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Effect of excess noise on continuous variable entanglement
sudden death and Gaussian quantum discord∗
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A symmetric two-mode Gaussian entangled state is used to investigate the effect of excess noise on entanglement
sudden death and Gaussian quantum discord with continuous variables. The results show that the excess noise in the channel
can lead to entanglement sudden death of a symmetric two-mode Gaussian entangled state, while Gaussian quantum discord
never vanishes. As a practical application, the security of a quantum key distribution (QKD) scheme based on a symmetric
two-mode Gaussian entangled state against collective Gaussian attacks is analyzed. The calculation results show that the
secret key cannot be distilled when entanglement vanishes and only quantum discord exists in such a QKD scheme.
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1. Introduction
Quantum entanglement is a basic resource for quantum

information processing. A troublesome problem in practi-
cal application is that quantum entanglement is sensitive to
environment-induced loss. In the discrete variable case, it has
been shown that entanglement can be completely lost after
a finite time of interaction with the environment for a two-
qubit system, which is known as entanglement sudden death
(ESD).[1,2] The continuous variable (CV) system is an al-
ternative system to investigate quantum information and has
obtained remarkable progress.[3,4] It has been observed that
losses may lead to ESD in Gaussian CV systems too.[5–7]

Quantum correlation, which is measured by quantum
discord,[8] can also be used as the quantum resource in
some types of quantum information processing tasks. It has
been shown that some quantum computational tasks based
on a single qubit can be carried out by separable (that is,
non-entangled) states that nonetheless carries non-classical
correlations.[9–11] Recently, quantum discord was extended to
a two-mode Gaussian state.[12,13] A two-mode Gaussian state
is entangled with Gaussian quantum discord D > 1, while
when 0 ≤ D ≤ 1 it is either a separable or entangled state.
Gaussian quantum discord has been experimentally demon-
strated by several groups.[14–16]

Quantum key distribution (QKD) allows two legitimate
parties, Alice and Bob, who are linked by a quantum chan-
nel and an authenticated classical channel, to establish the se-
cret key only known by themselves. Generally CV QKD uses
a Gaussian quantum resource state, such as entangled state,
squeezed state, and modulated coherent state, as the resource
state, along with a reconciliation and privacy amplification

procedure to distill the secret key.[4,17,18] In the practical ap-
plications, quantum channels not only are lossy, but also have
excess Gaussian noises on the quadrature distribution. For a
given tolerable channel efficiency T , there exists a lower limit
for excess noise δ , which is given by δ < 2T .[19] CV QKD
protocols have been shown to be unconditionally secure, that
is, secure against arbitrary attacks[20] and have been proved to
be unconditionally secure over long distance.[21] Besides the
traditional one-way CV QKD scheme, a two-way CV QKD
scheme has been proposed and proved to be able to toler-
ate more excess noise than one-way CV QKD scheme.[22,23]

Recently, a CV QKD scheme with thermal states was also
proposed and proved to be secure against collective Gaussian
attacks.[24] The CV QKD exploiting coherent state[25–31] and
entangled state[32–34] have been experimentally realized in re-
cent years.

In Ref. [7], it is shown that a symmetric two-mode Gaus-
sian entangled state is a fully robust state, which means that
entanglement never vanishes with any type of loss in the chan-
nel. However, the practical quantum channels not only are
lossy, but also have excess Gaussian noises. In this paper,
we analyze the effect of the excess noise in the channel on
ESD and Gaussian quantum discord of a symmetric two-mode
Gaussian entangled state. The calculation shows that the ex-
cess noise in the channel is the key factor that leads to ESD
for a symmetric two-mode Gaussian entangled state. The ex-
cess noise also leads to a decrease of the Gaussian quantum
discord, but it never makes the quantum discord vanish.[12,13]

As an example of practical application, the security of a QKD
scheme based on a symmetric two-mode Gaussian entangled
state is also analyzed. The relation among the secret key rate,
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entanglement, and quantum discord is analyzed. What we are
interested in is whether the secret key can be distilled when
entanglement vanishes and only quantum correlation exists.
The calculation results show that it is impossible to distill the
secret key when entanglement vanishes and only quantum cor-
relation exists. It confirms that entanglement is a precondition
for QKD with a two-mode Gaussian entangled state.[35] It also
supplies a possible way to destroy, instead of eavesdrop, this
type of CV QKD scheme where a two-mode Gaussian entan-
gled state is used as a resource state.

The paper is organized as follows. In Section 2, the phys-
ical model used to investigate the effect of excess noise on CV
ESD and Gaussian quantum discord is presented. In Section 3,
the ESD and Gaussian quantum discord under influence of ex-
cess noise are analyzed. In Section 4, the security of CV QKD
scheme based on a symmetric two-mode Gaussian entangled
state is proved, and the relation between secret key rate, ESD,
and Gaussian quantum discord is analyzed. In Section 5, we
conclude the paper.

2. Physical model
The physical model used to analyze the effect of ex-

cess noise on ESD and Gaussian quantum discord is shown
in Fig. 1. A symmetric two-mode Gaussian entangled state
with a variance of V , such as a symmetric Einstein–Podolsky–
Rosen (EPR) entangled state, is used as the resource state,
which is distributed between Alice and Bob. One of the two-
mode Gaussian states (b̂) is transmitted through a lossy chan-
nel, which is modeled by a beam splitter with transmission
efficiency T . The excess noise in the channel is modeled by
an environmental thermal state ρE with variance W , which cor-
responds to δ =W −1 in Ref. [19] and ε = (W −1)(1−T )/T
in Ref. [29]. W = 1 means there is no excess noise (δ = 0)
in the channel, only loss exists. When W > 1, there is excess
noise in the channel.

V

W

T

hom hom

â b̂

Alice Bob

Fig. 1. (color online) Schematic plot of a symmetric two-mode Gaus-
sian entangled state distributed between Alice and Bob through a lossy
channel with excess noise. The transmission efficiency of quantum
channel is modeled by a beam splitter with transmission T . Excess
noise in the channel is modeled by an environmental thermal state ρE
with variance W . Alice and Bob perform homodyne (hom) detection on
the mode they hold, respectively.

The amplitude and phase quadratures of an optical mode
â is defined as X̂a = â+ â† and Ŷa = (â− â†)/i, respectively.
A Gaussian state is fully characterized by its covariance ma-
trix. The covariance matrix is constructed using the following

definitions of its matrix elements

Vlm : =
1
2
〈
ÔlÔm + ÔmÔl

〉
−
〈
Ôl
〉〈

Ôm
〉
, (1)

Vll =
〈
Ô2

l
〉
−
〈
Ôl
〉2

: =V (Ôl), (2)

where Ôl is the l-th element of the quadrature row vector
Ô =

(
X̂1,Ŷ1, . . . , X̂N ,ŶN

)
which describes the bosonic system

of N modes. The covariance matrix of a symmetric two-mode
Gaussian state is given by

𝜎 =

(
V𝐼 C𝑍
C𝑍 V𝐼

)
, (3)

where V = cosh2r with squeezing parameter r ∈ [0,∞) is the
noise variance of EPR entangled modes â and b̂, C =

√
V 2−1,

𝐼 and 𝑍 are the Pauli matrices

𝐼 =

(
1 0
0 1

)
, 𝑍 =

(
1 0
0 −1

)
. (4)

The entanglement between Alice and Bob is contami-
nated by loss and excess noise in the channel. After trans-
mission, the amplitude and phase quadratures at Bob’s station
are given by

X̂B =
√

T X̂b +
√

1−T X̂W , (5)

ŶB =
√

TŶb +
√

1−TŶW , (6)

where X̂W and ŶW are the amplitude and phase quadratures of
the environmental thermal state ρE. Then the covariance ma-
trix of the two-mode Gaussian state distributed between Alice
and Bob is given by

𝑉AB =

(
V𝐼 C′𝑍
C′𝑍 VB𝐼

)
, (7)

where VB = TV +(1−T )W , C′ =
√

T (V 2−1).

3. Entanglement and quantum discord of the
system
The symplectic spectrum of a covariance matrix

𝜎 =

(
𝐴 𝐶
𝐶 𝐵

)
(8)

is given by[36,37]

ν± =

√
∆ ±
√

∆ 2−4det𝜎
2

, (9)

where 𝐴 (𝐵) denotes the covariance matrix of mode â (b̂), 𝐶
contains correlations between quadratures of the two modes,
det𝜎 is the determinant of covariance matrix and ∆ = det𝐴+

det𝐵+2det𝐶.
PPT criterion is a necessary and sufficient criterion for

entanglement of a Gaussian state.[38,39] A Gaussian state is en-
tangled iff ν̃− < 1, where ν̃− is the smallest symplectic eigen-
value of partially transposed covariance matrix for a two-mode
Gaussian state, which is given by[36,37]

ν̃− =

√
∆̃ −

√
∆̃ 2−4det𝜎

2
, (10)
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where ∆̃ = det𝐴+ det𝐵 − 2det𝐶. Substituting the corre-
sponding terms of matrix 𝑉AB in Eq. (7) into Eq. (10), we can
verify whether the two-mode Gaussian state is entangled or
not after the transmission.

Quantum discord is defined as the difference between two
quantum analogues of classically equivalent expression of the
mutual information. The Gaussian quantum discord of a two-
mode squeezed thermal state is given by[12]

DAB = f (
√

I2)− f (ν−)− f (ν+)

+ f
(√

I1 +2
√

I1I2 +2I3

1+2
√

I2

)
, (11)

where

f (x) =
(

x+
1
2

)
log2

(
x+

1
2

)
−
(

x− 1
2

)
log2

(
x− 1

2

)
,

I1 = det𝐴, I2 = det𝐵, and I3 = det𝐶. When DAB > 1, the
state is an entangled state, while when 0≤ DAB ≤ 1, the state
is either separable or entangled. When DAB < 0, there is no
quantum correlation, only classical correlation between two
modes. Substituting the corresponding terms of matrix 𝑉AB in
Eq. (7) into Eq. (11), we can calculate the Gaussian quantum
discord between Alice and Bob.

Figure 2(a) shows the smallest symplectic eigenvalues
of partially transposed covariance matrix for r = 0.35 (3-dB
quantum correlation, solid line) with W = 1, r = 1.15 (10-dB
quantum correlation) with W = 1 (dotted line), and W = 1.5
(dashed line), respectively. For r = 0.35 and r = 1.15 with
W = 1, we have ν̃− < 1 at any transmission efficiency, which
clearly shows that entanglement is robust against loss. When
r = 1.15 with W = 1.5, i.e. there is excess noise δ = 0.5 in the
channel, ν̃− is larger than 1 when transmission efficiency is
smaller than 0.2, which means that entanglement vanishes due
to excess noise in the channel. This result confirms that ex-
cess noise can lead to ESD of a symmetric Gaussian entangled
state. For avoiding ESD, we have to eliminate or minimize the
excess noise in the transmission channel.

Figure 2(b) shows the Gaussian quantum discords for
r = 0.35 (solid line) with W = 1, r = 1.15 with W = 1 (dotted
line) and W = 1.5 (dashed line), respectively. In all the cases,
we see that Gaussian quantum discord increases with the in-
crease of transmission efficiency of the channel. For r = 0.35
with W = 1, DAB is always smaller than 1, which means that
the transmitted state is either separable or entangled state. For
r = 1.15 with W = 1 and W = 1.5, DAB is larger than 1 when
transmission efficiency is larger than 0.68 and 0.85, respec-
tively. It means that for higher transmission efficiency, the
state is an entangled state (DAB > 1). With the decreasing
of transmission efficiency and increasing of excess noise, the
state may be turned into either separable or entangled state.
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Fig. 2. (color online) (a) Symplectic eigenvalues with different vari-
ances of resource state and (b) Gaussian quantum discords with differ-
ent variances of resource state. Dotted (red) and solid (black) lines in
panels (a) and (b) correspond to r = 1.15 and r = 0.35 with W = 1,
respectively. Dashed (blue) lines in panels (a) and (b) correspond to
r = 1.15 with W = 1.5.

4. Security of the QKD with a symmetric two-
mode Gaussian entangled state
As an example, we apply a symmetric two-mode Gaus-

sian entangled state to be the resource state for a QKD
scheme, which is shown in Fig. 3. In the QKD scheme,
Alice holds mode â, and transmits mode b̂ to Bob over the
quantum channel with transmission efficiency T . Alice and
Bob perform homodyne detection on their own beam ran-
domly to measure amplitude or phase quadrature, respec-
tively. The secret key is established by the quantum fluc-
tuation of each quadrature. There are two advantages of
this QKD scheme, one is that the true random numbers re-
sulting from the quantum fluctuations are used to establish
the secret key. The other is that no signal modulation is
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Ê
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Fig. 3. (color online) Schematic of the QKD scheme with an EPR en-
tangled state. The transmission efficiency of the quantum channel is
modeled by a beam splitter with transmission T . Eve performs an en-
tangling cloner attack, where the variance of the EPR state is W . Alice
and Bob perform homodyne (hom) detection on the mode they hold,
respectively.

080304-3



Chin. Phys. B Vol. 22, No. 8 (2013) 080304

needed in the QKD scheme. The proof-of-principle experi-
mental demonstration of this QKD scheme has been demon-
strated in Ref. [32], in which the post-selection technique is
utilized to distill the secret key.[40]

We assume that Eve performs the entangling cloner
attack,[41] which is the most important and practical example
of a collective Gaussian attack,[20,42–44] to steal the informa-
tion. She prepares an ancilla EPR entangled state with vari-
ance W . She keeps one mode Ê ′′ and mixes the other mode Ê
with the transmitted mode b̂ in the quantum channel by a beam
splitter, leading to the output mode Ê ′. Eve’s output modes
are stored in a quantum memory and detected collectively at
the end of the protocol. Eve’s final measurement is optimized
based on Alice and Bob’s classical communication.

The 3-dB loss limit on the transmission line in the CV
QKD[45] can be beaten with the reverse reconciliation[25] or
the post-selection.[40] In reverse reconciliation, Alice attempts
to guess what was received by Bob rather than Bob guessing
what was sent by Alice. Such a reverse reconciliation protocol
gives Alice an advantage over a potential eavesdropper Eve.
In the following, we use the variable X to represent amplitude
or phase quadrature of an optical mode to analyze the secret
key without losing the generality.

In reverse reconciliation, the secret key rate is given by

KRR = I(XA : XB)− I(XB : E), (12)

where
I(XA : XB) = H(XB)−H(XB|XA) (13)

is the mutual information between Alice and Bob, with

H(XB) = (1/2) log2 V (XB)

and
H(XB|XA) = (1/2) log2 V (XB|XA)

being the total and conditional Shannon entropies. Eve’s in-
formation is given by

I(XB : E) = S(E)−S(E|XB), (14)

where S(·) is the von Neumann entropy. The von Neumann
entropy of a Gaussian state ρ can be expressed in terms of its
symplectic eigenvalues[46]

S(ρ) =
n

∑
k=1

g(νk), (15)

where

g(ν) =
(

ν +1
2

)
log2

(
ν +1

2

)
−
(

ν−1
2

)
log2

(
ν−1

2

)
,

(16)
with 𝜈 = {ν1, . . . ,νn} being the symplectic eigenvalues of
Gaussian state ρ .

The conditional variance is defined as[47] VX |Y =V (X)−
|〈XY 〉|2 /V (Y ). So Bob’s conditional variance is given by

VB|A =VB−
T (V 2−1)

V
. (17)

Then according to Eq. (13), we obtain the mutual information
between Alice and Bob.

Eve interacts her mode Ê with the transmitted mode b̂ on
the beam splitter to eavesdrop information. The amplitude and
phase quadratures of mode Ê ′ are

X̂E ′ =
√

T X̂E−
√

1−T X̂b, (18)

ŶE ′ =
√

TŶE−
√

1−TŶb. (19)

Eve’s covariance matrix is made up from the modes Ê ′ and Ê ′′,
which is

𝑉E =

(
ev𝐼 ϕ𝑍
ϕ𝑍 W𝐼

)
, (20)

where ev = (1−T )V +TW , ϕ =
√

T (W 2−1).
The conditional covariance matrix 𝑉E|XB , which repre-

sents the covariance matrix of a system where one of the
modes has been measured by homodyne detection (in this case
Bob), is given by[4,48,49]

𝑉E|XB = 𝑉E − (VB)
−1𝐷𝛱𝐷T, (21)

where

𝛱 =

(
1 0
0 0

)
. (22)

Here 𝐷 is the matrix describing the correlations between
Eve’s modes and Bob’s mode, which is given by

𝐷 =

( 〈
Ê ′XB

〉
𝐼〈

Ê ′′XB
〉
𝑍

)
=

(
µ𝐼
θ𝑍

)
, (23)

where µ =
√

T (1−T )(W −V ), θ =
√

(1−T )(W 2−1).
Substituting the corresponding terms of matrix in

Eqs. (20) and (21) into Eq. (9), the symplectic eigenvalues
of 𝑉E and 𝑉E|XB are obtained. Then substituting these eigen-
values into Eqs. (15) and (16), we obtain S(E) and S(E|XB),
which are substituted into Eq. (14) to calculate Eve’s informa-
tion. Finally, the secret key rate is obtained from Eq. (12).

Figure 4 shows the secret key rates for r = 0.35 (solid
line) with W = 1, r = 1.15 with W = 1 (dotted line) and
W = 1.5 (dashed line), respectively. By comparing the se-
cret key rates of different entanglement level, we see that the
higher entanglement is, the higher the secret key rate is, which
means that entanglement helps to increase the secret key rate.
When the excess noise exists in the channel (W > 1), for ex-
ample, W = 1.5, the secret key can be distilled for T > 0.53.
It means that Eve can destroy the secure communication be-
tween Alice and Bob by adding sufficient excess noise in the
channel.

Comparing dashed lines in Fig. 2(a) and Fig. 4, we find
that after entanglement died (T < 0.2), none of any secret key
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can be distilled, although the Gaussian quantum discord still
exists (DAB > 0 in Fig. 2(b)). The results confirm that entan-
glement is a necessary precondition for CV QKD and point
out that Gaussian quantum discord itself has no contribution
to the secret key in such a CV QKD scheme.
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Fig. 4. (color online) Secret key rates with different variances of re-
source state. Dotted (red) and solid (black) lines correspond to r = 1.15
and r = 0.35 with W = 1, respectively. Dashed (blue) lines correspond
to r = 1.15 with W = 1.5.

5. Conclusion
In conclusion, by considering a symmetric two-mode

Gaussian entangled state transmitted through a lossy channel
with excess noise, we show that excess noise in the channel
can lead to ESD. Although the excess noise also decreases
Gaussian quantum discord, it never totally vanishes. There-
fore in order to distribute Gaussian entanglement over a long
distance, we have to control the excess noise in the quantum
channel. For CV QKD with a symmetric two-mode Gaussian
entangled state, the secret key cannot be distilled when entan-
glement vanishes (ν̃− > 1) and only Gaussian quantum dis-
cord exists (DAB > 0). The result supplies a possible way to
destroy, instead of eavesdrop, the CV QKD with a symmetric
two-mode Gaussian entangled state.
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