid; BHD, balanced homodyne detector.
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with delay lines. A portion of the LO pulses interferes with the
phase-reference pulses in a 90-deg optical hybrid, and the output
light beams are fed into two time-domain BHDs. To achieve high-
efficiency CV-BSM, the signal and LO fields are coupled from
optical fibers to free space, and the CV-BSM are implemented with
free-space bulk components that have negligible losses. Two time-
domain BHDs with a quantum efficiency of 99% are developed
to measure two conjugated quadratures. Considering the inser-
tion loss of the optical components and visibility of interference
fringes, the entire detection efficiency is 97.2% (see Supplement
1 for details). The PM located on one of the LO paths is used to
compensate for the slow phase drift for two conjugated quadratures
measurement.

In our proof-of-principle experiment, we directly synchronize
the state generation of Alice and Bob through an electrical syn-
chronization method. More precisely, at Alice’s (Bob’s) site, two
parallel pulse generators that can adjust the pulse width and clock
signal delay are used to generate 50-ns electrical pulse signals at
a repetition rate of 500 kHz to drive AM1 and AM2. Then, two
clock signals from the same signal source are input into the pulse
generators of Alice and Bob to ensure that Alice and Bob generate
pulse signals synchronously. At Charlie’s site, a portion of LO
pulses after polarization-de-multiplexing is used for clock recovery
(see Appendix C for details).

3. RESULTS AND DISCUSSION

The key challenge for CV-MDI-QKD is to achieve CV-BSM
of two independent quantum states at Charlie’s station, which
requires precise control of the relative phase between the signal and
LO. The phase-reference benchmarks for Gaussian modulation
of Alice and Bob are the phases of the reference and LO pulse,
respectively. At Charlie’s site, the LO field for CV-BSM comes
from Bob’s laser. Therefore, there exists only slow phase drift
between Bob’s signal and LO pulses when they arrive at Charlie’s
station. The slow phase drift has a typical fluctuation rate of Hertz
level, which comes from the asymmetrical Mach–Zehnder inter-
ferometers (AMZIs) employed in time-multiplexing. However,
the relative phase between Alice’s signal and LO pulses at Charlie’s
station includes both the slow phase drift due to the AMZIs and the
fast phase shift. The fast phase shift is caused by the frequency dif-
ference between Alice’s and Bob’s lasers operating in free-running
mode, the phase noise associated with the finite laser linewidth,
and the optical fiber path difference from Alice (Bob) to Charlie
[34,50,51] (see Appendix A for details).

A. Estimating of Fast Phase Shift

To this end, precise control of the relative phase between inde-
pendent lasers should be established first. Different from
twin-field (TF) QKD (TFQKD) in [39] where the relative
phase estimation is implemented using reference pulses in 10
basic periods (10 µs), we measured the fast phase shift for each
optical pulse by a 90-deg optical hybrid. Therefore, we need
only to ensure that the relative phase of the independent lasers
remains unchanged during the duration of a single light pulse.
Within the duration of a single light pulse, the phase differ-
ence between Alice’s and Bob’s independent lasers is given by
[50] 1θ0 = 2π( f A − f B ) · Td + 2π(1 f A +1 f B ) · Td , where
f A( f B ) and 1 f A(1 f B ) are the center frequency and linewidth,
respectively, of Alice’s (Bob’s) laser, and Td is the duration of the

light pulse. In our proof-of-concept experimental demonstration,
to ensure that 1θ remains constant (less than 1 deg) during the
pulse duration of Td = 50 ns to get sufficiently low excess noise,
the frequency difference of the two lasers should be less than 50
kHz. To this end, an OPLL is adopted to achieve the above require-
ments. The locking performance can be found in Supplement
1.

To estimate the fast phase shift and establish an identical phase
reference for Alice and Bob, Alice (Bob) sends out both signal
pulses and phase-reference (LO) pulses that stem from the same
pulses and have an identical optical phase. The average photon
number per reference pulse is set to approximately 104 [50] to
suppress the influence of shot noise and ensure accurate phase
estimation. Then, Charlie performs heterodyne detection and
obtains the amplitude quadrature X R and phase quadrature PR of
the phase-reference pulses with a 90-deg optical hybrid. In this way,
the fast phase shift for each signal pulse can be estimated by

1θ = tan−1

(
PR

X R

)
. (1)

B. Estimating of Slow Phase Drifts

We denote the slow phase drifts between Alice’s signal and LO
(Bob’s signal and LO) in dual-homodyne detection as ϕX

A and
ϕP

A (ϕX
B and ϕP

B ), respectively. To accurately estimate the slow
phase drifts in real time, Alice and Bob periodically insert some
phase-calibration pulses into the signal pulses [52], different from
phase-reference pulses, which are intense and can provide an accu-
rate fast phase shift estimation by measuring only a single pulse.
Each phase-calibration pulse possesses roughly 90 photons and
therefore suffers from shot noise. To eliminate the impact of shot
noise, a large number of measurement results of phase-calibration
pulses are averaged within a frame time1T = 10 ms. Note that the
slow phase drift is slow enough that it can be considered a constant
within a frame time. In our experiment, there are a total of 400
phase-calibration pulses of the same type for Bob in one frame.
However, this averaging method is not suitable for Alice, because
the measurement results of each phase-calibration pulse are com-
pletely different due to a random fast phase shift experienced by
each pulse. Here, it is proposed to apply probability statistics to the
measurement results to accurately estimate Alice’s slow phase drift
(see Appendix B for details).

C. CV-BSM

By employing the above methods, fast and slow phase drifts
can be estimated in real time. The next challenge to imple-
ment CV-BSM requires simultaneous measurements of a pair
of conjugated quadratures XC = (1/

√
2)(X A − X B ) and

PC = (1/
√

2)(PA + PB ), where X A(X B ) and PA(PB ) are the
amplitude and phase quadratures, respectively, of Alice’s (Bob’s)
signal mode. To handle this issue, a method is proposed herein
that combines real-time phase-feedback control with a quadrature
remapping scheme.

Owing to the symmetry of the optical paths of CV-BSM, the
difference of the slow phase drift of Alice, 1ϕA = ϕ

P
A − ϕ

X
A , is

exactly equal to that of Bob, 1ϕB = ϕ
P
B − ϕ

X
B . Therefore, based

on the values of ϕX
A , ϕP

A , ϕX
B , and ϕP

B estimated by the phase-
calibration pulses of Alice and Bob in real time, Charlie can apply
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Fig. 2. (a) Locked phase difference of quadratures measured by BHD3
and BHD4 within 100 s. Mean value and standard deviation of the
quadrature phase difference are 89.99◦ and 0.41◦, respectively. (b) Phase
difference 1ϕA estimated by Alice’s phase-calibration pulses. The mean
value and standard deviation are 89.88◦ and 0.59◦, respectively. Each data
point is obtained in a frame time of 10 ms.

a compensated phase shift ϕLO
PM to one of the LO fields in CV-

BSM by using a PM, so that the field quadratures measured by
dual-homodyne detection are faithfully orthogonal:

ϕP
A − ϕ

X
A + ϕ

LO
PM = ϕ

P
B − ϕ

X
B + ϕ

LO
PM =

π

2
. (2)

In the experiment, we use ϕLO
PM = π/2−1ϕB as the feedback

signal, and the corresponding modulation voltage is applied to
the PM. Figure 2(a) shows the locked phase difference of the
quadratures 1ϕB measured by Charlie within 100 s. Figure 2(b)
depicts the locked phase difference 1ϕA estimated by Alice’s
phase-calibration pulses. It can be seen that both1ϕB and1ϕA are
stabilized at 90 deg at all times, which verifies the validity of Eq. (2)
and the accuracy of Alice’s estimating method for slow phase drift.

The above quadrature phase locking ensures only that the
quadratures measured by the dual-homodyne detectors are always
conjugated to each other. However, the quadrature phases are not
fixed in phase space; instead, they fluctuate randomly. This will
cause the data measured by Charlie to be mismatched with the data
of Alice and Bob. To overcome this issue, a quadrature remapping
scheme is utilized. After Charlie performs his measurement, he
declares the estimated phase drifts1θ ,ϕX

A , andϕX
B publicly. Then,

both Alice and Bob rotate their data at hand with the estimated
phase-drift information:(

X ′A
P ′A

)
=

(
cos

(
1θ + ϕX

A

)
sin
(
1θ + ϕX

A

)
− sin

(
1θ + ϕX

A

)
cos

(
1θ + ϕX

A

)) ( X A

PA

)
,

(
X ′B
P ′B

)
=

(
cos

(
ϕX

B

)
sin
(
ϕX

B

)
− sin

(
ϕX

B

)
cos

(
ϕX

B

)) ( X B

PB

)
, (3)

where X ′A, P ′A(X ′B , P ′B ) are a pair of conjugated quadratures of
Alice’s (Bob’s) signal mode after quadrature remapping. The
rotated quadratures of Alice and Bob completely match the
requirements of CV-BSM at Charlie’s side:

X ′C =
1
√

2
(X ′A − X ′B ),

P ′C =
1
√

2
(P ′A + P ′B ), (4)

Fig. 3. Correlations of the normalized quadratures of Alice and Bob
after displacement operations.

where X ′C (P
′

C ) are Charlie’s BSM outcomes after quadrature
phase locking. For simplicity, ideal quantum channels and BHDs
are assumed here (see Supplement 1 for details).

D. Displacement Operations

Since Alice and Bob locally prepare their coherent states, the
complex amplitudes of which are independently and identically
distributed, the data between Alice and Bob are not correlated.
To extract the secret key, Alice and Bob perform displacement
operations on their own data according to Charlie’s measure-
ment results r = (X ′C + i P ′C )/

√
2 to correlate their data [53]

(see Supplement 1 for details). Figure 3 shows the correlations of
the normalized quadratures of Alice and Bob after displacement
operations.

E. Secret Key

Then, Alice and Bob estimate the covariance matrix and succes-
sively calculate the asymptotic secret key rate against collective
attacks by [40] (see Supplement 1 for details)

K = β · IAB |r − χB E |r , (5)

where r stands for the outcome of relay, IAB |r is the Shannon
mutual information between Alice and Bob, χB E |r is the Holevo
bound between Bob and Eve, and β is the reconciliation efficiency.
Here, it is assumed that Bob is the encoder and Alice the decoder.

We implement the CV-MDI-QKD scheme over different
lengths of standard telecom optical fiber. Note that the modulation
noise plays a key role in the excess noise ε of the system, and it is
proportional to the modulation variance. However, it is found
that the improvement of the secret key rate is not evident when
the modulation variances VA (Alice) and VB (Bob) are higher than
20 N0, where N0 is the shot-noise unit. Therefore, to suppress
the excess noise, the modulation variance of Alice and Bob is set
to 20 N0 and not optimized. For each channel length, the QKD
system is operated over 1 h of acquisition time. A total number of
N = 200 M signal pulses are sent out and measured for extraction
of the secret key.

The experimental results and numerical simulations for secret
key rates are illustrated in Fig. 4. Table 1 lists the relevant param-
eters used to theoretically estimate the secure key rate, where νe

and η are the electrical noise and detection efficiency of homodyne
detectors, respectively. Note that the excess noise ε is the total
excess noise of the receiver, Charlie (see Supplement 1 for details).
The red dashed-dotted curve and blue solid curve in the figure
denote the numerical simulations when the distance between Bob

https://doi.org/10.6084/m9.figshare.19465919
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Fig. 4. Secret key rates versus LA with different LB of 1.06 and 0.1
km. Red dot shows experimental result at LB = 1.06 km and LA = 5 km,
while red dashed-dotted curve denotes simulation result. Blue dots show
experimental results at LB = 0.1 km and LA = 5 and 10 km, and blue
solid curve denotes simulation result. For comparison, secret key rates
of DV-MDI-QKD with optimal APD single-photon detectors (1) and
cryogenic single-photon detectors (2) are also plotted. The green solid
curve (3) denotes the PLOB bound.

Table 1. Parameters Used to Estimate Secure Key
Rate

α β νe η VA VB ε

0.2 dB/km 0.97 0.01 0.972 20N0 20N0 0.005N0

and Charlie are LB = 1.06 km and LB = 0.1 km, respectively.
The three dots correspond to the experimental secret key rates at
different fiber transmission distances: (i) the distance between Bob
and Charlie is LB = 1.06 km, while that between Alice and Charlie
is LA = 5 km, and the resulting secret key rate is 0.10 bits/pulse. (ii)
LB = 0.1 km and LA = 5 and 10 km. The corresponding secret key
rates are 0.43 and 0.19 bits/pulse, respectively. For comparison,
the secret key rates of DV-MDI-QKD with optimal avalanche
photodiode (APD) SPDs (cryogenic SPDs) are also shown in Fig.
4 [54]. The parameters used for the secret-key-rate estimation are
η∼ 55%, Y0 ∼ 5× 10−4, ed ∼ 0.1%, and fe = 1.16 (η∼ 93%,
Y0 ∼ 10−6, ed ∼ 0.1%, and fe = 1.16), where η and Y0 are the
detection efficiency and dark count rate of SPD, ed is the intrin-
sic error rate, and fe is the error correction efficiency parameter.
Finally, the green solid curve illustrates the Pirandola–Laurenza–
Ottaviani–Banchi (PLOB) bound [13]. When the transmission
distance is less than 15 km, it is evident that the secret key rate of the
CV protocol is significantly better than that of its DV counterpart
even considering the ideal cryogenic detectors. The experimental
results of excess noises can be found in Supplement 1.

4. CONCLUSION

In conclusion, a set of technologies consisting of phase locking,
phase estimation, real-time phase feedback, and quadrature
remapping has been developed, which have the characteristics of
easy implementation and application, and high compensation
accuracy. With these technologies, CV BSM of two remote inde-
pendent quantum states was achieved, and the first experimental
demonstration of CV-MDI-QKD over 10 km of standard telecom
fiber was implemented. The proposed approaches comprise a

promising solution for construction of a high key rate and low-cost
MDI-QKD network in the scenarios of access network or local
area network, for instance, a central business district (CBD) of a
city. It also provides a feasible technical reference for the possible
metropolitan CV-MDI-QKD network. Furthermore, the devel-
oped technology of CV Bell detection of two remote independent
quantum states will be an essential unit of CV quantum repeaters
[55–57] in future wide-area quantum communication and the
quantum Internet.

In our proof-of-principle experiment, relatively low repetition
rates with light pulse widths of 50 ns are employed. To compensate
for the frequency difference of the two independent lasers, the
OPLL is adopted. Note that if a narrower pulse width is employed,
such as 1 ns, it is unnecessary to actively lock the frequency dif-
ference of the two lasers. The frequency difference of current
commercial frequency-stabilized semiconductor lasers can be
readily stabilized to be less than several MHz level, and in this case,
the relative phase variation will not change within 1 ns, so that the
experimental implementation can be simplified.

The secure key rate and transmission distance can be signifi-
cantly boosted by increasing the repetition rate and detection
efficiency. By improving both the detection efficiency and recon-
ciliation efficiency to 98%, the pulse repetition rate to 1 GHz [58],
and suppressing the excess noise down to 0.002, CV-MDI-QKD
can yield a secure key rate of 293 Mbps over 10 km of standard
telecom fiber in the finite-size regime. Furthermore, by improving
reconciliation efficiency to 99%, suppressing the electronic noise
to 0.003, the transmission distance can be extended to 28 km.

In our future work, we will increase the repetition rate of the sys-
tem to the order of GHz, and optimize the system performance to
suppress the excess noise level to 0.002 and the electronic noise to
0.003. An experiment considering the composable security under
finite code length will be implemented. Furthermore, the technol-
ogy of integrated photonic chips is a promising solution for build-
ing miniaturized transmitters for CV-MDI-QKD.

APPENDIX A: PHASE EVOLUTION ANALYSIS

In this part, we analyze the phase evolution of Alice’s signal and
reference pulses, and Bob’s signal and LO pulses in detail, which is
beneficial to understand the phase estimation and compensation
methods. As shown in Fig. 5, the phase evolution of Alice’s signal
and reference pulses can be expressed as follows:

S X
A = θ

A
src + θ

A
mod + θ

A
DL + θ

A
ch + θ

C
ac + θ

C
c d ,

S P
A = θ

A
src + θ

A
mod + θ

A
DL + θ

A
ch + θ

C
ac + θ

C
ce ,

R A = θ
A
src + θ

A
ch + θ

C
DL1 + θ

C
ab, (A1)

where S X
A (S

P
A ) represents the phase of Alice’s signal pulse before

BS2 (BS3), R A represents the phase of Alice’s phase-reference
pulses at the input port of the optical hybrid, θ A

src is the phase of
Alice’s laser, θ A

mod is the modulation phase of Alice, θ A
DL is the accu-

mulated phase by Alice’s delay fiber, θ A
ch is the accumulated phase

by the transmission fiber from Alice to Charlie, θC
ac is the accumu-

lated phase from the input port of Charlie to BS1 that couples the
signal pulses of Alice and Bob, and θC

c d is the accumulated phase
from BS1 to BS2. Other phases in Eq. (A1) have expressions similar
to the above.

The phase evolution of Bob’s signal and LO pulses can be
expressed as follows:

https://doi.org/10.6084/m9.figshare.19465919
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Fig. 5. Schematic of the phase evolution in CV-MDI-QKD.

S X
B = θ

B
src + θ

B
mod + θ

B
DL + θ

B
ch + θ

C
f c + θ

C
c d ,

S P
B = θ

B
src + θ

B
mod + θ

B
DL + θ

B
ch + θ

C
f c + θ

C
ce ,

L X
B = θ

B
src + θ

B
ch + θ

C
DL2 + θ

C
f h + θ

C
hd,

L P
B = θ

B
src + θ

B
ch + θ

C
DL2 + θ

C
f h + θ

C
he ,

L R
B = θ

B
src + θ

B
ch + θ

C
DL2 + θ

C
f g , (A2)

where S X
B (S

P
B ) represents the phase of Bob‘s signal pulse before

BS2 (BS3), L X
B (L

P
B ) represents the phase of the LO pulse before

BS2 (BS3), and L R
B represents the phases of LO pulses at the input

port of the optical hybrid. Note that the above optical phases will
slowly fluctuate due to the influence of the external environment
such as temperature and vibration.

The fast phase shift measured by the optical hybrid is given by
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A
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Thus, we have
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(A4)

From Eq. (A4), we can see that the relative phase between Alice’s
signal pulses and LO pulses consists of two parts: the fast phase shift
caused by independent lasers and transmission fiber links, and the
slow phase drift accumulated by different optical paths. However,
the relative phase between Bob’s signal and LO pulses includes only
the slow phase drift.

APPENDIX B: SLOW DRIFT PHASE ESTIMATION

From Eq. (A4), due to the existence of various phase shifts, the
actual measurement results of the CV-BSM are

XC =
1
√

2

[(
X A · cos

(
1θ + ϕX

A

)
+ PA · sin

(
1θ + ϕX

A

))
−
(
X B · cos ϕX

B + PB · sin ϕ
X
B

)]
,

PC =
1
√

2

[(
X A · cos

(
1θ + ϕP

A

)
+ PA · sin

(
1θ + ϕP

A

))
+
(
X B · cos ϕP

B + PB · sin ϕ
P
B

)]
.

(B1)

For the slow phase drift, we use phase calibration pulses to
accurately estimate the current phase in real time. We find that
the fluctuation rate of the slow phase drift associated with varia-
tions of the optical lengths is of the order of Hertz, so that it can
be considered as a constant within a frame time of 1T = 10 ms.
There are 5000 pulses within one frame, and these pulses will be
further divided into 50 data packets, whose patterns are shown
in Supplement 1. In Bob’s data packet, the first 24 pulses are
phase calibration pulses divided into three groups with phases of
θ B

mod ∈ {0, 2π/3, 4π/3}. The amplitudes of the corresponding
pulses in Alice’s data packet are modulated to zero. The next 40
pulses are used as phase calibration pulses for Alice with phase
θ A

mod = 0 for the first 20 pulses and θ A
mod = π/2 for the second

20 pulses. The amplitudes of the corresponding pulses in Bob’s
data packet are modulated to zero. Both Alice and Bob modulate
the amplitude of the subsequent 16 pulses to zero for shot noise
calibration. The last 20 pulses are employed as key pulses.

https://doi.org/10.6084/m9.figshare.19465919
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From Eq. (B1), the measurement results of Bob’s phase calibra-
tion pulses are

X B,0
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1
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· r B · cos ϕX
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(B3)

where r B is the amplitude of the phase calibration pulses and
x j

N , p j
N ( j = 1, 2, 3) denote vacuum fluctuation noises, which

are independently and identically distributed Gaussian noises
with zero mean. In our experiment, each phase calibration pulse
includes around 90 photons; thus, a single phase calibration pulse
cannot provide accurate phase estimation due to the influence of
vacuum fluctuations. To eliminate the impact of vacuum noise and
obtain an accurate estimated value, we average the measurement
results of 400 of Bob’s phase calibration pulses with the same
modulation phase in each frame. We denote the average values of
three types of phase calibration pulses as U X

0 , U X
2 , U X

4 , U P
0 , U P

2 ,
and U P

4 . In this case, slow phase drifts ϕX
B and ϕP

B can be estimated
by

tan(ϕX
B )=

√
3(U X

4 −U X
2 )

2U X
0 −U X

2 −U X
4

,

tan(ϕP
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√
3(U P
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2 )

2U P
0 −U P

2 −U P
4

. (B4)

The measurement results of Alice’s phase calibration pulses are
given by

X A,0
C =

1
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· r A · cos(1θ1 + ϕ
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A )+ x 4

N,

X
A, π2
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N, (B5)
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A )+ p4

N,

P
A, π2

C =
1
√

2
· r A · sin(1θ2 + ϕ

P
A )+ p5

N, (B6)

where r A is the amplitude of the phase calibration pulses, and1θ1,
1θ2 are fast phase shifts measured by the optical hybrid, which

Fig. 6. Statistics distribution diagram obtained with the results of
Alice’s phase calibration pulses in one frame. Blue dots are experimental
results derived from 1000 pairs of phase calibration pulses. The red solid
curve denotes Gaussian fitting of experimental data.

are known in the estimation process of the slow phase drift. x j
N ,

p j
N ( j = 4, 5) denote vacuum fluctuation noises. Because the fast

phase shift of each phase calibration pulse is random, the impact
of vacuum noise cannot be eliminated by simply averaging a large
number of measurement results of Alice’s phase calibration pulses
with the same modulation phase.

To estimate ϕX
A and ϕP

A , we propose a feasible estimation
method that can be obtained by two phase calibration pulses
modulated with phases zero andπ/2:

tan(ϕX
A )≈

X
A, π2
C · cos(1θ1)− X A,0

C · sin(1θ2)

X A,0
C · cos(1θ2)+ X

A, π2
C · sin(1θ1)

,

tan(ϕP
A )≈

P
A, π2

C · cos(1θ1)− P A,0
C · sin(1θ2)

P A,0
C · cos(1θ2)+ P

A, π2
C · sin(1θ1)

. (B7)

In this way, we can get 1000 phase estimate values in each frame.
By making a probability statistics and Gaussian fitting on the
estimated values, the phase values corresponding to the maximum
probability distribution are extracted and regarded as the estimated
values of slow phase drifts ϕX

A and ϕP
A . Since the vacuum noises

are Gaussian noises with zero mean, the maximum probability
distribution is zero, and the impact of vacuum noise can be elimi-
nated. Figure 6 shows a typical statistics distribution diagram ofϕX

A
obtained in terms of the measured phase calibration pulses in one
frame.

APPENDIX C: CLOCK SYNCHRONIZATION

In the case of no long-distance transmission fibers being con-
nected, we select the appropriate length of delay fibers at the sites
of Alice, Bob, and Charlie, so that the signal and reference pulses
of Alice, and the signal and LO pulses of Bob arrive at the four
BHDs at the same time. When Alice and Bob are connected to
long-distance transmission fibers of different lengths, they select
the appropriate delay through their pulse generators, so that the
delay within one repetition period can be compensated for. For
example, the distance between Bob and Charlie is shorter than that
of Alice and Charlie, so Bob’s signal pulses will arrive at Charlie’s
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site first. In this case, we discard those early arrival signal pulses
from Bob until the first signal pulse of Alice arrives.

At Charlie’s site, a portion of the LO pulses after polarization-
de-multiplexing is detected by a photodetector, and the output
electrical pulses are input into a homemade clock recovery module
to obtain an amplified sync signal with adjustable delay. By finely
adjusting the delay, the peak value of each output electrical pulse
of the time-domain BHDs can be sampled by the data acquisition
card to yield a single value of the signal (reference) field quadrature.

When considering an actual field CV-MDI-QKD, the solu-
tion demonstrated in [39] can be used. The basic procedure is as
follows: Charlie sends synchronized laser-pulse trains to Alice and
Bob to synchronize the laser pulses of Alice and Bob and Charlie’s
local clock. The measured arrival times at Charlie’s site are used
as a feedback signal to adjust the relative delay between the syn-
chronization laser-pulse trains of Alice and Bob, to ensure that the
arrival times of Alice and Bob’s laser pulses are the same.
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