文章编号: 0258-7025(2009)07-1744-05

外腔谐振倍频单频红光激光器

葛 青 于 琳 贾晓军* 苏晓龙 谢常德 彭堃墀

(山西大学光电研究所,量子光学与光量子器件国家重点实验室,山西太原 030006)

摘要 利用全固化 Nd: YVO₄ 单频激光器连续输出的 1.342 μm 激光,抽运由 I 类临界相位匹配的 LBO 晶体构建 的谐振倍频腔。当红外抽运光功率为 1.14 W 时,获得 580 mW 单频红光输出,最大倍频转换效率为 50.9%。红光 功率稳定性优于±0.5%(1 h),红外光频率漂移小于±2 MHz(1 min)。 关键词 激光器;外腔谐振倍频; I 类临界相位匹配: LBO 晶体 中图分类号 TN248.1 **文献标识码** A **doi**: 10.3788/CJL20093607.1744

Extracavity Frequency Doubled Red Laser with Single Frequency

Ge Qing Yu Lin Jia Xiaojun Su Xiaolong Xie Changde Peng Kunchi

(State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 030006, China)

Abstract The laser at 1.342 μ m wavelength from an all-solid-state single frequency Nd : YVO₄ laser was used to pump a frequency-doubler consisting of LBO crystal with type-I critical phase matching. Under the 1.14 W pump power, the second harmonic output of 580 mW is obtained with the double efficiency of 50.9%. The intensity fluctuation of the second harmonic wave at 0.671 μ m is less than $\pm 0.5\%$ in 1 h and the laser frequency shift is better than ± 2 MHz in 1 min under the condition of free running.

Key words lasers; extracavity frequency doubled; type-I critical phase matching; LBO crystal

1 引 言

由于 1.34 μ m 是硅光纤通信的一个窗口波长, 因此产生这一波长的纠缠源,就成为开展光纤传输 的连续变量量子保密通信的一个重要研究内容。此 波长的二次谐波 0.67 μ m 又正好与锂原子的 ${}^{2}S_{1/2} - {}^{2}P_{1,2}$ 吸收线相对应,是利用锂原子进行量子 存储的一个有效光源。利用高质量波长为 0.67 μ m 红光作为光学参量放大器的抽运光,经过腔内非线 性晶体下转换过程,可获得波长为 1.34 μ m 高品质 纠缠光束^[1-4]。本文利用外腔倍频技术,产生了高 品质单频红光(0.67 μ m),以满足产生纠缠态及其 他相关应用的需求。获得二次谐波输出的方式一般 有两种:内腔倍频^[3-8]与外腔谐振倍频^[9-12]。内腔 倍频是将倍频晶体放置于激光谐振腔内,这种情况下,可以提高倍频晶体内的功率密度,从而提高倍频 效率。但是由于激光的产生与倍频在同一腔内作用,倍频过程会对基频光的稳定性产生干扰,进而影 响输出倍频光的质量,使倍频光输出有较大的功率 波动。外腔谐振倍频的激光谐振腔与倍频腔是分离 的,可以将相互干扰降低到最小,使谐振腔和倍频腔 处于最佳工作状态,从而使外腔谐振倍频效率与输 出稳定性均得到大幅度提高。目前,我们已经完成 了内腔谐振倍频的单频红光激光器的实验研究,在 19 W 抽运时,获得了 610 mW 的单频红光 $(0.671 \mu m)$ 输出,30 min 红光功率稳定性为 ±0.6%^[57],虽然使用的 I 类匹配 LBO 晶体的有效

收稿日期: 2008-11-27; 收到修改稿日期: 2009-01-04

基金项目:国家自然科学基金(60608012,60736040,10674088),国家自然科学基金创新研究群体科学基金(60821004)和 山西省归国留学基金资助项目。

作者简介: 葛 青(1983-), 男, 硕士研究生, 主要从事全固态激光器件方面的研究。E-mail: geqing_004@163. com 导师简介: 谢常德(1939-), 女, 教授, 主要从事量子光学和固体激光器件方面的研究。E-mail: changde@sxu. edu. cn

* 通信联系人。E-mail: jiaxj@sxu. edu. cn

非线性系数 0.817 pm/V, 远低于 KTP 晶体对 1.08 μm波长倍频的有效非线性系数7.6 pm/V^[13]。 如果利用 KTP 晶体作为 1.3 μm 的倍频晶体,虽然 可以提高有效非线性系数,但是由于这一波长在 KTP 晶体中的走离角很大,相互作用距离很短,也 不能完成高效的谐振倍频。为了减少内腔倍频对激 光器稳定性的影响,尝试采用外腔谐振倍频来获得 单频红光输出,将原来激光器中的倍频晶体取出,并 将输出耦合镜换为 T_{1.312 um}=1.9%的红外输出耦合 镜,然后利用输出的红外光抽运单共振 LBO 晶体组 成的近共心倍频驻波腔谐振倍频,当红外光功率为 1.14 W时,获得 580 mW 的单频红光输出,转换效 率达50.9%。如果考虑到输出镜对红光不是完全透 射的影响,实际倍频效率应该是53.4%。其1h红 光功率稳定性优于±0.5%,1 min 红外频率漂移小 于±2 MHz,和以前内腔倍频时(1h红光功率稳定 性优于±0.6%,1 min 红外频率漂移小于 ±5 MHz)相比,均有显著提高。

2 理论设计

2.1 倍频晶体的选择

在外腔谐振倍频激光器的设计中,倍频晶体的 选择非常重要。倍频晶体的匹配类型、匹配角度、有 效非线性系数、走离角、接受角等都是需要考虑的重 要因素,它们决定了倍频晶体的切割角度和长度,也 影响到谐振腔的倍频效率及倍频光的稳定性。表 1 为抽运光波长 1.342 μm 时不同晶体的倍频参 数值。

表1 KTP与LBO晶体的倍频参数

Table 1 Frequency-doubling parameters for

KIP and LBO crystal			
Crystal	KTP	LBO	LBO
Phase matching	type- []	type- [type- []
Matching angle(θ, φ) /(°)	59.9,0	86.1,0	3.6,0
Walk-off angle $ ho$ /mrad	44.3	3.4	3.23
Effective nonlinear coefficient $d_{\rm eff}/(\rm pm~/V)$	2.84	0.817	0.645
Acceptance angle /(mrad • cm)	1.69	24.29	26.07
Max interaction length L_{max}/mm	2.6	34.1	35.9
$d_{\rm eff} \times L_{\rm max} / (\rm mm \cdot \rm pm / \rm V)$	7.38	27.86	23.16

由表1可以看出,相对于 KTP 晶体,LBO 晶体 的有效非线性系数 d_{ett}虽然小一些,但却具有走离角 小,允许角大,最大相互作用长度长的优点。由于走 离角ρ的存在,晶体中基频光与倍频光的最大相互 作用长度为[14]

$$L_{\max} = 1.16\omega/\rho, \qquad (1)$$

其中 ω 为基频激光光束半径。(1)式表明,在走离 角 ρ 很小的情况下,适当较小 ω 仍有较大的 L_{max} 值。 而较小 ω ,会增加腔内经过 LBO 的基频光功率密 度,从而提高倍频效率。因此在实验中,采用由福建 福晶公司生产的 LBO 晶体(3 mm×3 mm×20 mm), 切割方式为 I 类临界(θ =86.1°, φ =0°)相位匹配方 式。

2.2 倍频效率

图 1 为倍频腔的示意图,凹面镜 M₁ 为基频光 的输入镜,它对基频光的功率反射率和透射率分别 为 r₁ 和 t₁,凹面镜 M₂ 作为倍频光的输出镜,它对基 频光的功率反射率和透射率分别为 r₂ 和 t₂,对倍频 光的透射率为 t_{2SH},t 表示谐振腔内基频光单次通过 的透射率,它包含了腔内除倍频作用以外的所有损 耗。P_i 为入射到输入镜上的基频光功率,P_c 为从输 入耦合镜反射出的基频光功率,P₂ 为从输出耦合镜 射出的倍频光功率,P_c 为谐振腔内基频光循环功率。

图 1 倍频腔的理论模型

Fig. 1 Theoretical model for the frequency-doubling cavity

对于低损耗腔,倍频作用导致的基频光的损耗也 必须考虑进去,如果这种主动损耗与循环功率相比小 得多,就可以表示成晶体的一个额外的透射项 t_{st}^[15]

$$t_{\rm SH} = 1 - \eta_{\rm SH} \,, \qquad (2)$$

式中 ŋ_{SH}就是倍频效率,它与腔内循环功率的关系 为

$$\eta_{\rm SH} = \gamma_{\rm SH} P_{\rm c} \,, \qquad (3)$$

其中 γ_{SH} 为非线性转换系数。r_m 定义为"腔反射 率",它表示凹镜处的循环功率在腔内往返一周后剩 下的比率。对于驻波腔,基频光在腔内往返一周时 通过晶体两次,所以有

$$r_{\rm m} = t^2 t_{\rm SH}^2 r_2.$$
 (4)

当腔和入射光谐振时,腔反射回的功率为

$$P_{r} = \frac{(\sqrt{r_{1}} - \sqrt{r_{m}})^{2}}{(1 - \sqrt{r_{1}r_{m}})^{2}}P_{r}.$$
 (5)

从(5)式中可以看出如果 $r_1 = r_m$,那么 P_r 就为

光

中

0,也就是所有人射光都耦合到腔里了,这种情况又称作"阻抗匹配",它与前腔镜的反射率 r₁ 和腔反射率 r_n 有关,因为 r_m 通过 t_{SH}与 P_e关联,所以阻抗匹配只能是对特定的抽运功率和倍频效率来讲的。

腔内循环功率和抽运功率的比率为

$$\frac{P_{\rm c}}{P_{\rm i}} = \frac{t_{\rm i}}{\left(1 - \sqrt{r_{\rm i} r_{\rm m}}\right)^2},$$
 (6)

式中的 r_m 依赖于 P_e,是一个 P_e的三次方程,比较 简单的解法是在特定抽运功率下求数值解。腔内谐 波功率为

$$P_{\rm 2in} = 2\gamma_{\rm SH} P_{\rm c}^2, \qquad (7)$$

理论上,在双共振的倍频腔中,倍频光不在腔内振 荡,产生后直接射出腔外,但在目前技术条件下,对 一种波长高反对另一种波长增透的膜很难达到要 求,只能优先满足其中一个反射率要求,另一个可能 有百分之几的误差。考虑到输出镜的透射率,腔输 出的谐波功率为

$$P_{2} = 2\gamma_{SH} P_{c}^{2} t_{2SH}.$$
(8)
整个倍频腔的倍频效率为

$$\eta = P_2/P_1. \tag{9}$$

分析不同透射率输出镜对倍频效率的影响,如 图 2 所示。可以看出,在 1.2 W 左右抽运的情况 下,透射率为 4%的输入镜为最佳,如果继续增加透 射率,倍频效率反而降低。

3 实验装置与实验结果

3.1 实验装置

实验装置如图 3 所示。激光器采用自行研制的 全固化单频 YVO₄ - Nd : YVO₄ "∞"字环形激光 器,当抽运光功率为19 W时,输出1.342 μm单频 红外激光 1.3 W。红外光先经过一波片棱镜系统, 用以调节能量并过滤输出红外激光的偏振。隔离器 采用 OFR 公司的 IO-4-1342-HP 型法拉第光隔离 器,可以防止反射的基频光反馈至激光器以致影响 激光器的单频运转,其隔离比为 42.6 dB。倍频腔 采用近共心驻波腔结构。输入镜 M₁ 为 \$ 10 mm× 3 mm 平凹镜,曲率半径 50 mm,对基频光的透射率 为 2.8%,对倍频光的反射率大于 99%,输出镜 M₂ 也为 \$10 mm×3 mm 平凹镜,曲率半径 50 mm,对 基频光的反射率大于 99%,对倍频光的透射率为 95.2%, M2装在压电陶瓷(PZT)上用于光电反馈控 制倍频腔的腔长,使之与抽运红外光频率共振。使 用的非线性晶体是由福建福晶公司生产的 LBO 晶 体,尺寸为3mm×3mm×20mm,以I类角度匹配 方式切割(θ =86.1°, φ =0°),两端均镀 1342 nm 与 671 nm 双色减反膜。LBO 晶体用铟箔包裹后放置 于紫铜热沉上,通过制冷块进行温度控制。控温仪 为自制的,控温精度可达 5×10⁻³℃。由 M₂ 输出的 光大部分为倍频光,一小部分为泄漏出的红外光,通 过双色镜(1342 nm 45°减反和 671 nm 45°高反)将 红光和红外光分开,反射的倍频光由激光功率计检 测其功率。漏出的红外光由探测器 D₂ 探测后送入 示波器作为倍频腔的检测信号。为防止空气和外界 气流的干扰,把倍频腔封闭在有机玻璃罩中,进行空 气循环处理。并且整个系统放置于一抗振光学平台 上用于防止外界振动对系统稳定性的影响。

实验中采用频率边带调制技术将倍频腔的共振 频率锁定到基波频率上。71 MHz 的正弦射频信号 电光调制器对基频红外光进行相位调制,在激光中 心频率两侧产生 71 MHz 的边带调制信号。倍频腔 反射的基频光经法拉第隔离之前的偏振棱镜输出, 由探测器 D1 探测。探测器交流输出的光电流信号 经射频放大器 RF amp (Mini-Circuit)放大,然后送 入混频器,由同一71 MHz 射频信号源输出经过一 相位延迟盒送人混频器本振输入端,相位延迟盒用 于调节混频器本振输入端 71 MHz 正弦信号与混频 器基频光反射输入信号的相对相位,获得锁腔的鉴 频信号。混频器输出的鉴频信号通过低通滤波送入 自行设计的比例积分电路 PI,调节鉴频信号的增益 和相位达到最佳的锁腔状态。比例积分电路输出的 鉴频信号经过高压放大器来控制倍频腔镜上的压电 陶瓷,使倍频腔的共振频率锁定到基波频率上。

图 3 实验装置图 Fig. 3 Schematic of the experimental setup

3.2 实验结果

在压电陶瓷上加一三角波信号使倍频腔处在 扫描状态,通过示波器监视漏出的红外光信号来 仔细调节匹配透镜、倍频腔镜和 LBO 晶体的空间 位置,使输入红外光和倍频腔的模式匹配达到最 佳。通过示波器监视比例积分电路输出的鉴频信 号来调节相位延迟器的参数以获得最佳的鉴频信 号。把比例积分电路输出的鉴频信号接入高压放 大器,在把增益降为很小之后调节偏置电压,使倍 频腔共振并锁定。最后调节 PI 参数,使倍频腔的 共振频率锁定到基波频率上。通过仔细改变晶体 的温度来使输出达到最大并测量其功率。图 4 为 测量的红光输出功率随抽运基频光功率变化的实 验结果。可以看出在抽运功率为1.14 W时,得到 了580 mW的单频红光输出。图5为倍频效率随

抽运基频光功率的变化曲线图,可以看出实际测量 值与理论计算值基本吻合。如果考虑到输出镜对红 光不是完全透射的影响,实际倍频效率应该是 53.4%。

图 5 倍频效率随抽运功率的变化

Fig. 5 Variation curve of frequency-doubing efficiency with pump power

图 6 为测量的输出红光 1 h 功率稳定性曲线 (Coherent 公司 FieldMate 功率计),其 1 h 内功率 波动小于±0.5%。图 7 为利用一 F-P 腔测量自 由运转时激光器红外光频率漂移的结果,F-P 腔自 由光谱范围为 1500 MHz。从图 7(a)中可以看出 示波器上每 1 ms 对应于 104 MHz。从图 7(b)的 波动图像可以测量得出 1 min 激光器基频光的抖 动对应时间小于 0.015 ms,即基频光 1 min 频率 波动优于±2 MHz^[16]。这说明将激光器的倍频过 程与激光产生过程分开后,激光器的稳定性有了 显著的提高。

1747

光

图 6 倍频光功率稳定性

图 7 自由运转时激光器的频率稳定性 Fig. 7 Laser frequency shift in 1 min under the condition of free running

4 结 论

利用由 LBO 晶体构建的近共心谐振倍频腔, 当抽运红外光功率为 1.14 W 时,得到了 580 mW 的单频红光输出,输出光的功率稳定性较以前内 腔倍频有了显著提高。如果更换一透射率为 4% 的输出镜,按照理论计算,应该可以得到更高功 率的红光输出。下一步,将用得到的红光抽运由 Ⅱ类匹配 LBO 晶体构成的非简并光学参量放大 器,期望得到波长为 1.3 μm 的连续变量量子纠 缠源,以开展光纤传输的连续变量量子i

多考文献

- A. Agnesi, G. C. Reali, P. G. Gobbi, 430 mW singletransverse-mode diode-pumped Nd : YVO₁ laser at 671 nm[J]. *IEEE J. Quantum Electron.*, 1998, 34(7):1297~1300
- 2 Zhou Rui, Ding Xin, Zhang Wen et al.. High-power continuous-wave diode-end- pumped intracavity frequency doubled Nd: YVO₄ laser at 671 nm with a compact three-element cavity [J]. Chin, Phys. Lett. , 2006, 23(4):849~851

- 3 Z. Y. Ou, S. F. Pereira, H. J. Kimble et al., Realization of the Einstein-Podolsky- Rosen paradox for continuous variables [J]. Phys. Rev. Lett., 1992, 68(25):3663~3666
- 4 A. S. Villar, M. Martinelli, C. Fabre et al., Direct production of tripartite pump-signal-idler entanglement in the abovethreshold optical parametric oscillator[J]. Phys. Rev. Lett., 2006, 97: 140504
- 5 J. R. Gao, H. Wang, M. Q. Huang *et al.*. Intracavity frequency-doubled and stabilized cw ring Nd : YAG laser with a pair of KTP crystals[J]. *Appl. Opt.*, 1995, **34**(9):1519~1522
- 6 Chang Dongxia, Liu Xia, Wang Yu et al., All-solid-state CW intracavity frequency- doubled and frequency-stabilized Nd: YVO4/LBO red laser[J]. Chinese J. Lasers, 2008, 35(3): 323~327
 - 常冬霞,刘 侠,王 宇 等. 连续波 Nd: YVO4/LBO 稳频倍频红 光全固态激光器[J]. 中国激光,2008, **35**(3):323~327
- 7 Li Yimin, Tan Huiming, Fu Xihong et al., Characteristics of intracavity-frequency-doubled Nd³⁺: GdVO₄/LBO deep blue 456 nm laser[J]. Chinese J. Lasers, 2008, 35(9): 1308~1312 李义民, 檀慧明, 付喜宏等, 腔内倍频 Nd³⁺: GdVO₄/LBO 深蓝 456 nm 激光器的工作特性[J]. 中国激光, 2008, 35(9): 1308~1312
- 8 Zhang Juncheng, Wang Jiaxian, Su Peilin et al.. Theoretical and experimental study of LD pumped Nd : YVO4 yellow laser with sum-frequency generation [J]. Acta Optica Sinica, 2008, 28 (12): 2365~2369

张峻诚,王加贤,苏培林 等. 激光二极管抽运 Nd: YVO4 和频黄 光激光器的理论及实验研究[J]. 光学学报, 2008, 28(12): 2365~2369

- 9 Z. Y. Ou, S. F. Pereira, E. S. Polzik *et al.*. 85% efficiency for cw frequency doubling from 1. 08 to 0. 54 μm[J]. Opt. Lett., 1992, 17(9):640~642
- 10 R. Le Targat, J.-J. Zondy, P. Lemonde. 75%-efficiency blue generation from an intracavity PPKTP frequency doubler [J], Opt. Commun. 2005. 247: 471~481
- 11 Xiaoling Song, Zhigang Li, Pengfei Zhang *et al.*. Frequency doubling with periodically poled KTiOPO₄ at the fundamental wave of cesium D_2 transition [J]. *Chin. Opt. Lett.*, 2007, 5(10): 596~598
- 12 Feng Yan, Bi Yong, Zhang Hongbo et al.. 20 W diode pumped external frequency-doubled Nd: YAG green laser [J]. Acta Optica Sinica, 2003, 23(4): 469~471
- 冯 衍,毕 勇,张鸿博等. 20 W 腔外倍频全固态 Nd: YAG 绿 光激光器[J]. 光学学报, 2003, 23(4): 469~471
- 13 Yao Jianquan, Non-Linear Optical Frequency and Laser Tuning Technology[M]. Beijing: Science Press, 1995. 41 姚建铨. 非线性光学频率及激光调谐技术[M]. 北京:科学出版 社、1995. 41
- 14 J. J. Zondy, S. Abed Khodja, Twin-crystal walk-offcompensated type-II second-harmonic generation: single-pass and cavity-enhanced experiments in KTiOPO₄[J]. J. Opt. Soc. Am. B, 1994, 11(12):2368~2379
- 15 W. J. Kozlovsky, C. D. Nabors, R. L. Byer. Efficient second harmonic generation of a diode-laser-pumped cw Nd : YAG laser using monolithic MgO : LiNbO₃ external resonant cavities[J]. *IEEE J. Quantum Electron.*, 1988, **QE-24**(6): 913~919
- 16 Gao Jiangrui, Zhang Xiaohu, Li Jun et al., Frequency stabilized and doubled Nd + YAG CW laser[J]. Chinese J. Lasers, 1991, 18(10):721~725
 - 部江瑞,张小虎,李 军等.连续 Nd: YAG 稳频倍频激光器[J]. 中国激光,1991,18(10);721~725