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One-way quantum computation based on measurement and multipartite cluster entanglement offers the ability
to perform a variety of unitary operations only through different choices of measurement bases. Here we present
an experimental study toward demonstrating the controlled-X operation, a two-mode gate in which continuous
variable (CV) four-partite cluster states of optical modes are utilized. Two quantum teleportation elements are
used for achieving the gate operation of the quantum state transformation from input target and control states
to output states. By means of the optical cluster state prepared off-line, the homodyne detection and electronic
feeding forward, the information carried by the input control state is transformed to the output target state.
The presented scheme of the controlled-X operation based on teleportation can be implemented nonlocally and
deterministically. The distortion of the quantum information resulting from the imperfect cluster entanglement
is estimated with the fidelity.
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I. INTRODUCTION

Developing faster and faster computers is a long process.
Quantum computers (QC’s) based on the fundamental prin-
ciples of quantum physics, such as coherent superposition
and entanglement of quantum states, promise super-fast and
powerful computation capacities for the future over present
classical computers. In recent years, esoteric and attractive
ideas about quantum computers were being converted into
visible realization step by step along with experimental
demonstrations of various quantum logic operations in both
discrete variable (DV) and continuous variable (CV) domains
[1–8]. Different models for quantum computation, typically
the conventional circuit model and the so-called cluster model,
were proposed and experimentally realized [9–18]. According
to the cluster-state model initially proposed by Raussendorf
and Briegel [15], the actual computation can be completed
only by a sequence of single-qubit projective measurements
with classical feed-forward of the measured results with
the help of the special multiparticle entanglement between
individual subsystems of the cluster state prepared off-line.
Due to the irreversibility of measurements the cluster-based
QC is also inherently time-irreversible and thus is named
the one-way QC. The most important feature of cluster
QC’s is its universality (i.e., any quantum circuit can be
implemented on a suitable cluster state [15]). Exploiting
four-photon cluster states, the performances of one-way DV
QC were experimentally demonstrated [16–18].

In 1999, Lloyd and Braunstein extended the quantum
computation to the CV region and derived the necessary and
sufficient conditions for achieving universal CV QC [19].
Successively, the CV QC with optical coherent states [20]
and the encoding schemes for CV computation were proposed
[21]. The scalable CV error correction routines used for CV
QC’s were theoretically investigated [22] and experimentally
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demonstrated with CV multipartite entanglement of optical
modes [23]. Based on off-line squeezed states and quantum
nondemolition (QND) interaction between the quadrature
components of two optical modes, Furusawa’s group realized
the QND sum gate [7] in the CV QC circuit model proposed
by Filip et al. [24]. Very recently, the same group achieved
an experimental demonstration of the principles of a universal
one-way quantum quadratic phase gate over CV’s in which a
two-mode cluster state of light is involved [8]. In contrast to the
generation systems of DV cluster states of single-photons, CV
cluster states of optical modes can be prepared unconditionally
and quantum computations with CV cluster can be performed
deterministically [25,26]. Following the first theoretical pro-
posal on universal QC with CV cluster states [27], various
protocols of cluster CV QC’s for experimental implemen-
tation are studied in detail [28–30]. In experiments CV
cluster states involving four optical modes were successfully
prepared [31,32].

It was pointed out that the single-qubit and two-qubit
gates used in teleportation are sufficient to construct even
the most complex QC’s [33]. Generally, in QC’s quantum
information is propagated via teleportation networks, thus
quantum teleporters are key elements of building QC’s [34].
By the end of the last century quantum teleportation was
experimentally realized with both DV [35–41] and CV [42–44]
protocols. Later, the teleportation networks were achieved
with single-photon multiparticle polarization-entanglement
[45] and multipartite quadrature-entanglement of optical
modes [46], respectively. These successful experiments on
teleportation provide the fundamental technology to construct
QC’s.

In this article, we present an experimental study toward
demonstrating the controlled-X operation, which is an analog
of a two-qubit controlled-NOT gate in the CV regime [27].
This controlled-X operation (it is also called the sum gate)
based on utilizing CV four-partite cluster states of optical
modes is different from that achieved in Refs. [7,8]. The
QND sum gate in Ref. [7] belongs to the typical circuit
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model and the quadratic phase gate in Ref. [8] only achieves
a single-mode operation involving a two-mode cluster state.
According to our previous theoretical design (see the Sec. V
in Ref. [29]) we experimentally explored the scheme of
implementing the one-way controlled-X operation, a two-mode
gate using the linear four-partite cluster state of optical modes,
homodyne detectors, and electronic feeding forward. In the
operation system, two CV quantum teleportation elements
are included, which are used for teleporting the information
of the input target and control states to the output states.
The experimental results show that the amplitude quadrature
of the output target is displaced a certain amount, set by
the input control state according to the requirement of
the controlled-X operation. The measured variances of the
quadratures of the output states in the case exploiting cluster
quantum resources are about 1.8 dB below the shot noise limit
(SNL) determined by the vacuum noise levels of coherent
states without the existence of cluster entanglement. Based
on the nonlocal and deterministic entanglement feature of
CV cluster states the presented controlled-X operation can
be also implemented nonlocally and deterministically. The
construction of the experimental system for the controlled-X

operation exhibits the key role of quantum teleportation in
QC’s, obviously. The fidelities of the output target and control
states are calculated, respectively, and both of them surpass
their classical limit. Since the squeezing level of the resources
of the cluster state is not high enough (only ∼3 dB) the
entanglement between output target and control modes, which
is necessary for further quantum information processing, was
not observed in the present experiment. However, we provide
a scalable experimental system and scheme toward achieving
the controlled-X operation.

II. OPERATION PRINCIPLE

The Hamiltonian of the controlled-X operation can be
written as Ĥ = −X̂cŶt , where X̂ = â + â† and Ŷ = (â −
â†)/i are the amplitude and phase quadratures of an input
optical mode â and the subscripts c and t denote the control
and target modes, respectively. The ideal input-output relation
of the controlled-X operation are given by [19]

X̂out
c = X̂c, X̂out

t = X̂t − X̂c,
(1)

Ŷ out
c = Ŷc + Ŷt , Ŷ out

t = Ŷt .

Through the controlled-X operation the input control (target)
variable X̂c (Ŷt ) is added to the output target (control)
variable X̂out

t (Ŷ out
c ), while X̂c (Ŷt ) remains unchanged.

The operation results in a phase-space displacement on the
amplitude quadrature of the target by an amount determined
by the position (amplitude) eigenvalue X̂c of the control and
possibly establishes the quantum entanglement between the
output target and control modes, which is just the aim of the
controlled-X gate.

III. EXPERIMENTAL METHOD

Figure 1 shows the schematic of the controlled-X operation
with the four-partite linear CV cluster state of the optical field.
The four submodes b̂1–b̂4 of the cluster state are generated by
linearly combining four quadrature-squeezed states of light
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FIG. 1. (Color online) Schematic of controlled-X operation.
b1–4: four submodes of CV linear four-partite cluster state from the
cluster source; HD1–6: homodyne detection system; AM: amplitude
modulator; PM: phase modulator; BS1 and 2: 50% beamsplitter; BS3
and 4: 99 : 1 beamsplitter; at: input target mode; ac: input control
mode; c1 and 2: the output field from BS2; t1 and 2: the output
field from BS1; g: gain of feed forward circuit; �: power splitter; ⊕:
positive power combiner; LO: auxiliary local oscillation beam; and
SA: spectrum analyzer.

produced from a pair of nondegenerate optical parametric
amplifiers (NOPA’s) operating at deamplification and below
the oscillation threshold [31]. Compared to our previous cluster
generation system [31] only a slight change is made, that is, a
1 : 1 beamsplitter (BS1) in the old system is replaced by a 4 : 1
beamsplitter thus eliminating the effect of the antisqueezing
component on the squeezing component to the largest extent
[29,32]. The squeezed correlation variances of the cluster state
are expressed by [29]

Ŷb1 − Ŷb2 =
√

2e−r Ŷ (0)
a1

, (2)

X̂b1 + X̂b2 + X̂b3 =
√

10

2
e−r X̂(0)

a2
−

√
2

2
e−r Ŷ (0)

a4
, (3)

−Ŷb2 + Ŷb3 + Ŷb4 = −
√

10

2
e−r X̂(0)

a3
+

√
2

2
e−r Ŷ (0)

a1
, (4)

X̂b3 − X̂b4 = −
√

2e−r Ŷ (0)
a4

, (5)

where r stands for the squeezing parameter of the squeezed
states, which depends on the strength and the time of
parametric interaction in NOPA. We assumed that r of the
four squeezed states is identical, which is not difficult to reach
experimentally by balancing the configuration and system
parameter of NOPA’s. The values of r are between zero and
positive infinite with r = 0 for no squeezing and r → ∞ for
the ideal squeezing. However, the ideal squeezing limit cannot
be achieved in experiments since it requires infinite energy.
X̂

(0)
ai and Ŷ

(0)
ai (i = 1 − 4) denote the quadrature amplitudes and

phases of seed optical beams initially injected into NOPA’s,
respectively [29,31]. The variances of the seed beams in
coherent states are normalized, that is,V (X̂(0)

ai ) = V (Ŷ (0)
ai ) = 1.
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The submodes b̂2, b̂3 and b̂1, b̂4 are distributed to input (Alice)
and output (Bob) of the controlled-X gate, respectively.

At Alice, submodes b2 and b3 are mixed with the target (ât )
and the control (âc) signals on 1 : 1 beamsplitters BS1 and
BS2, respectively. The amplitude and phase quadratures of
the output target (control) modes t̂1 and t̂2 (ĉ1 and ĉ2) from
BS1 (BS2) are detected by a pair of balanced homodyne
detectors HD1 and HD2 (HD3 and HD4) actively locked
to be 0 and 90◦ out of phase, respectively. The measured
conjugate quadratures of optical modes are denoted by X̂t1,
Ŷt2 and X̂c1, Ŷc2, respectively, for the target and the control.
The measured photocurrents of X̂c1 and Ŷt2 are split by
two power splitters (�), respectively. Then a half of the
photocurrent X̂c1 (Ŷt2) is added to X̂t1 (Ŷc2) by a positive
power combiner (⊕). The photocurrents (X̂t1 + X̂c1) and
(Ŷt2 + Ŷc2), as well as the remaining other half of X̂c1 and
Ŷt2 are sent to Bob through four classical channels with a
suitable electronic gain g (< ), where Bob uses them to impose
amplitude and phase modulations on two bright laser beams
in coherent states (LO1 and LO2) by means of amplitude
(AM) and phase (PM) modulators, respectively. By mixing the
modulated LO1 (LO2) with the submode b̂1 (b̂4) remaining by
Bob on a 99 : 1 highly reflective beamsplitter BS3 (BS4), a
displacement in the phase-space proportional to the amplitude
and phase modulations is imposed on b̂1 (b̂4). Because of
cluster entanglement among the four submodes b̂1–b̂4, Alice’s
two Bell-state detections collapse both submodes b̂1 and b̂4

into a state conditioned on the measurement outcomes X̂t1,
Ŷt2 and X̂c1, Ŷc2. The amplitude quadrature X̂out

t (X̂out
c ) and

the phase quadrature Ŷ out
t (Ŷ out

c ) of the displaced outcome b̂out
1

(b̂out
4 ) are expressed by [29]

X̂out
t = X̂b1 +

√
2gX̂t1 +

√
2gX̂c1

=
√

5

2
e−r X̂(0)

a2
−

√
1

2
e−r Ŷ (0)

a4
+ X̂t − X̂c, (6)

Ŷ out
t = Ŷb1 −

√
2gŶt2

=
√

2e−r Ŷ (0)
a1

+ Ŷt , (7)

X̂out
c = X̂b4 −

√
2gX̂c1

=
√

2e−r Ŷ (0)
a4

+ X̂c, (8)

Ŷ out
c = Ŷb4 −

√
2gŶt2 +

√
2gŶc2

= −
√

5

2
e−r X̂(0)

a3
+

√
1

2
e−r Ŷ (0)

a1
+ Ŷt + Ŷc. (9)

In cluster QC language the displacement operation is
equivalent to feed-forward the measurement results of the
submodes b̂2 and b̂3 on the remained submodes b̂1 and b̂4. In the
experiment, the gain g of all feed-forward circuits is carefully
adjusted to 1, which corresponds to realizing a controlled-X

operation in Eq. (1). It is obvious that from Eqs. (6) through (9)
that, in the limit of infinite squeezing (r → ∞), the amplitude
quadrature of the output target, X̂out

t was displaced an amount
X̂c determined by the amplitude of the input control field. It
means that the ideal controlled-X operation was completed.
For practical experiments with a finite value of r , some noise
resulting from imperfect squeezing will be added on the X̂out

t ,
thus the fidelity of the outcome state will reduce. However,

the fidelity using finite cluster entanglement of r �= 0 will be
higher than its classical limit, which is measured in the case
without the existence of cluster state. To verify the performance
of the controlled-X operation, the outcome values of X̂out

t , Ŷ out
t

and X̂out
c , Ŷ out

c are detected by the homodyne detectors HD5
and HD6, respectively.

The cluster source comprises a master-pump laser, a pair
of NOPA’s, and some linearly optical elements, which are
not shown in Fig. 1 (see Ref. [31] for details). A continuous
wave intracavity frequency-doubled and frequency-stabilized
Nd:YAP/KTP (Nd-doped YAlO3 perovskite/potassium titanyl
phosphate) laser (made by Yuguang Co. Ltd., F-VIB) [47,48]
serves as the master laser of the experimental system. The
output second-harmonic wave at 540 nm is used for the pump
laser of the two NOPA’s to produce four two-mode squeezed
states at 1080 nm via intracavity frequency down-conversion.
The four squeezed states are transformed to a linear four-partite
cluster state with optical beamsplitters [31]. In the system, all
the optical beams at coherent states including the target signal
(ât ), the control signal (âc), LO1, LO2, and the local oscillation
beams used in homodyne detectors (HD1-6) originate from the
subharmonic output of the master laser at 1080 nm. During the
experiment the pump power of the NOPA’s are kept at 175 mW,
which is below the oscillation threshold of 230 mW and the
intensity of the signals into NOPA’s at 1080 nm is 10 mW.
When NOPA’s operate at deamplification (the pump light and
the injected signals are π out of phase), the intensity of each
submode of the obtained cluster state is about 30 µW. The
power of the local oscillation beam in each HD is about 4 mW
and the intensity of LO1 (LO2) is 54 µW. All the squeezed
correlation variances of the cluster state measured under the
previous conditions are about 3 dB below the corresponding
SNL (the equivalent squeezing parameter r equals to 0.35).
The electronic gain g in classical channels is carefully
adjusted to 1.00 ± 0.05 according to the method described
in Ref. [44].

FIG. 2. (Color online) Noise power of the quadratures with
vacuum inputs. Black (1) lines: noise of vacuum state; red (2) lines:
noise variances of output quadratures without cluster state; blue (3)
lines: noise variances of output quadratures with cluster state; and
yellow (straight) lines: noise variances of output quadratures in the
ideal case.
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IV. EXPERIMENTAL RESULTS

To quantify the performance of the controlled-X operation,
the noise variances of X̂out

t(c) and Ŷ out
t(c) in Eqs. (6) through (9) are

measured by HD5(6) and are recorded by a following spectrum
analyzer (SA) with the resolution bandwidth of 30 kHz and
video bandwidth of 100 Hz. The measured noise powers of
X̂out

t(c) and Ŷ out
t(c) with the vacuum input (ât and âc are vacuum

state) are shown in Fig. 2. The noise powers of the two input
vacuum states serve as the SNL [(black) 1 lines]. In case of
infinite squeezing [(yellow) straight lines], the noise variances
of X̂out

t and Ŷ out
c are 3 dB above the SNL due to the effect of

X̂c (Ŷt ), while noise variances of X̂out
c and Ŷ out

t remain at SNL
[see Eq. (1)]. The (red) 2 lines and the (blue) 3 lines illustrate
the performance of the controlled-X operation without and
with using the quantum entanglement of the cluster state,
respectively. The (red) 2 lines are measured by replacing each
cluster submode with a coherent light of identical intensity.
The measuredvalues of X̂out

t , X̂out
c , Ŷ out

t , and Ŷ out
c are 6.95, 4.76,

4.77, and 6.93 dB above the SNL, respectively. The variances
of X̂out

t , X̂out
c , Ŷ out

t , and Ŷ out
c measured with the existence of the

cluster state [(blue) 3 lines] are 5.39, 2.95, 3.01, and 5.50 dB
above the SNL, respectively. The (blue) 3 lines with the cluster

state are ∼1.8 dB below that without using the cluster [(red) 2
lines]. It means that the precision of the controlled-X operator
increases about 1.8 dB with respect to its classical copies.
We use the fidelity formula F = {Tr[(

√
ρ̂1ρ̂2

√
ρ̂1)1/2]}2, which

denotes the overlap between the experimental obtained output
state ρ̂2 and ideal output sate ρ̂1 to quantify the performance
of controlled-X operation. The fidelity for two Gaussian states
ρ̂1 and ρ̂2 with covariance matrices Ai and mean amplitudes
αi ≡ (αiX, αiY ) (i = 1, 2) is expressed by [49,50]

F = 2√
� + δ − √

δ
exp[−βT (A1 + A2)−1β], (10)

where � = det(A1 + A2), δ = (det A1 − 1)(det A2 − 1), β =
α2 − α1, A1, and A2 for the ideal (ρ̂1) and experimental
(ρ̂2) output states, respectively. For our case, the covariance
matrices Ai (i = 1, 2) for the target mode are given by

A1 =
[

V (Xt − Xc) 0

0 V (Yt )

]
=

[
2 0
0 1

]
, (11)

A2 =
[

V
(
Xout

t

)
0

0 V
(
Y out

t

)
]

. (12)

FIG. 3. (Color online) Noise power of the quadratures with four different coherent input quadratures. Black (1) lines: noises of vacuum
state; red (2) lines: output variances with cluster state; and green (3) lines: input variances.
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Similarly, we can write out the covariance matrices for
the control mode. In the case of infinite squeezing, both
fidelities for the control and target states Fc and Ft equal
1, which can be calculated from Eqs. (6) through (9) with
r → ∞. Without using cluster resources (r = 0), the fidelity
for both ât and âc states is 0.73. When the cluster states
are used the obtained fidelities of ât and âc are both
0.87, which are about 0.14 better than those without using
entanglement.

To simulate the performance of the controlled-X gate under
the coherent input signals with nonzero average intensity, we
modulate the input ât and âc optical beams with amplitude and
phase modulators at 2 MHz (not shown in Fig. 1). The coherent
excitations of four different quadratures corresponding to
four input states with individual modulation are investigated.
The traces in Figs. 3(a), 3(b), 3(c), and 3(d) correspond
to four different input states: (a) and (b) for the amplitude
and phase modulation of the input target at and (c) and
(d) for the amplitude and phase modulation of the input
control ac, respectively. In the four different modulation
models, the intensity of the imposed modulation signals is
identical. The (black) 1 lines and the (green) 3 lines in Fig. 3
correspond to the SNL and the quadratures of the input
signals, respectively. The quadratures of the outcome fields
are shown with the (red) 2 lines. All coherent amplitudes
of the input quadratures are 12 dB above the SNL due to
the same modulation strength, which are measured by HD5
and HD6 in the case blocking the cluster beams. We can see
from Figs. 3(b) and 3(c) that the quadrature Ŷt (X̂c) of the
input state is coupled into Ŷ out

c (X̂out
t ) of the outcome state,

while Ŷc = Ŷ out
c (X̂t = X̂out

t ) is preserved. Figures 3(a) and
3(d) show that the quadratures X̂t and Ŷc of input states are
not coupled to any output quadratures in which, however,
the variances of the outcome quadratures are a little higher
than those of the input states due to the effect of imperfect
squeezing.

V. CONCLUSION

In conclusion, an experimental study toward demonstrating
the CV controlled-X logical operation based on four-partite
cluster states of electro-magnetic fields is presented. In the
experiment the information encoded in the input target and
control states are teleported to the outcome states via quantum
channels depending on multipartite cluster entanglement
among quadrature components of optical modes and electronic
classical channels. The one-way controlled-X gate can be
regarded as to be constructed by two CV quantum teleporters
based on CV quantum entanglement among modes b̂1, b̂2, b̂3

and b̂4, b̂2, b̂3, respectively. The difference between these
teleporters and the normal teleportation systems [42–44] is
that there are two input states (target and control) in these
teleporters and both of their information is transmitted to
the two output states simultaneously. To achieve the basic
operation of one-way quantum computation the four-partite
cluster entanglement plays irreplaceable roles. In CV QC’s,
we have to establish entanglement between the output target
and control modes for further quantum information processing.
According to the theoretical calculation [51] for achieving the
entanglement of the two output states, the initial squeezing
degree of cluster resources should be higher than ∼7 dB.
Although the entanglement between output states was not
observed in the present experiment due to the absence of
better cluster resources, the proof-of-principle experiment
proves that the controlled-X operation of one-way QC can
be unconditionally demonstrated with the designed system if
CV cluster states of higher entanglement are available.
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