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Einstein-Podolsky-Rosen (EPR) steering, as one of the most intriguing phenomenon of quantum mechanics,
is a useful quantum resource for quantum communication. Understanding the type of EPR steering in a graph
state is the basis for application of it in a quantum network. In this paper, we present EPR steering in a Gaussian
weighted graph state, including a linear tripartite and a four-mode square weighted graph state. The dependence
of EPR steering on weight factor in the weighted graph state is analyzed. Gaussian EPR steering between two
modes of a weighted graph state is presented, which does not exist in the Gaussian cluster state (where the
weight factor is unit). For the four-mode square Gaussian weighted graph state, EPR steering between one and
its two nearest modes is also presented, which is absent in the four-mode square Gaussian cluster state. We also
show that Gaussian EPR steering in a weighted graph state is also bounded by the Coffman-Kundu-Wootters
monogamy relation. The presented results are useful for exploiting EPR steering in a Gaussian weighted graph
state as a valuable resource in multiparty quantum communication tasks.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering, proposed by
Schrödinger in 1935, is an intriguing phenomena in quantum
mechanics [1–3]. Suppose Alice and Bob share an EPR entan-
gled state which is separated in space. It allows one party, say
Alice, to steer the state of a distant party, Bob, by exploiting
their shared entanglement [1–4], i.e., the state in Bob’s station
will change instantaneously if Alice makes a measurement on
her state. EPR steering stands between Bell nonlocality [5]
and EPR entanglement [6] and represents a weaker form of
quantum nonlocality in the hierarchy of quantum correlations.
EPR steering can be regarded as verifiable entanglement
distribution by an untrusted party, while entangled states need
both parties to trust each other and Bell nonlocality is valid
assuming that they distrust each other [7].

EPR steering has recently attracted increasing interest in
quantum optics and quantum information communities [7–9]
. Different from entanglement and Bell nonlocality, asymmet-
ric feature is the unique property of EPR steering [9–13],
which is referred to as one-way EPR steering. In the field of
quantum information, EPR steering has potential applications
in one-sided device-independent quantum key distribution
[14], channel discrimination [15], secure quantum teleporta-
tion [16,17], quantum secret sharing (QSS) [18], and remote
quantum communication [19,20]. It has also been shown
that the direction of one-way EPR steering can be actively
manipulated [21], which may lead to more consideration in
the application of EPR steering. Experimental observation

*suxl@sxu.edu.cn

of multipartite EPR steering has been reported in optical
network [11] and photonic qubits [22,23] . Very recently, the
monogamy relations for EPR steering in a Gaussian cluster
state have been analyzed theoretically in the multipartite state
[18] and demonstrated experimentally [24].

A graph state is a multipartite entangled state consisting of
a set of vertices connected to each other by edges taking the
form of a controlled phase gate [25–29]. A cluster state is a
special instance of a graph state where only the neighboring
interaction existed and the weight factor is unit [25–28].
A weighted graph state describes the state with nonunit
weight factor, which denotes the interaction between vertices
[28–30]. The graph state is a basic resource in quantum in-
formation and quantum computation. For example, multiparty
Greenberger-Horne-Zeilinger (GHZ) state and cluster state
have been used in quantum communication [31–35] and one-
way quantum computation [36,37], respectively.

It has been shown that for some unweighted multipartite
entangled state, Gaussian EPR steering between two modes
does not exist, for example, any two modes in tripartite GHZ
state [38,39] and the two nearest-neighboring modes in four-
mode square cluster state [24]. It is curious whether EPR
steering, which does not exist in an unweighted state, can be
achieved in a weighted graph state. In this paper, we present
the property of EPR steering in a Gaussian weighted graph
state, including a linear tripartite and a four-mode square
weighted graph state. By adjusting the weight factor of the
weighted graph state, the dependence of EPR steering on
weight factor is analyzed. EPR steering between two modes,
which is not observed in a tripartite Gaussian GHZ state,
is presented in a linear tripartite weighted graph state. For
the four-mode square weighted graph state, EPR steering
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between one and its two neighboring modes, which does not
exist in a four-mode square Gaussian cluster state, exists in
the four-mode square weighted graph state. We also show
that the CKW-type monogamy relation is still valid in the
Gaussian weighted graph state. Different from the steerabil-
ity properties in a previous studied tripartite and four-mode
Gaussian cluster state, which belong to an unweighted graph
state, we observe interesting steerability properties in Gaus-
sian weighted graph states. These new steerability properties
will inspire potential applications of Gaussian weighted graph
states. The existence of EPR steering in a weighted graph state
between any two modes will lead to a potential security risk
when it is applied to implement QSS.

II. GAUSSIAN EPR STEERING

The properties of a (nA and mB)-mode Gaussian state of a
bipartite system can be determined by its covariance matrix

σAB =
(

A C
C� B

)
, (1)

with matrix element σi j = 〈ξ̂iξ̂ j + ξ̂ j ξ̂i〉/2 − 〈ξ̂i〉〈ξ̂ j〉, where
ξ̂ ≡ (x̂A

1 , p̂A
1 , . . . , x̂A

n , p̂A
n , x̂B

1 , p̂B
1 , . . . , x̂B

m, p̂B
m)�is the vector of

the amplitude and phase quadratures of optical modes. The
submatrixes A and B are corresponding to the reduced states
of Alice’s and Bob’s subsystems, respectively. The covariance
matrix σAB, which corresponds to the optical modes Â and B̂,
can be measured by homodyne detection systems.

The steerability of Bob by Alice (A → B) for a (nA + mB)-
mode Gaussian state can be quantified by [40]

GA→B(σAB) = max

⎧⎪⎨
⎪⎩0, −

∑
j:ν̄AB\A

j <1

ln(ν̄AB\A
j )

⎫⎪⎬
⎪⎭, (2)

where ν̄
AB\A
j ( j = 1, . . . , mB) are the symplectic eigenvalues

of σ̄AB\A = B − C�A−1C, derived from the Schur complement
of A in the covariance matrix σAB. The steerability of Alice by
Bob [GB→A(σAB)] can be obtained by swapping the roles of A
and B.

We analyze tripartite and four-mode steering in a linear
tripartite and a four-mode square Gaussian weighted graph
state in the paper. This is done by using the criterion proposed
in Ref. [40], where the multipartite steering is analyzed by
calculating all possible bipartite separations. In this context,
Alice and Bob perform local Gaussian measurements on their
own optical modes.

III. GRAPH STATE

A graph state is described by a mathematical graph, that
is a set of vertices connected by edges [27–29]. A vertex
represents a physical system, e.g., a qubit or a continuous vari-
able (CV) qumode. An edge between two vertices represents
the physical interaction between the corresponding system.
Formally, a weighted graph state is described by

G = (V, E ) (3)

of a finite set V ⊂ N and a set E ⊂ [V ]2, the elements of
which are subsets of V with two elements each. A finite set

of n vertices V is connected by a set of edges E , in which the
strength of interaction is indicated by weight.

Every CV cluster state can be represented by a graph. CV
cluster states with weighted graph are CV stabilizer states,
but, different from it, weighted graph states for qubits are
not stabilizer states [28]. Ideal CV cluster states admit a
convenient graphical representation in terms of a symmetric
adjacency matrix C (C = C� ), whose ( j, k) entry Cjk is equal
to the weight of the edge linking node j to node k (with no
edge corresponding to a weight of zero) [28]. The CV cluster
state associated with graph C is expressed by [28]

|�C〉 = exp

(
i

2
x̂�Cx̂

)
|0〉⊗N

p , (4)

where x̂ = (x̂1, . . . , x̂N)� is a column vector of Schrödinger-
picture position operators. Thus the quadrature relations (so-
called nullifiers) of CV cluster states are expressed by [28]

p̂a −
∑
b∈Na

Cabx̂b → 0,∀a ∈ G, (5)

where x̂a = â + â† and p̂a = (â − â†)/i stand for amplitude
and phase quadratures of an optical mode â, respectively.
The modes of b ∈ Na are the nearest neighbors of mode â.
Cab represents the strength of interaction between modes b̂
and â. When the Cab is unit, it corresponds to a standard
unweighted cluster state. While the weight factor is not equal
to 1, it corresponds to a weighted graph state. For an ideal case
(infinite squeezing), the left-hand side trends to zero, so that
the state is a simultaneous zero eigenstate of them (and of any
linear combination of them).

A. Linear tripartite weighted graph state

The graph representation of a linear tripartite weighted
graph state is shown in Fig. 1(a). In the ideal case, quan-
tum correlations of the tripartite weighted graph state are
expressed by

p̂A − CABx̂B → 0,

p̂B − CABx̂A − CBCx̂C → 0,

p̂C − CBCx̂B → 0, (6)

FIG. 1. Schematic for achieving the weighted graph state.
(a) The graph representation of a linear tripartite Gaussian weighted
graph state. (b) The graph representation of a four-mode square
Gaussian weighted graph state. (c) The schematic for preparing a
linear tripartite Gaussian weighted graph state. (d) The schematic for
preparing a four-mode square Gaussian weighted graph state.
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where Cjk is the weight factor, which represents the strength
of interaction between modes j and k. A linear tripartite
weighted cluster state can be prepared by coupling a phase-
squeezed and two amplitude-squeezed states of light on two
beam splitters T1 and T2, as shown in Fig. 1(c).

To cancel the effect of antisqueezing noise completely,
the weight factors are required to satisfy the conditions of
CAB = √

T1/
√

(1 − T1)(1 − T2) and CBC = √
T2/

√
1 − T2, re-

spectively. Here, the tripartite weighted graph state is prepared
by keeping the transmittance of T1 = 1/3 unchanged and
adjusting the transmittance of T2 as an example. In this case,
weight factors are represented by CAB = 1/

√
2(1 − T2) and

CBC = √
T2/

√
1 − T2, respectively. Thus the quantum corre-

lations between the amplitude and phase quadratures of the
tripartite weighted graph state are expressed by

�2( p̂A − CABx̂B) = 3 − 2T2

2 − 2T2
e−2r,

�2( p̂B − CABx̂A − CBCx̂C ) = 3

2 − 2T2
e−2r,

�2( p̂C − CBCx̂B) = 1

1 − T2
e−2r, (7)

where the subscripts correspond to different optical modes
and �2 represents the variance of amplitude or phase quadra-
ture of a quantum state. When T2 is equal to 1/2, the output
state is a tripartite unweighted cluster state. The details of
covariance matrix for the tripartite Gaussian weighted graph
state can be found in Appendix A.

B. Four-mode square weighted graph state

The graph representation of a four-mode square weighted
graph state is shown in Fig. 1(b). In the ideal case, the quadra-
ture correlations of the four-mode square Gaussian weighted
graph state are expressed by

p̂A − CACx̂C − CADx̂D → 0,

p̂B − CBCx̂C − CBDx̂D → 0,

p̂C − CACx̂A − CBCx̂B → 0,

p̂D − CADx̂A − CBDx̂B → 0, (8)

where Cjk is the strength of interaction between modes j and
k. As shown in Fig. 1(d), the four-mode weighted graph state
can be prepared by coupling two phase-squeezed and two
amplitude-squeezed states of light on an optical beam-splitter
network, which consists of three optical beam splitters with
tramsmittances of T1, T2, and T3. In this paper, the four-mode
weighted graph state is prepared by fixing the transmittances
T1 = 1/5, T3 = 1/2 and adjusting the transmittance of beam
splitter T2.

Similarly, to cancel the effect of antisqueezing noise com-
pletely, the weight factors are required to satisfy CAC =
CAD = CA = √

2T2 and CBC = CBD = CB = √
2(1 − T2), re-

spectively. Because the weight factor between mode Ĉ and
neighboring modes is equal to that between mode D̂ and
neighboring modes, modes Ĉ and D̂ are completely symmetric
in the four-mode weight graph state.

In this case, the quantum correlations between the ampli-
tude and phase quadratures of the four-mode square Gaussian

weighted graph state are expressed by

�2( p̂A − CAx̂C − CAx̂D) = (1 + 4T2)e−2r,

�2( p̂B − CBx̂C − CBx̂D) = (5 − 4T2)e−2r,

�2( p̂C − CAx̂A − CBx̂B) = 3e−2r,

�2( p̂D − CAx̂A − CBx̂B) = 3e−2r, (9)

where the subscripts correspond to different optical modes,
CA and CB represent the weight factors, i.e., the strength of
interaction between mode Â and its neighboring mode (Ĉ or
D̂), and that between mode B̂ and its neighboring mode (Ĉ
or D̂), respectively. When T2 = 1/2 is chosen, the state is
a four-mode square Gaussian unweighted graph state. The
details of the covariance matrix for the four-mode square
Gaussian weighted graph state can be found in Appendix B.

IV. RESULTS

A. EPR steering in a linear tripartite weighted graph state

In the tripartite weighted graph state, EPR steering for
(1+1) mode and (1+2) mode as a function of weight factor
CBC , as an example, under Gaussian measurement are shown
in Figs. 2(a) and 2(b), respectively, where the squeezing
parameter r = 0.345 (corresponding to 3 dB squeezing) is
chosen.

FIG. 2. Dependence of steering parameter on the weight factor
CBC in the tripartite Gaussian weighted graph state. (a) The pairwise
bipartite steering between any two modes. (b) Steering parameter
between one and the remaining two modes.
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As shown in Fig. 2(a), EPR steering between any two
modes does not exist in the condition of CAB = CBC = 1,
which corresponds to a linear tripartite unweighted graph
state. However, EPR steering between any two modes appears
in a Gaussian weighted graph state, which corresponds to the
condition of CBC �= 1. The steerabilities GA→B, GB→A, and
GB→C are larger than zero in the condition of CBC < 1 (red
lines and black solid line). The other steerabilities between
two modes, including GA→C, GC→A, and GC→B, exist when
the weight factor is CBC > 1 (blue and black dashed lines).
Especially, comparing the black solid and dashed lines in
Fig. 2(a), we observe one-way EPR steering between modes
B̂ and Ĉ when the weight factor is fixed. For example, when
CBC = 1/2, only GB→C exist. The steerability GA→C and GA→B

do not exist in the case of CBC < 1 and CBC > 1, respectively.
The reason for absence of the steering is the monogamy
relation obtained from the two-observable EPR criterion [38]:
two parties cannot steer the third party simultaneously using
the same steering witness. This is the same with the results
of the unweighted graph state. From these results, we clearly
see that EPR steering between any two modes, which does
not exist in a linear tripartite CV GHZ state (an unweighted
graph state) [41], exists in the tripartite Gaussian weighted
graph state with nonunit weight factor.

The steering parameters between one and the other two
modes in the tripartite Gaussian weighted graph state are
shown in Fig. 2(b). The steerability GA→BC is not changed,
while the steerabilities GB→AC and GC→AB are changed along
with the increase of the weight factor CBC . The reason for
steerability GA→BC keeping unchanged with the weight factor
CBC is that the mode Â is not affected by the transmittance
of beam splitter T2; only modes B̂ and Ĉ are related to the
transmittance of beam splitter T2.

Secret sharing is conventional protocol to distribute a secret
message to a group of parties, who cannot access it individu-
ally but have to cooperate in order to decode it and prevent
eavesdropping, for example, if one player (Bob) can steer the
state owned by the dealer (Alice) in a three parties QSS. Bob
may have the ability to decode the secret by himself, and does
not need the collaboration with another player (Claire). In this
case, the QSS will not be secure since one player can obtain
the secret independently.

It has been shown that an unweighted tripartite Gaussian
cluster state can be used as the resource of QSS since no
steerabilities between any two modes exist [see the case of
CAB = CBC = 1 in Fig. 1(a)] [41]. Here, we have to point out
that the potential security risk may exist for three parties QSS
using a linear tripartite Gaussian weighted graph state as a
resource state, due to the existence of EPR steering between
two modes. For example, when the weight factor CBC = 1/2,
the steerabilities GA→B, GB→A, and GB→C exist, which means
that when any one of modes B̂, Â, and Ĉ is chosen as a dealer
in QSS, there will be a security risk that modes Â and B̂ may
get the secret alone. The similar result can be found in the case
of CBC > 1.

B. EPR steering in a four-mode square weighted graph state

As shown in Fig. 1(d), based on the relation between
weight factor and transmittance, we can achieve a four-mode

FIG. 3. Difference of EPR steering between unweighted and
weighted graph state, including (1+1) mode and (1+2) mode, in the
four-mode square Gaussian weighted graph state. (a) Steering param-
eter between two diagonal modes. (b) Steering parameter between
one mode (Â or B̂) and a group comprising two nearest-neighboring
modes.

square weighted graph state by changing the transmittance T2.
Because the weight factors have the relation of C2

A + C2
B = 2,

the dependence of steering parameters on the weight factor CA

is taken as an example to analyze the steering parameters of
the four-mode weighted graph state. The dependence of EPR
steering on weight factor CA under Gaussian measurements
is shown in Fig. 3, when the squeezing parameter r = 0.345
(corresponding to 3 dB squeezing) is chosen.

It has been shown that EPR steering does not exist between
any two neighboring modes and between one mode and the
collaboration of its two neighboring modes in a four-mode
square Gaussian unweighted (Cjk = 1) cluster state [24]. Dif-
ferent from the unweighted state, one-way EPR steering GA→B

and GB→A are observed in the case of 1.22 < CA < 1.41 and
0 < CA < 0.71, respectively [red solid and dashed lines in
Fig. 3(a)]. EPR steering between modes Ĉ and D̂ is invariable
even if the weight factor CA is changed (black line). This is
because the weighted graph state is obtained by changing the
beam splitter T2 between modes Â and B̂; thus the composition
of modes Ĉ and D̂ is not changed.

We also analyze the steerability between one and its two
nearest modes in the four-mode square Gaussian weighted
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graph state, which is shown in Fig. 3(b). We can see that
the EPR steering between Â (B̂) and a group comprising its
two nearest-neighboring modes (Ĉ and D̂) exists in the Gaus-
sian weighted graph state. One-way EPR steering GA→CDand
GB→CD is observed in the condition of 1 < CA < 1.22 and
0.71 < CA < 1, respectively.

Here, we only present the results that steerabilities of a
four-mode square Gaussian weighted graph state are different
from that of a four-mode square Gaussian unweighted graph
state. The details of the steerabilities of a four-mode square
Gaussian unweighted graph state can be found in Ref. [24].
Please note that although the optical mode is not transmitted
over a lossy channel, one-way EPR steering is also presented
in the Gaussian weighted graph state. The reason is that the
symmetry is broken in the Gaussian weighted graph state,
just as the previous observed one-way EPR steering in a lossy
channel [24].

C. Verification of CKW-type monogamy relation

The Coffman-Kundu-Wootters (CKW)-type monogamy
relations [39], which quantify how the steering is distributed
among different subsystems [18], are expressed by

Gk→(i, j)(σi jk ) − Gk→i(σi jk ) − Gk→ j (σi jk ) � 0,

G (i, j)→k (σi jk ) − G i→k (σi jk ) − G j→k (σi jk ) � 0, (10)

where i, j, k ∈ {Â, B̂, Ĉ} in the tripartite weighted graph state.
Here, we confirm the CKW-type monogamy relation is coin-
cident for all types of EPR steering in the linear tripartite and
four-mode square Gaussian weighted graph state, as shown in
Fig. 4.

Figure 4(a) shows the CKW-type monogamy relation
in the tripartite Gaussian weighted graph state. When the
weight factor CBC < 1, the CKW-type monogamy relations
GA→BC − GA→B − GA→C = GC→AB − GC→A − GC→B (red
dashed-dotted line), GB→AC − GB→A − GB→C = GBC→A

− GB→A − GC→A = GAB→C − GA→C − GB→C (black solid
line), and GAC→B − GA→B − GC→B (blue dashed line) are
valid, respectively. When the weight factor CBC > 1, the
CKW-type monogamy relations GA→BC − GA→B − GA→C =
GB→AC − GB→A − GB→C (red dashed-dotted line), GC→AB

− GC→A − GC→B = GBC→A − GB→A − GC→A = GAC→B −
GA→B − GC→B (blue dashed line), and GAB→C − GA→C −
GB→C (black solid line) are also valid, respectively.

We also confirm the general monogamy relations in the
four-mode square Gaussian weighted graph state [42], es-
pecially the steerabilities that are different from that of the
unweighted graph state, are valid, as shown in Figs. 4(b)–4(c),
where i, j, k ∈ {Â, B̂, Ĉ, D̂} or {Â, ĈD̂, B̂}. The CKW-type
monogamy relations, including EPR steering between modes
Â and B̂, are shown in Fig. 4(b). Due to the symmetry of modes
Ĉ and D̂, the validation of monogamy relations for mode Ĉ
are suitable for D̂. The generalized CKW-type monogamy
relations are also valid, as shown in Fig. 4(c).

When i, j, k ∈ {Â, Ĉ, D̂} are chosen, the steerabilities
GA→CD and GCD→A exist for the four-mode square Gaussian
weighted graph state as shown in Fig. 3(b). The EPR steer-
ing between modes Â and Ĉ(D̂) for the four-mode square

FIG. 4. Monogamy relation in the Gaussian weighted graph
state. (a) The monogamy relation for all types EPR steering between
one and the other two modes in the tripartite Gaussian weighted
graph state. (b), (c) Validation of generalized CKW-type monogamy
for steering in the four-mode square Gaussian weighted graph state.

weighted graph state does not exist, i.e., GA→C = 0 and
GC→A = 0, which is the same as that of the four-mode square
unweighted graph state as shown in Ref. [24]. The CKW-
type monogamy relations GA→CD − GA→C − GA→D � 0 and
GCD→A − GC→A − GD→A � 0 are always valid. The same re-
sults are obtained for steerabilities among mode B̂ and modes
(Ĉ, D̂).
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V. DISCUSSION AND CONCLUSION

EPR steering analyzed in this paper are arbitrary bipartite
separations of a tripartite and four-mode Gaussian weighted
graph states based on the necessary and sufficient criterion
under Gaussian measurements [40], which quantifies EPR
steering for bipartite separations of a multipartite Gaussian
state. A quantum system involving more than three subsys-
tems has different possible partitions, and it has been dis-
cussed for entanglement [43–45] and Bell nonlocality [46,47].
For EPR steering of Gaussian states, the criterion which is
used to quantify the quantum steering for multipartition of
a multipartite Gaussian state remains an open question until
now and it is worthy of further investigation.

The study on quantum nonlocality and EPR steering has
deepened our understanding of the foundation of quantum
theory. Recently, postquantum nonlocality has been discussed
in discrete [48] and continuous variable scenarios [49,50]. The
postquantum steering has been studied in a discrete scenario
[51,52]. However, the postquantum steering for a continuous
variable system has not been discussed, which remains an
open question.

In this paper, the quantum states are Gaussian states of a
continuous variable system and the measurements are Gaus-
sian measurements. The necessary and sufficient criterion
for EPR steering of a Gaussian state proposed in Ref. [40]
is used to quantify the EPR steering in Gaussian weighted
graph states. Recently, it has been shown that non-Gaussian
measurements can lead to extra steerability even for Gaus-
sian states [12,53], and might allow for circumventing some
monogamy constraints [38,54,55]. It will be interesting to
investigate EPR steering in Gaussian weighted graph states
with non-Gaussian measurements.

In conclusion, steering parameters in a linear tripartite
and a four-mode square Gaussian weighted graph state are
presented. Comparing with the unweighted graph state, we
conclude that a weighted graph state features richer steering
properties. EPR steering that is absent in the Gaussian un-
weighted graph state is presented in the Gaussian weighted
graph state. The pairwise bipartite steering exists in the tripar-
tite Gaussian weighted graph state. EPR steering between one
and its two nearest modes is also observed in the four-mode
square Gaussian weighted graph state, which could not be
obtained in the four-mode square Gaussian unweighted graph
state. We also show that the CKW-type monogamy relations
are valid in the Gaussian weighted graph states.

We also analyze quantum entanglement in the linear tri-
partite and four-mode square Gaussian weighted graph state.
Different from the quantum steering, quantum entanglement
is always maintained in the linear tripartite and four-mode
square Gaussian weighted graph state. This result is the same
as that obtained in Ref. [29], where the entanglement of the
weighted graph state is analyzed.

QSS can be implemented when the players are separated
in a local quantum network and collaborate to decode the
secret sent by the dealer who owns the other one mode [31].
In this case, the dealer must not be steered by any one of
two players; only the collective steerability is needed. Thus
the presence of EPR steering between any two modes in a
linear tripartite Gaussian weighted graph state shows that the
Gaussian weighted graph state is not a good resource for QSS.

There are other suitable quantum information tasks using
EPR steering in a Gaussian weighted graph state as a resource.
For example, for the tripartite Gaussian weighted graph state
with weight factor 0 < CBC < 1, the steerability between
modes Â and B̂ always exists, and only the steerability from B̂
to Ĉ exists. In this case, the state can be used as resource state
of quantum conference [56,57]. Especially, the user B (who
owns mode B̂) can send information to users A (who owns
mode Â) and C (who owns mode Ĉ), and the communication
between users B and C is one-way since only steerability from
modes B̂ to Ĉ exists. Thus this kind of quantum conference
based on the tripartite Gaussian weighted graph state is one-
way quantum conference, in which only user B can send
information to users A and C, while users A and C cannot
send information to user B.
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APPENDIX A: PREPARATION SCHEME OF THE LINEAR
TRIPARTITE GAUSSIAN WEIGHTED GRAPH STATE

In this Appendix, we present details of the preparation
scheme for the tripartite Gaussian weighted graph state. As
shown in Fig. 1(c) in the main text, the tripartite Gaussian
weighted graph state is prepared by coupling three squeezed
states on two optical beam splitters T1 and T2. Three input
squeezed states are expressed by

â1 = e−r1 x̂(0)
1 + i er1 p̂(0)

1 ,

â2 = er2 x̂(0)
2 + i e−r2 p̂(0)

2 ,

â3 = e−r3 x̂(0)
3 + i er3 p̂(0)

3 , (A1)

where ri (i = 1, 2, 3) is the squeezing parameter and the
superscript of the amplitude and phase quadratures represent
the vacuum state. Under this notation, the variances of am-
plitude and phase quadratures for vacuum state are �2x̂(0) =
�2 p̂(0) = 1. The transformation matrix of the beam-splitter
network is

U1 =
⎡
⎣ −√

T1 −√
1 − T1 0

i
√

(1 − T1)(1 − T2) −i
√

T1(1 − T2)
√

T2

−√
(1 − T1)T2

√
T1T2 −i

√
1 − T2

⎤
⎦.

(A2)

After the conversion of the beam-splitter network, the
output modes are given by

Â = −√
T1â1 −

√
1 − T1â2,

B̂ = i
√

(1 − T1)(1 − T2)â1 − i
√

T1(1 − T2)â2 + √
T2â3,

Ĉ = −
√

(1 − T1)T2â1 + √
T1T2â2 − i

√
1 − T2â3, (A3)

022328-6



EINSTEIN-PODOLSKY-ROSEN STEERING IN GAUSSIAN … PHYSICAL REVIEW A 100, 022328 (2019)

respectively. Here, we assume that the squeezed parameters of
all the squeezed states are equal (r1 = r2 = r3 = r).

The Gaussian state can be completely characterized by
a covariance matrix. Based on the expressions of input and
output states, the covariance matrix of the tripartite Gaussian
weighted graph state is expressed by

σABC =
⎡
⎣ σA f � gZ

f � σB h�

gZ h� σC

⎤
⎦, (A4)

where

f =
√

2(1 − T2)(e2r − e−2r )

3
,

g =
√

2T2(e−2r − e2r )

3
,

h = 2
√

T2(1 − T2)(e2r − e−2r )

3
,

� =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

σA =
(

1
3 e−2r + 2

3 e2r 0
0 2

3 e−2r + 1
3 e2r

)
,

σB =
(

2(1−T2 )e2r+(1+2T2 )e−2r

3 0

0 2(1−T2 )e−2r+(1+2T2 )e2r

3

)
,

σC =
(

3−2T2
3 e2r + 2T2

3 e−2r 0

0 3−2T2
3 e−2r + 2T2

3 e2r

)
,

respectively.

APPENDIX B: PREPARATION OF THE FOUR-MODE
SQUARE GAUSSIAN WEIGHTED GRAPH STATE

As shown in Fig. 1(d) in the main text, the four-mode
square Gaussian weighted graph state is prepared by coupling
four squeezed states on an optical beam-splitter network. Four
input squeezed states are expressed by

â1 = er1 x̂(0)
1 + i e−r1 p̂(0)

1 ,

â2 = e−r2 x̂(0)
2 + i er2 p̂(0)

2 ,

â3 = e−r3 x̂(0)
3 + i er3 p̂(0)

3 ,

â4 = er4 x̂(0)
4 + i e−r4 p̂(0)

4 . (B1)

When the transmittances of T1 = 1/5 and T3 = 1/2 are cho-
sen, the transformation matrix of the beam-splitter network is
given by

U2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−√
1 − T2 −2

√
T2
5 −i

√
T2
5 0

√
T2 −2

√
1−T2

5 −i
√

1−T2
5 0

0 i√
10

√
2
5 − 1√

2

0 i√
10

√
2
5

1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)

Thus the output modes from the optical beam-splitter net-
work are expressed by

Â = −
√

1 − T2â1 − 2

√
T2

5
â2 − i

√
T2

5
â3,

B̂ = √
T2â1 − 2

√
1 − T2

5
â2 − i

√
1 − T2

5
â3,

Ĉ = i√
10

â2 +
√

2

5
â3 − 1√

2
â4,

D̂ = i√
10

â2 +
√

2

5
â3 + 1√

2
â4, (B3)

respectively. Here, we assume that the squeezed parameters of
all the squeezed states are equal (r1 = r2 = r3 = r4 = r).

According to the information of input and output states, the
covariance matrix of the four-mode square Gaussian weighted
graph state is expressed by

σABCD =

⎡
⎢⎣

σA lZ m� s�
lZ σB n� v�

m� n� σC wZ
s� v� wZ σD

⎤
⎥⎦, (B4)

where

l = 4
√

T2(1 − T2)(e−2r − e2r )

5
,

m =
√

2T2(e2r − e−2r )

5
,

n =
√

2(1 − T2)(e2r − e−2r )

5
,

s =
√

2T2(e2r − e−2r )

5
,

v =
√

2(1 − T2)(e2r − e−2r )

5
,

w = 2(e−2r − e2r )

5
,

σA =
(

5−4T2
5 e2r + 4T2

5 e−2r 0

0 5−4T2
5 e−2r + 4T2

5 e2r

)
,

σB =
(

(1+4T2 )e2r+4(1−T2 )e−2r

5 0

0 (1+4T2 )e−2r+4(1−T2 )e2r

5

)
,

σC =
(

3
5 e2r + 2

5 e−2r 0

0 3
5 e−2r + 2

5 e2r

)
,

σD =
(

3
5 e2r + 2

5 e−2r 0

0 3
5 e−2r + 2

5 e2r

)
,

respectively.
Based on the covariance matrices of the linear tripartite

and the four-mode square Gaussian weighted graph states, the
property of the weighted graph states can be verified.
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