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Abstract
The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both
classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical
and mechanical modes. To date, studies of NOEMS using van der Waals (vdW) heterostructures are very limited,
although vdW materials are known for emerging phenomena such as spin, valley, and topological physics. Here, we
devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-
electro-mechanical couplings in one single device. We demonstrated several functionalities, including nano-
mechanical resonator, vacuum channel diodes, and ultrafast thermo-radiator, using monolithically sculpted graphene
NOEMS as a platform. Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/
graphene vdW NOEMS is further demonstrated. Our results suggest that the introduction of the vdW heterostructure
into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.

Introduction
Modern sensors are often designed to couple optical,

electrical, and mechanical degrees of freedom in nano-
scales in a single device; it thus helps in exploring many
emerging properties in both classical and quantum
regimes1–5. Systems constructed for the above purposes
are defined as nano-opto-electro-mechanical system
(NOEMS), which offers tremendous opportunities to
control the photonic, acoustic, and electric behaviors in
nanodevices, sometimes operating at very low power
consumption2, and may be expanded in quantum systems
such as superconducting circuits1. Recently, other than

the usually adopted bulk materials, van der Waals (vdW)
materials have been increasingly attractive for investiga-
tions in NOEMS. For example, a valley-mechanical cou-
pling in a suspended monolayer MoS2 resonator was
probed with circularly polarized lights6.
Indeed, two-dimensional (2D) vdW materials are of

particular interest for future nano-electronic applications,
owing to their peculiar mechanical and electro-magnetic
performances7–10. More importantly, vdW layers can be
vertically interfaced into arbitrary heterostructures that
incorporate inter-layer coupling in themselves, giving rise
to the reconstruction of band structures that are enriched
of quantum and topological physics both optically and
electrically11–17. In addition, in many circumstances, vdW
functional monolayers require packaging with protecting/
supporting layers such as hexagonal boron nitride (h-BN),
in order to preserve their intrinsic optical properties from
environmental inhomogeneities. It is thus expected that
vdW heterostructures are inherently an ideal platform to
serve as NOEMS. However, due to a lack of a reliable
fabrication method, the NOEMS studies involving vdW
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heterostructures are so far very limited. Recently, a cavity-
modulated photon luminescence emission behavior was
reported in suspended h-BN/MoSe2/h-BN hetero-
structures18.
In this work, we utilize the vdW vertical assembly as a

platform to devise a monolithically sculpted nano-opto-
electro-mechanical coupler. By adopting the dry-transfer
method19, we present a new fabrication process for sus-
pending arrays of two-terminal or multi-terminal vdW
heterostructures, which does not require such as critical
point drier or hot acetone method to obtain suspended
2D material in conventional methods. Instead, with a one-
step etching process, one can define a suspended vdW
heterolayer with multifunctional potentials, which has not
been achieved before. Hence, complicated vdW hetero-
structures with multifunctional applications could be
fabricated using our new method with high sample yields.
Taking the h-BN/graphene heterostructure, for example,
several functionalities, including nano-mechanical reso-
nator, vacuum channel diodes, and ultrafast thermo-
radiator are realized in one single NOEMS device. Quality
factors of mechanical resonances in them are found to
exceed 103 at room temperature. Nanovacuum channel
thermionic emission diodes with on-off ratios of 105 were
achieved in the same nanostructure. In the meantime, the
h-BN/graphene NOEMS can serve as an ultrafast
thermal-radiator modulated via electrical Joule heating.
The principle-of-work of the proposed monolithically
sculpted nano-opto-electro-mechanical coupler can be
expanded to a wide variety of 2D materials and their
heterostructures, which sheds light on future lab-on-a-
chip electronic systems based on vdW NOEMS.

Results
Monolithically sculpted vdW heterostructure mechanical
resonator
The advantages of the NOEMS made of suspended vdW

heterostructures in this work are that vdW materials
exhibit enriched spin, valley, and topological properties,
with usually ~102MHz resonance frequency that can be
further coupled to an energy scale of such as Landau
levels20. Furthermore, the conduction channel of gra-
phene allows us to utilize the suspended nanostructure as
a filament to demonstrate ultrafast electron emitter,
which is of stronger mechanical strength and can be
patterned into multi-terminal configuration, which was
not achievable in those devices constructed out of a single
atomic layer studied before21–23. Moreover, vdW based
devices are believed to be resistant under radiation
environment, as will be discussed in the next sections.
Now we introduce the example of application of
mechanical resonator realized using the method in this
work. Holey h-BN with thicknesses of about 100–300 nm
were first prepared with plasma etching, as shown in

Fig. 1a. Multi-layered vdW heterostructures are then
deposited onto the holey h-BN (Fig. 1b), forming vdW
films sealed cavities shown in Fig. 1c. Micrometer-sized
suspended vdW multi-layered beams can thus be fab-
ricated by a sole final step of dry etching. As shown in
Fig. 1d, the heterostructure suspended beams on pre-
patterned cavities can then serve as nano-mechanical
resonators with 2D materials functional layers ready to
be coupled for optical and electrical measurements. It is
found that with a cavity depth of about 200 nm, the
success rate of suspension is 100% when the lateral sizes
are less than 3 μm (Fig. 1e, f), which is quite robust and
facile as compared to the conventional monolayered
suspension of 2D materials, while the latter usually
adopts dedicated process using critical point drier or a
hot acetone technique24. More details of the workflow of
the fabrication process can be found in Supplementary
Fig. S1.
Figure 2a illustrates typical devices of two-terminal vdW

heterostructure (h-BN/graphene as an example was
demonstrated here) resonators fabricated using the
method in Fig. 1. To determine the mechanical resonance
of the vdW NOEMS, the suspended h-BN/graphene
beams were modulated by an AC voltage capacitively
coupled with the out-of-plane motion. As shown in
Fig. 2b, an optical interferometry setup was established to
sensitively monitor the displacement of the emitters and a
fast photodiode was used to detect the interferometric
strength of the reflected laser. A vector network analyzer
(VNA) was applied as an AC excitation to actuate the
resonators and to read the mechanical resonance. DC
back gate voltage was provided by a separate voltage
source. By testing the h-BN/graphene suspended hetero-
structure, we obtained typical gate-tunable resonance
amplitude versus AC-driven frequency and DC gate vol-
tage at room temperature, with resonance frequency f0 of
115–116MHz, as shown in Fig. 2c. A line cut at Vg=
−30 V is illustrated in Fig. 2d, in which the resonance
peak is fitted using a single Lorentzian, yielding a quality
factor Q of 697.3. Figure 2e shows the extracted Q factors
as a function of gate voltage in the same device. Mea-
surements of resonance at lower temperature and control
samples are shown in Supplementary Fig. S2.

vdW vertical vacuum channel thermionic emission diodes
In the following, we demonstrate that the fabricated

vdW NOEMS can be functioning as vertical vacuum
channel thermionic emission diodes. Optical image of
such solid device of vacuum channeled diodes and an art
view of the finish of the device architecture are shown in
Fig. 3a, b, respectively. In this configuration, the holey
h-BN is used as a supporting dielectric with the deep
holes serving as vacuum channels. In consequence, when
exerted with a large enough current in the emitter
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(suspended graphene channel that is supported by a top
h-BN beam), graphene will become a filament that shines
a bright light. And thermionic electron emission can take
place when a certain positive collector (both Au and
graphite can be used as the collector, as shown in
Supplementary Fig. S3) voltage is applied.
For monolayer graphene vdW vertical thermionic

emission diode, it is rather vulnerable to the thermionic
electron emission tests. Many of them cannot survive
more than two cycles of emission, with the emitter
channels collapsing easily, as shown in Supplementary
Figs. S4 and S5. In the following, we will mainly focus on
few-layered graphene emitters. Typical rectifying curves
can be seen in the vertical configuration with few-layered
graphene emitters, shown in the linear and log scale in
Fig. 3c and its inset, respectively. And the thermionic

emission onset voltage is about 3–4 V, with the maximum
emission current (before the emitter channel is burnt
down) at the order of 10 nA. Subthreshold swing (SS) is
extracted to be at the order of 200 mV/decade, compar-
able with the values obtained in previously reported
nanosized vacuum tubes25,26. For thermionic emission
diodes, we define the ratio of maximum emission current
to minimum emission current versus collector voltage at a
certain Vds as an on-off ratio. According to the inset
shown in Fig. 3c, the on-off ratios can reach a level up to
105, in the condition of Vds= 4.4 V.
A simplified Richardson–Dushman model depicts that

the electrons emitted during the process of thermionic
emission depend upon the surface area of the metal
surface and the temperature of the surface, written as
IEmission ¼ AT2expð�WK�1T�1Þ27. Here, A is a constant

Source

Drain

a b c

d

Monolithic patterning
of vdW NOEMs

Plasma etch1

Top-BN

2D functional 
materials

Holey–BN 
microcavities

Au electrodeDry transfer2

Etching
+
Metallization

3

4

e

100

80

60

40

20

)
%(

tear
S

us
ce

ss

300200120100

h-BN cavity depth (nm)

f

g

Φ2 μm
1×2 μm

Suspended

Collapsed

Vg

Cavity

2×2 μm Φ3 μm

1×
2 

μm
2×

2 
μm

Φ
3 

μ m

1×
3 

μm

1×
3 

μ m

1×
3 

μ m

2×
2 

μ m

1×
4 

μm
2×

4 
μm

Fig. 1 Monolithically sculpted vdW heterostructure NOEMS. a–d Art view of the workflow for patterning suspended vdW heterostructure beams
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that is proportional to the emitter surface and being
materials-dependent, while W and T are work function
and temperature of the emitter material, respectively. By
assuming that the thermionic emission follows the law of
the blackbody radiation, we measured the spectra at room
temperature in a homemade vacuum chamber with the
setup illustrated in Supplementary Figs. S6 and S7. The
corresponding temperature can be determined by the
Planck formula (Supplementary Figs. S8–S12). By plotting
the value of IEmission as a function of T2exp(−WK−1T−1)

with the work function of 4.5 eV, we yield an A
~14.8 Acm−2K−2, qualitative agreement with the experi-
mental observations in other metallic materials28. How-
ever, more dedicated modeling may be needed to
quantitatively understand the exact behaviors in the stu-
died devices, as the Richardson model may not be suffi-
cient when it comes to low dimensional systems29.
We also performed the total ionizing dose (TID) effect

experiment in the vdW NOEMS, which is important for
our device to be used in radiation environments. In
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general, TID effect is treated as a long-term cumulative
radiation effect. The ionized charges induced by high-
energy rays and particles are trapped at either the insu-
lators interfaces or in the bulk region that can cause turn-
on voltage shift and leakage current increase. The TID

irradiation experiments were performed in a 60Co gamma
rays source with a dose rate of 50 rad(Si)s–1. During the
irradiation, the vdW vertical thermionic emission diodes
were established in a float state. As shown in Fig. 3d, the
thermionic electron emission behaviors before and after
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the radiation with a TID dose of 3Mrad(Si) are almost the
same, exhibiting great stabilities in terms of TID effect
similar to other nanosized vacuum channel transistors30.
We also compare the characteristics of our vdW ther-
mionic emission diodes with other nanosized thermionic
emission devices. As shown in Supplementary Table S1,
characteristic parameters such as On/Off emission ratio,
collector voltage, and SS are summarized. It is seen that
the vdW thermionic emission diodes investigated in this
work show maximum On/Off emission ratio of about 105,
and a SS reaching 200mV/decade. Furthermore, the
devices reported in our work are integratable using the
vdW stacking technique, which is fully compatible with
the solid-state device fabrication process.

Ultrafast thermal-radiator realized in vdW NOEMS
We now take the h-BN/graphene NOEMS as an

example to illustrate the functionality as an ultrafast
thermal-radiator. A rectangular waveform of AC current
was exerted into the suspended h-BN/graphene channel,
with a width of the peak of about 10 ns and a DC biased to
tune periodically the Joule heating. Hence pulses of
blackbody radiation can be detected via a time-resolved
single-photon detector.
Figure 4a shows typical ultrafast blackbody radiation

excited by square electrical pulse sequences with a fixed
repetition rate of 100 kHz (T= 10 μs) but various elec-
trical pulse duration ΔTE= 10, 15, 30, 40, 50, and 60 ns,
respectively. The input voltage signals (electrical voltage
pulses of the excitation trace in ns time scale recorded by
an oscilloscope) on the tested devices are presented in the
inset in Fig. 4a. And ultrafast blackbody radiation in
response to AC electrical current injection at different
repetition frequencies is shown in Supplementary Fig.
S13. It is noticed that, during the test, a bias voltage of
Vdc= 0.8 V plus an AC voltage of around 2.1 V is applied.
Electrical pulse width ΔTE versus the corresponding full
width at half maximum ΔTPhoton of the light-emission
pulse were extracted from Fig. 4a. As shown in Fig. 4b, a
quasi-linear relationship with a slope of the unity between
ΔTPhoton and ΔTE is found for ΔTE > 30 ns. An intercept
of ~14 ns on the ΔTE axis can be seen, which is attributed
to a sum of the rise time Trise plus the fall time Tfall.
Moreover, in the range of ΔTE < 20 ns, ΔTPhoton levels off
at ~13 ns (black dashed line). This value is in agreement
with that of Trise+ Tfall. Assuming the Trise and Tfall are
the same; therefore, a cooling time of ~7 ns of the
nanovacuum channel thermionic emission diode can be
estimated in the condition of a sufficient long repetition
period (~10 μs). The above dynamic analysis thus pro-
vides insights into such nanosized suspended thermionic
emission systems.
Figure 4c, d show the static Joule heating regime of

the h-BN/graphene NOEMS. Static thermionic

emission current IEmission as well as emitter channel
current Ids are recorded, in Fig. 4d. It is seen that the I–
V curve of the emitter channel (green circles in Fig. 4d)
exhibits a saturation behavior in Ids above Vds ~3.5 V. It
is noteworthy that, after the saturation regime of Ids
(3 V < Vds < 3.7 V), a clear drop of Ids is seen when the
Vds is further increased. We define this point as the
onset of detectable thermionic emission current, as
indicated by the black arrow in Fig. 4d. At Vds= 4.0 V,
emission current (red squared in Fig. 4d) can be cap-
tured from the collector electrode, which rockets into
10 nA at Vds = 4.2 V, and breaks down at 4.3 V. Similar
behavior is seen in multiple samples. In this setup, a
Keithley 2400 multi-meter was used to detect emission
current, and the sub-1 nA emission may be overlooked.
Corresponding visible light emissions are also given in
Fig. 4c for each stage of Vds.

Discussion
To this stage, we have demonstrated a multifunctional

NOEMS fabricated by monolithically sculpting a vdW
heterostructure. Taking h-BN/graphene bilayer system
as an example, optically, it can serve as an ultrafast
thermal-radiator with cavity resonant peak tunable by
the depth of the cavity (Supplementary Fig. S9). Elec-
trically, the system can be regarded as a nano-version of
the “vintage” thermionic emission diode with a vertical
vacuum channel and solid-state device structure. In
addition, mechanically the fabricated system can well
play the role of a mechanical resonator with Q factors
reaching 103 at room temperature. The observed multi-
functionalities in a single solid device well define a
prototype of NOEMS using vdW heterostructure as a
platform.
Despite the demonstrated versatility of the vdW

NOEMS in this work, there are yet rooms in them to
improve the performances such as thermionic emission
efficiency (i.e., to decrease the total power consumption)
and the emission currents, as compared to those Si-based
nanosized vacuum channel vacuum electron cold emit-
ters21,22,30–37. For example, to enhance the thermionic
electron emission current, surface coating of oxides on
the graphene emitter to further lower its work function
may be our future studies38.
As shown in Supplementary Fig. S14a, thanks to the

enriched library of 2D materials, the current studied
system can thus be expanded into those of electronic and
optical properties that involve such as spin and valley
degrees of freedom (Supplementary Fig. S14b, c). More-
over, it is noticed that the unique fabrication process of
the vdW NOEMS also allows the realizations of such as
multiple-terminal suspended vdW conduction channels,
shown in Supplementary Fig. S14d, which is of potential
for opto-electro-mechanical studies especially in the
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quantum Hall regime, which was considered technically
extremely difficult before20,39.
To further demonstrate the interplay of optical, elec-

trical, and mechanical degrees of freedom in one single

NOEMS using our technique, we now discuss a platform
for optical readout of electric and magnetic field tuning
of mechanical resonance in a CrOCl/graphene vdW
NOEMS. Recently, the temperature dependence of
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mechanical resonance in magnetic semiconductors,
such as XPS3 (X= Fe, Mn, Ni)40 and Cr2Ge2Te6

41, are
investigated. Meanwhile, magnetic field-driven redshift of
mechanical resonance in the anti-ferromagnetic (AF)
vdW insulators from AF to ferromagnetic transition
in CrI3

42. Here, we adopt an AF insulator CrOCl,
which is known to exhibit enriched magnetic phase
transitions43,44.
As shown in the SEM and AFM images in Fig. 5a, using

the fabrication technique described in Fig. 1, the CrOCl/
graphene heterostructure are fabricated into arrays of
drum-like resonators, with the monolayer graphene acting
as the capacitive coupling layer to the AC and DC gate

voltages, and the 10 nm CrOCl layer is the AF layer in this
NOEMS. A schematic picture of the coupling between
optical probe, mechanical resonance, and electrical tuning
is given in Fig. 5b. At the base temperature of 5 K in our
setup, the resonant frequency f0 at the ground state is
measured by the optical interferometer to be ~55MHz,
and at about 4 T, a shift of ~0.8MHz is observed, an order
of magnitude higher than those reported in other AF vdW
resonators42. Gate tuning of f0, and more details of the
temperature dependences can be found in Supplementary
Figs. S15–S18. Notice that the blueshift of f0 corresponds
to an increase of strain in the membrane, which is caused
by the magnetostriction effect in the few-layered CrOCl.
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Fig. 5 Demonstration of a CrOCl/graphene vdW NOEMS using our technique. a Bird view of SEM image of the CrOCl/graphene NOEMS array
using the method described in Fig. 1, with the boxed region scanned by AFM. It is seen that the drum-like cavities (dashed circles in the AFM image)
are invisible under AFM. Scale bar= 5 μm. b A cartoon illustration of the as-prepared of CrOCl/graphene NOEMS. c Color map showing the
resonance frequency of the CrOCl/graphene NOEMS in the parameter space of frequency and magnetic fields at a temperature of 5 K. d Line profile
of the resonance frequency f0 extracted from (c), as a function of magnetic field. Data were obtained in trace and retrace, with a magnetic phase
transition from H1 to H3, with f0 blueshifts of about 0.8 MHz

Zhang et al. Light: Science & Applications           (2022) 11:48 Page 8 of 10



By examining the trace and retrace of f0-μ0H curve in Fig.
5d, one can see that the system undergoes three magnetic
phase transitions (at H1, H2, and H3, respectively), which
is in agreement with the report elsewhere43,44. The CrOCl
crystal has a monoclinic phase below the Néel tempera-
ture, and exhibits a so-called stripy AF-↑↑↓↓ magnetic
ground state due to magnetoelastic coupling44. It then
reaches a ferrimagnetic phase ↑↑↑↓↓ above H3. It is thus
inferred that the few-layered CrOCl may have a structural
phase transition above H3, with the lattice constant
shrunk and hence a stiffness enhancement in the mem-
brane. Our technique thus provides a NOEMS platform
for opto-mechanical detection of complex electro-
magneto responses in vdW heterostructures.
To conclude, we devised a monolithically sculpted

nano-opto-electro-mechanical coupler with high sample
yields. Multi-functionalities, including mechanical, opti-
cal, and electrical operations, are integrated into one
single vdW NOEMS device made of h-BN/graphene. For
example, it can serve as an ultrafast thermal-radiator, a
nano-version of the “vintage” thermionic emission diode,
and a mechanical resonator. In principle, the proposed
monolithically sculpted nano-opto-electro-mechanical
vdW heterostructure system can be expanded to a wide
variety of 2D materials, and can also be shaped into multi-
terminal NOEMS. Optical readout of electric and mag-
netic field tuning of mechanical resonance in a CrOCl/
graphene vdW NOEMS is further demonstrated. Our
findings suggest that, as shown in Supplementary Fig. S14,
the monolithically sculpted suspended vdW assemblies
proposed here opens up opportunities for future NOEMS
studies with both classical and quantum degrees of free-
dom, including spin- and valley-tronics, as well as
mechanical coupling to possible quantum opto-electronic
states.

Materials and methods
The BN-encapsulated graphene was fabricated in an

ambient condition, using the dry-transfer method. A
Bruker Dimension Icon AFM was used for thicknesses
and morphology tests. Electron beam lithography was
done using a Zeiss Sigma 300 SEM with an Raith Elphy
Quantum graphic writer. The high precision of current
measurements of the devices was measured using a
LakeShore vacuum probe station at room temperature,
with an Agilent B1500A Semiconductor Device Parameter
Analyzer.
A homemade vacuum chamber (4 cm × 5 cm × 2 cm in

size) is used for monitoring the electrical and optical
performances of the vdW heterostructure NOEMS
simultaneously under a vacuum of about 10−2 mbar
(Supplementary Figs. S6 and S7). The vacuum test
chamber was inversely mounted on an X–Y scanning
stage on top of a microscope for optical measurements,

while the electrical wiring is connected from a standard
chip carrier via a vacuum feed-through. To locate the
graphene emitter, we first find the sample by optical
microscope. Then a mild voltage of Vds ~3 V (corresponds
to an Ids of ~10mA) is applied onto the emitter channel,
in which condition no observable light emission can be
seen by the CCD camera. However, at such current
density, a very faint blackbody radiation starts to occur,
which can be captured by the single-photon detector. One
can thus carry out spatial mapping and precisely locate
the center position of the emitter (Supplementary Fig. S8).
For optical interferometric detection, the beam of a

temperature-controlled semiconductor laser (λ= 780 nm)
was focused on vdW NOEMS samples with a spot radius
of ~2 μm and its power density was kept in a range from 4
to 8 μWμm−2. The samples were mounted in a helium-
free cryostat under a vacuum below 10−2 mbar. The
reflected laser was detected by a fast photoreceiver with a
–3 dB bandwidth at 650MHz. The actuation AC voltage
(lower than ~4mV) between the graphene emitter and the
back gate was supplied by a VNA to modulate the
reflection of the optical cavity formed by the graphene
emitter and the collector. The out-of-plane displacement
was monitored by such optical interferometry and mea-
sured as a function of driven frequency by the same VNA.
Mechanical resonance data of different h-BN/graphene
samples at low temperatures are shown in Supplementary
Fig. S2.
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