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The direct generation of discrete-variable three-photon polarization entanglement has been recently demon-
strated [Nat. Photonics 8, 801 (2014)]. Here, we propose a feasible scheme to generate continuous-variable (CV)
three-color polarization entangled states of light in a deterministic way. The method initially prepares a tripartite
quadrature entanglement based on two cascaded nondegenerate optical parametric oscillators. The entangled
modes are then coupled, respectively, with three strong coherent optical beams on polarized beam splitters, lead-
ing to the generation of the three-color CV polarization entanglement. The polarization entanglement is then
verified by inseparability criterion and positive partial transposition criterion. Additionally, optimal parameters
in practical conditions are obtained through numerical simulations, which could provide useful guidance for
experimental implementations. The demonstrated CV three-color polarization entanglement is suitable in quan-
tum information processing tasks relying on the direct interaction between spin of atoms and polarization of
light. © 2015 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (190.4970) Parametric oscillators and amplifiers.
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1. INTRODUCTION

Quantum entanglement is a central concept for quantum in-
formation technologies [1]. With the development of quantum
information, various kinds of quantum-entangled states of light
have been generated and applied in different quantum informa-
tion protocols. Entangled photon pairs [2] and eight-photon
entanglement [3] are generated by combining photons from
two or more different spontaneous parametric downconversions
(SPDCs). The Einstein–Podolsky–Rosen (EPR) entangled state
[4] and eight partite entangled optical fields [5] are produced by
interfering optical fields from two or more different optical para-
metric amplifiers (OPAs). Quantum internet, involving both
matter and light, allows the distribution of entanglement to every
node and the teleportation of quantum states between nodes
across the quantum networks [6]. The atom is one of the suitable
candidates of the quantum information processing and memory
nodes due to good atomic coherence, and the storage and retrieval
of light have been experimentally demonstrated based on rubid-
ium and cesium atoms by many groups [7–15]. Meanwhile, the
light is the best quantum information carrier as a result of the fast
transmission speed and the weak interaction of the environment;
thus, the quantum nodes can be connected by optical fibers.
Multicolor entangled state of light with different frequencies
is demanded in quantum internet to connect the quantum net-
working nodes and channels. The direct generation of three-
photon entanglement with different frequencies in energy and

time has been experimentally realized using the nonlinear process
of the cascaded SPDC system [16,17]. In the CV regime, a non-
degenerate optical parametric oscillator (NOPO) above the
threshold is one of the well-understood devices for producing a
CV two-color quadrature entangled state [18–22]. Considering
the quantum correlation among the reflected pump optical fields
and downconverted signal and idler optical fields, CV three-
color quadrature entanglement is theoretically and experimen-
tally obtained in a single NOPO [23,24]. Another approach for
generating three-color entanglement is based on the cascaded
NOPO system consisting of two NOPOs. The resulting three
downconverted optical beams are three-color quadrature entan-
glement in room temperature deterministically, and their wave-
lengths are 852 nm, corresponding to the cesium atomic
absorption line, 1550 and 1440 nm, matching the optical fiber
transmission window [25,26].

On the other hand, not only quadrature entanglement
but also polarization entanglement has attracted extensive at-
tention. Because light polarization described by Stokes vector
on a Poincare sphere corresponds to atomic spin described by
Stokes vector on a Bloch sphere, the polarization of light can
directly interact with the spin of the atom, which is a potential
candidate for the quantum interface of atoms and light [15]. In
the past years, the DV photon polarization state in the quan-
tum mechanical regime of photon pairs or even eight photons
with the same wavelength has been widely researched [2,3]. In
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2014, DV three-color polarization entanglement with different
wavelengths was directly generated by a cascaded photon pair
polarization entanglement source, and their wavelengths can
be suitable for quantum communication [27]. Comparatively,
the CV polarization state has received much attention, and
Korolkova et al. introduced the concept of the CV polarization
entanglement [28]. Thus, the CV polarization of light can be
used in quantum memory and long distance quantum commu-
nication [15,29]. Further, the bipartite polarization entangle-
ment of optical fields is experimentally designed to transform
the quadrature entanglement to polarization entanglement
produced by OPAs [15,30]. Polarization entanglement is also
produced with an asymmetric fiber-optic Sagnac interferometer
and a cloud of cold cesium atoms in a high-finesse optical cavity
[28,31]. All the above CV bipartite polarization entangled opti-
cal fields are with the same wavelength, and the research on the
CV multicolor polarization entanglement with different wave-
lengths is also crucially important for the quantum information
networks, which has not been reported thus far.

In this paper, we propose direct generation of CV three-color
Greenberger–Horne–Zeilinger-like (GHZ-like) polarization en-
tanglement, and the main point is that the tripartite polarization
entangled optical beams with different wavelengths are generated
and can be applied in quantum networks, consisting of cesium
atom quantum nodes and optical fiber quantum channels. The
resulting multicolor polarization entanglement source is one
kind of fundamental resource for storage and retrieval of the
quantum state and long-distance quantum communication. For
example, in balanced homodyne detection of the quadrature, the
phase-locking fluctuation between the signal optical beam and
local oscillation is large after they pass the atomic memory
medium or long-distance optical fiber, respectively. Fortunately,
this problem can be solved by using the light polarization for
quantum memory or quantum communication because local
oscillation free measurement can overcome the above fluctuation
of phase locking. By combining the techniques of a cascaded
NOPO system, which consists of two NOPOs and coupling
of the coherent state with quadrature entanglement, we can
produce three-color polarization entanglement containing the
advantages of not only connecting the quantum nodes and
channels but also effective interaction and measurement. The
entanglement criterion is required for the generalizing of three-
color polarization entanglement. According to the inseparability
criterion [32,33] and PPT criterion [34,35] for quadrature
entanglement and the commutation relation of light polariza-
tion, we have obtained the three-color inseparability criterion
and PPT criterion for polarization entangled optical fields. The
generalizing of multipartite polarization entanglement requires
critical conditions, such as the optimal structure and parameters
of system. The dependence of the correlation variance and
the smallest symplectic eigenvalues of the partial transposition
covariance matrix of the three optical beams on the experimental
parameters of the cascaded NOPO system are analyzed, and we
obtain the optimal pump power factor and transmissivity of
the pump input coupler and the signal (idler) output coupler
of the two NOPOs according to the numerical calculation and
practical experimental conditions. This provides a direct refer-
ence for the design of experimental systems.

Four features of the proposal should be emphasized. First,
this approach can create three-color polarization entanglement
deterministically, without the need for the post-selection, and
can be useful for application in many quantum information
protocols. Second, the wavelengths of the CV three-color
polarization entangled optical fields from this source can be
easily tuned by precisely controlling the temperature of the
nonlinear crystal due to NOPO’s well-known tunable advance,
which can be applied in quantum information networks con-
taining atomic quantum memory and optical fiber quantum
communication. Third, the polarization entangled optical fields
can directly interact with the atom and are useful for the quan-
tum interface between light and atom [15] and the quantum
networks [6]. Finally, the measurement of light polarization
does not need the local oscillation [29].

In the following, we will describe the cascaded NOPO
system and generate the CV three-color GHZ-like quadrature
entanglement based on the Langevin equation, thus describing
the evolution of quantum fluctuation of optical fields from
NOPO in Section 2. Then, the transformation of quadrature
entanglement to the polarization entanglement is demonstrated
in Section 3. In Section 4, we verify the CV three-color polari-
zation entangled optical fields by means of inseparability cri-
terion and PPT criterion, respectively. We further obtain the
optimal experimental parameters of the cascaded NOPO sys-
tem by numerically analysis. Finally, a brief conclusion is shown
in Section 5.

2. SCHEMATIC OF CASCADED NOPO SYSTEM

In our proposal, the CV three-color spatially separated
Greenberger–Horne–Zeilinger-like (GHZ-like) polarization
entangled state of optical fields is directly generated by coupling
strong coherent optical fields with weak CV three-color quad-
rature polarization entanglement from a cascaded NOPO sys-
tem consisting of two NOPOs. The setup is demonstrated in
Fig. 1. We first prepare a three-color quadrature entangled state
from a cascaded NOPO system and then transform it into
three-color polarization entanglement. The primary NOPO
is pumped by coherent optical fields â1 at wavelength λ1 to
produce the optical fields â2 and â3 at wavelengths λ2 and
λ3. At the same time, the pump optical fields of the secondary
NOPO are from the optical fields â3, one of the output en-
tangled optical beams from the primary NOPO. The secondary
NOPO generates optical fields â4 and â5 at wavelengths λ4 and
λ5, respectively. The resulting quantum state of three optical
beams will be a three-color GHZ-like quadrature entangled
state because one of the downconverted optical fields â3 from
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Fig. 1. Schematic of CV three-color polarization entangled optical
fields using cascaded NOPO system.
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the primary NOPO is used as the pump optical fields of the
secondary NOPO, and its quantum correlations with the other
downconverted optical fields â2 from the primary NOPO
will directly be coupled into the signal and the idler optical
fields â4 and â5 of the secondary NOPO through an intracavity
nonlinear interaction. The resulting quantum state of three
optical beams will be a three-color GHZ-like quadrature en-
tangled state. Then, we can transform quadrature entanglement
to polarization entanglement by coupling strong coherent light
â1c , â2c , and â3c , with weak quadrature entangled optical fields
â2, â4, and â5, on PBS1, PBS2, and PBS3. The final output
optical fields âx , ây, and âz are CV three-color GHZ-like polari-
zation entangled state of optical fields.

In quantum optics, optical fields are represented by
annihilation operator â, and the amplitude X̂ and phase Ŷ
quadratures correspond to the real and imaginary parts of
the annihilation â, as X̂ � â� â†; Ŷ � �â − â†�∕i. In CV
regimes, NOPO operating above the threshold is a well-
understood tool for generating bright quadrature entangled
optical fields; this tool is also tunable by changing the temper-
ature of the nonlinear crystal. The entanglement exists between
the downconverted signal and idler optical fields. The NOPOI
(II), as shown in Fig. 1, is pumped by frequency ϖ1�3� optical
fields to generate signal and idler optical fields with frequencies
ϖ2�4� andϖ3�5�. Due to the conservation of energy in the intra-
cavity frequency downconversion process, the frequencies of
the pump, signal, and idler optical fields satisfy the relations
ϖ1�3� � ϖ2�4� �ϖ3�5�. Conservation of momentum in this
process is known as phase matching. Each NOPO employs
a bow-tie-type ring configuration in order to exclude the influ-
ence of backpropagating light from the NOPOII. Each NOPO
is composed of a nonlinear crystal, two spherical mirrors M 1�5�
andM 2�6�, and two flat mirrorsM 3�7� andM 4�8�, and the three
intracavity modes of signal â2�4�, idler â3�5�, and pump â1�3�
optical fields resonate simultaneously. For pump optical fields
of each NOPO, the input coupling mirrors have the same
transmissivity γ1�3�, introducing the input vacuum noise
âinα1�3 0�, and all the other three-cavity mirrors are highly reflec-
tive. The intracavity loss of the optical components is μ1�3�,
producing the intracavity loss noise âinβ1�3 0�. The total loss of
the pump optical fields for each NOPO is γ 01�3� � γ1�3��
μ1�3�. We assume all the parameters are the same for the signal
and idler optical fields of each NOPO, which are resonant
with the cavity. The output couplers of signal and idler fields
have the same transmissivity γ2�4�, thus introducing the input
vacuum noise âinα2�4� and âinα3�5�, and all the other three cavity
mirrors are highly reflective. The intracavity loss of the optical
components is μ2�4�, producing the intracavity loss noise âinβ2�4�
and âinβ3�5� . Therefore, the total loss of the signal and idler
optical fields for each NOPO is γ 02�4� � γ2�4� � μ2�4�. The
cavity mirror M 3�7� is mounted on a PZT1�2� for scanning
or locking the cavity length of the NOPO to the resonance
with the signal (idler) optical fields. The pump power factor
is defined as σ1�2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1�2�∕Pth1�2�

p
, where P1�2� is the input

pump power and Pth1�2� is the pump threshold power of
each NOPO.

We use the Langevin equations of operators to describe the
evolution of quantum fluctuation of optical modes from
NOPO, which is equivalent to the Fokker–Planck equations
deriving from the density operator master equation. By linear-
izing process and just considering the quantum fluctuation
δx̂i � x̂i − hx̂ii, the Langevin equations is shown as

d
dt

X̂ 1�2� � M̂A1�2� X̂ 1�2� � M̂ γ1�2� X̂
in
α1�2� � M̂ μ1�2� X̂

in
β1�2� : (1)

In the linearizing description, X̂ 1�2� represents the quantum
fluctuations of the amplitude and phase quadratures of the
pump, signal, and idler optical fields inside the NOPOI(II),
which can be expressed as

X̂ 1�2� � �δx̂1�3�; δŷ1�3�; δx̂2�4�; δŷ2�4�; δx̂3�5�; δŷ3�5��T : (2)

And X̂ in
α1�2� means the amplitude and phase quadratures vac-

uum fluctuation into the NOPOI(II) through the pump input
coupler and signal and idler output coupler, expressed as

X̂ in
α1�2� � �δx̂ inα1�3�;δŷinα1�3�;δx̂ inα2�4�;δŷinα2�4�;δx̂ inα3�5�;δŷinα3�5��T : (3)

And X̂ in
β1�2� characterizes the amplitude and phase quadra-

tures vacuum fluctuation into the NOPOI(II) from the intra-
cavity loss, shown as

X̂ in
β1�2� � �δx̂inβ1�3�;δŷinβ1�3�;δx̂inβ2�4�;δŷinβ2�4�;δx̂ inβ3�5�;δŷinβ3�5��T : (4)

Here, M̂A1�2� stands for the drift matrix for NOPOI(II),
describing the interaction of the three modes in the cavity,
demonstrated as

M̂A1�2� �

0
BBBBB@

−m1 0 −m3 0 −m3 0
0 −m1 0 −m3 0 −m3

m3 0 −m2 0 m2 0
0 m3 0 −m2 0 −m2

m3 0 m2 0 −m2 0
0 m3 0 −m2 0 −m2

1
CCCCCA
; (5)

where m1 � γ 01�3�, m2 � γ 02�4�, and m3 �
ffiffiffiffiffiffiffiffiffi
γ 01�3�

q
γ 02�4�

�σ1�2� − 1�.
And M̂ γ1�2� is the matrix for NOPOI(II) describing the

coupling of vacuum noise by the pump input and signal (idler)
output coupling mirrors:

M̂ γ1�2� � diag�m4; m4; m5; m5; m5; m5�; (6)

where m4 �
ffiffiffiffiffiffiffiffiffiffiffi
2γ1�3�

p
, m5 �

ffiffiffiffiffiffiffiffiffiffiffi
2γ2�4�

p
.

And M̂ μ1�2� is the matrix for NOPOI(II) corresponding to
the loss coefficients of all the optical components:

M̂ μ1�2� � diag�m6; m6; m7; m7; m7; m7�; (7)

where m6 �
ffiffiffiffiffiffiffiffiffiffiffiffi
2μ1�3�

p
, m7 �

ffiffiffiffiffiffiffiffiffiffiffiffi
2μ2�4�

p
.

The input and output relation of NOPO is as follows:

X̂ out
1�2� � M̂ γ1�2� X̂ 1�2� − X̂

in
α1�2� : (8)

According to the solution X̂ 1�2� of the Langevin equation
and the input and output relation of NOPO, we are able to
obtain the analytical analysis of the amplitude and phase quad-
rature fluctuation X̂ out

1�2� of the output optical fields for pump,
signal, and idler optical fields from the NOPO.

Research Article Vol. 32, No. 10 / October 2015 / Journal of the Optical Society of America B 2141



3. TRANSFORMATION OF CV QUADRATURE TO
CV POLARIZATION OF LIGHT

The atomic spin state can be described as a Stokes vector on a
Bloch sphere; similarly, the light polarization state can be
described as a Stokes vector on a Poincare sphere. There are
four Stokes operators for light: Ŝ0 represents light intensity
and Ŝ1, Ŝ2, and Ŝ3 characterize horizontal, diagonal, and right
circular polarizations, respectively. The following Stokes oper-
ators can be expressed by means of annihilation and creation
operators of the horizontally and vertically polarized modes:

Ŝ0 � â†H âH � â†V âV ;

Ŝ1 � â†H âH − â†V âV ;

Ŝ2 � â†H âV e
iθ � â†V âH e

−iθ;

Ŝ3 � �â†H âV eiθ − â†V âH e−iθ�∕i; (9)

where θ is the phase difference between the H and V polariza-
tion modes. According to the commutation relations of annihi-
lation and creation operators �âk; âl � � δkl ; �k; l ∈ fH;V g�,
the commutation relations of Stokes operators are as follows:

�Ŝ0; Ŝ j� � 0; �j � 1; 2; 3�
�Ŝ1; Ŝ2� � 2iŜ3; �Ŝ2; Ŝ3� � 2iŜ1; �Ŝ3; Ŝ1� � 2iŜ2; (10)

The value of the commutation relations of Stokes operators
can be determined by the average values of the Stokes operators.

According to the definition of Stokes operators, they can be
obtained from the quadratures of optical fields by combining
the strong vertical polarization optical fields αV and the weak
horizontal polarization optical fields αH on PBS. The mean
values of Stokes operators are

hŜ0i � α2H � α2V ;

hŜ1i � α2H − α2V ;

hŜ2i � 2αHαV cos θ;

hŜ3i � 2αHαV sin θ: (11)

The quantum fluctuations of Stokes operators are

Δ2Ŝ0�Δ2Ŝ1�α2VΔ2X̂ V �α2HΔ2X̂ H ;

Δ2Ŝ2�θ�0��Δ2Ŝ3�θ�π∕2��α2VΔ2X̂ H �α2HΔ2X̂ V ;

Δ2Ŝ3�θ�0��Δ2Ŝ2�θ�π∕2��α2VΔ2Ŷ H �α2HΔ2Ŷ V : (12)

In the following text, we choose the power of light in the
vertical polarization direction, which is larger than that in the
horizontal direction, as α2H∕α2V � 1∕30, and keep the phase
difference θ between the vertical and horizontal direction to
be 0. Therefore, the expression of quantum fluctuations of
Stokes operators can be obtained as follows:

Δ2Ŝ0 � Δ2Ŝ1 � α2VΔ2X̂ V ;

Δ2Ŝ2 � α2VΔ2X̂ H ;

Δ2Ŝ3 � α2VΔ2Ŷ H : (13)

In the following, we couple the strong coherent light âc1,
âc2, and âc3 in the vertical polarization direction with the weak
quadrature entangled optical fields â2, â4, and â5 in the

horizontal polarization direction on PBS1, PBS2, and PBS3,
as shown in Fig. 1. Therefore, quadrature entanglement is
transformed to Stokes operator entanglement, and we obtain
the entanglement of the Stokes operator Ŝ2x, Ŝ3x , Ŝ2y, Ŝ3y,
Ŝ2z , and Ŝ3z of three optical beams âx , ây, and âz . All four
Stokes parameters can be easily measured by the polarization
beam splitter, half-wave plate, and quarter-wave plate.

4. VERIFICATION OF CV THREE-COLOR
POLARIZATION ENTANGLED OPTICAL FIELDS

Two methods are typically used to characterize the CV entan-
glement: one is inseparability criterion and the other is PPT
criterion. The inseparability criterion is a sufficient condition
for entanglement. In 2000, Duan first proposed the bipartite
inseparability criterion for quadrature [32], and then van
Loock and Furusawa generalized it to multipartite inseparabil-
ity criterion for quadrature [33]. For tripartite entanglement,
if the operator correlation variances satisfy the inequality
hΔ�Âi − Âj�2i � hΔ�PN

i�1�B̂i��2i < 4 or hΔ�PN
i�1�Âi��2i �

hΔ�B̂i − B̂j�2i < 4 �i; j � 1; 2; 3�, where Âi and B̂i are the con-
jugate operators, a tripartite GHZ-like entangled state exists.
According to the multipartite inseparability criterion in [33]
and commutation relation of Stokes operators, we can obtain
the tripartite inseparability criterion of Stokes operators for op-
tical beams x; y; z, and we can define the normalized tripartite
correlation variance of Stokes operators I�Ŝ2; Ŝ3� as follows:

I1�Ŝ2; Ŝ3� �
Δ2�Ŝ2y − Ŝ2z� � Δ2�Ŝ3x � Ŝ3y � Ŝ3z�

2j�Ŝ2; Ŝ3�j
; (14)

I 2�Ŝ2; Ŝ3� �
Δ2�Ŝ2x − Ŝ2y� � Δ2�Ŝ3x � Ŝ3y � Ŝ3z�

2j�Ŝ2; Ŝ3�j
; (15)

I3�Ŝ2; Ŝ3� �
Δ2�Ŝ2x − Ŝ2z� � Δ2�Ŝ3x � Ŝ3y � Ŝ3z�

2j�Ŝ2; Ŝ3�j
: (16)

Thus, I i�Ŝ2; Ŝ3� < 1�i � 1; 2; 3� guarantees the quantum
state of optical fields is inseparable. If any two inequalities
in the set of inequalities are simultaneously satisfied, the three
optical modes are a CV GHZ-like entangled state.

On the other hand, the PPT entanglement criterion pro-
posed by Simon is the sufficient and necessary condition for
the Gaussian state [34,35]. The entanglement properties of op-
tical fields are related to the covariance matrix. The first-order
moments are related to the average value, and the second-order
moments correspond to the correlated matrix and entangle-
ment. After applying the partial transposition operation to
each subset, we obtain the partially transposed covariance ma-
trix Ṽ i�i � x; y; z�. The smallest symplectic eigenvalue ṽi�i �
x; y; z� of each partially transposed covariance matrix is used to
verify the entanglement, and, if ṽi < 1, the state is entangled.
Because of the interchangeability of signal and idler optical
fields ây and âz from the NOPOII, their correlation variances
are the same I 2�Ŝ2; Ŝ3� � I 3�Ŝ2; Ŝ3�, and their the smallest
symplectic eigenvalues are equal ṽy � ṽz .

According to Eqs. (1) and (8), and taking the output optical
field a3 of NOPOI as the pump field of NOPOII, we can ob-
tain the output quadrature entanglement of a cascaded NOPO
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system. Using Eq. (13), the output polarization correlation re-
sults are obtained. Then, we are able to analyze the dependence
of inseparability criterion and PPT criterion on each parameter,
as shown in Figs. 2 and 3, respectively. In numerical calcula-
tion, we consider the analysis frequency 1 MHz. We take the
pump input coupling transmissivity to be 0.20 for NOPOI(II).
All the intracavity losses for pump, signal, and idler optical
fields are considered as 0.001.

First, we will analyze the three-color polarization entangle-
ment by inseparability criterion. Figure 2(a) shows the function
of the correlation variance of Stokes operator I i�Ŝ2; Ŝ3� versus
the pump power factor σ1 of the NOPOI when we keep
γ1 � 0.20, γ2 � 0.03, γ3 � 0.20, γ4 � 0.15, and σ2 � 2.
We can see that the correlation variance is smaller when the
pump power is close to the threshold. Figure 2(b) shows the
function of the correlation variance I i�Ŝ2; Ŝ3� versus the pump
power factor σ2 of the NOPOII while γ1 � 0.20, γ2 � 0.03,
γ3 � 0.20, γ4 � 0.15, and σ1 � 1 are kept. We can see that
there is a minimum value of the correlation variance when the
pump power factor is close to 2 for I 1�Ŝ2; Ŝ3�.

Figures 2(c) and 2(d) illustrate the functions of the corre-
lation variance I i�Ŝ2; Ŝ3� versus the transmissivity of the
pump input coupler of the NOPOI and NOPOII, as we keep
γ2 � 0.03, γ3 � 0.20, γ4 � 0.15, σ1 � 1, σ2 � 2, and
γ1 � 0.20, γ2 � 0.03, γ4 � 0.15, σ1 � 1, and σ2 � 2, re-
spectively. Figures 2(e) and 2(f ) demonstrate the functions
of the correlation variance I i�Ŝ2; Ŝ3� versus the transmissivity
of the signal (idler) output coupler of the NOPOI and
NOPOII in the condition of γ1 � 0.20, γ3 � 0.20,
γ4 � 0.15, σ1 � 1, σ2 � 2, and γ1 � 0.20, γ2 � 0.03,
γ3 � 0.20, σ1 � 1, and σ2 � 2, respectively.

In the following, we will analyze the three-color polarization
entangled state by PPT criterion, which has similar results to
the inseparability criterion results. Figures 3(a) and 3(b)

illustrate the dependence of the smallest symplectic eigenvalue
of the partial transposition covariance matrix for the Stokes
operator Ŝ2 and Ŝ3 of optical beams âx , ây, and âz on the pump
power factor σ1 and σ2 of each NOPO when we keep
γ1 � 0.20, γ2 � 0.03, γ3 � 0.20, γ4 � 0.15, σ2 � 2, and
γ1 � 0.20, γ2 � 0.03, γ3 � 0.20, γ4 � 0.15, and σ1 � 1, re-
spectively. We can see that the smallest symplectic eigenvalue is
smaller when the pump power is close to the threshold for
the NOPOI. There is a minimum value of the smallest sym-
plectic eigenvalue when the pump power factor is close to 2.
The dependence of the smallest symplectic eigenvalue on the
transmissivity of the pump input coupler and the signal (idler)
output coupler of each NOPO is drawn from Figs. 3(c) to 3(f ).
The results are also similar to those of the inseparability
criterion.

The entanglement is not sensitive to γ1. For γ3, the entan-
glement degree will improve if the γ3 are larger, and, when
γ3 > 0.20, the entanglement almost reaches the best case.
However, the pump threshold power is high if the γ1 and γ3
are large. The cascaded system needs a high entanglement de-
gree and low threshold power at the same time. Thus, we create
a balance between the two factors and choose γ1 � γ3 � 0.20,
according to the practical experimental condition.

For γ2 and γ4, the entanglement degree is better when γ2
and γ4 are large because the ratio of entanglement output
and noise output caused by intracavity loss is high. While
γ2 > 0.03, the entanglement almost reaches the best case. If
γ4 > 0.15, the criteria for the entanglement are satisfied and
are not sensitive to γ4. The pump threshold power is high if
the γ2 and γ4 are large. We need to consider the pump power
of each NOPO and try to create a low pump threshold. Thus,
we choose γ2 � 0.03 and γ4 � 0.15, and the entanglement
almost reaches the optimal case, and the threshold is
experimental reasonable.

Fig. 2. Functions of correlation variance of Ŝ2 and Ŝ3 versus the
parameters of cascaded NOPO system. (a) and (b) Pump power factor
of NOPOI(II). (c) and (d) Pump input coupling transmissivity of
NOPOI(II). (e) and (f ) Signal (idler) output coupling transmissivity
of NOPOI(II). Traces I, II, and III are for I1�Ŝ2; Ŝ3�, I2�Ŝ2; Ŝ3�,
I 3�Ŝ2; Ŝ3�, respectively.
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Fig. 3. Dependence of the smallest symplectic eigenvalue of Ŝ2 and
Ŝ3 on the parameters of cascaded NOPO system. (a) and (b) Pump
power factor of NOPOI(II). (c) and (d) Pump input coupling trans-
missivity of NOPOI(II). (e) and (f ) Signal (idler) output coupling
transmissivity of NOPOI(II). Traces I, II, and III are for ṽx, ṽy, ṽz ,
respectively.
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For the phase quadrature, the correlation variance or the
symplectic eigenvalue will increase if the normalized pump
power factor of NOPOI is increased. Thus, for Stokes S2 and
S3, the correlation variance or the symplectic eigenvalue will
increase when the pump power of NOPOI is increased. We
choose the σ1 � 1.

The beams y and z are from NOPOII. If the pump power of
NOPOII is close to threshold, there is multimode competition,
and the correlation variance or the symplectic eigenvalue is
high. The correlation variance or the symplectic eigenvalue
will sharply decrease, when the power is increased. When the
normalized pump power factor is near 2, there is a minimum
value. After that point, the correlation variance or the symplec-
tic eigenvalue will increase again. The correlation variance or
the symplectic eigenvalue of the phase quadrature will increase
when the normalized pump power factor is increased. We
choose σ2 � 2 near the minimum value.

We obtain the optimal values according to Figs. 2 and 3 by
taking a differential calculation and other practical experimen-
tal conditions. Thus, we choose the optimal experimental
parameters as γ1 � 0.20, γ2 � 0.03, γ3 � 0.20, γ4 � 0.15,
σ1 � 1, and σ2 � 2.

The violation of inseparability criterion of light polarization
is the sufficient condition of entanglement, and the violation of
PPT criterion of light polarization is the necessary and suffi-
cient condition of entanglement. We can use them as entan-
glement criteria and quality of entanglement. The boundary of
normalized tripartite correlation variance of polarization is 1,
and, if the normalized correlation variance is less than 1, the
entanglement exists. From Fig. 2, we can see that it is much
smaller than 1, and we obtain a three-color entanglement. The
boundary of the smallest symplectic eigenvalue is 1, and, if the
smallest symplectic eigenvalue is less 1, the entanglement exists.
As illustrated in Fig. 3, it is less than 1, and three-color entan-
glement is verified.

The CV polarization entanglement is sensitive to loss. We
will consider the dependence of entanglement on the intracav-
ity loss. Figure 4 shows the normalized correlation variance and
the smallest symplectic eigenvalue as a function of the intracav-
ity loss of the signal optical beam for NOPOI. The normalized
correlation variance and the smallest symplectic eigenvalue will
increase when the loss is large. Even when the intracavity loss
reaches 0.15, the entanglement does not exist.

We can choose the laser with the wavelength λ1 � 398 nm
to be the pump optical fields for NOPOI and produce the

entangled optical fields at wavelengths λ2 � 852 nm and λ3 �
746 nm by precisely controlling the temperature of NOPOI
nonlinear crystal because of the capacity of frequency tuning.
At the same time, the optical fields at wavelength λ3 are used as
pump optical fields for NOPOII to generate the entangled op-
tical fields at wavelengths λ4 � 1550 nm and λ5 � 1440 nm
by changing the temperature of NOPOII nonlinear crystal.
The optical fields at wavelength λ2 � 852 nm can correspond
to the cesium atoms absorption line and can be used in quan-
tum interface of atomic spin and light polarization. The optical
fields at wavelengths λ4 � 1550 nm and λ5 � 1440 nm can
match the fiber transmission window. This system can be
applied in quantum memory and long-distance quantum com-
munication for constructing quantum repeater and quantum
networks [29].

5. CONCLUSION

In summary, we have theoretically proposed direct generation
of CV three-color spatially separated GHZ-like polarization en-
tangled optical fields by coupling the strong coherent light with
the weak CV three-color quadrature entangled light derived
from a cascaded NOPO system. According to inseparability cri-
terion and PPT criterion, the dependencies of the correlation
variance and the smallest symplectic eigenvalue of the partial
transposition covariance matrix of the resulting CV three-color
polarization entangled state on the pump power factor and the
signal (idler) output coupling transmissivity of each NOPO are
numerically calculated, and we may choose the optimal exper-
imental parameters to provide direct reference for designing a
practical system. This approach does not rely on the post-
selection, and the wavelengths of the CV three-color polariza-
tion entangled optical fields can match the atomic absorption
line and optical fiber transmission window due to the tuning
capacity of NOPO, which can be applied in the future quan-
tum information networks, and especially the interface between
atomic spin and light polarization, quantum memory, quantum
internet, and long-distance quantum communication.
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2144 Vol. 32, No. 10 / October 2015 / Journal of the Optical Society of America B Research Article



spontaneous parametric downconversion,”Nat. Photonics 5, 628–632
(2011).

8. Z. X. Xu, Y. L. Wu, L. Tian, L. R. Chen, Z. Y. Zhang, Z. H. Yan, S. J. Li,
H. Wang, C. D. Xie, and K. C. Peng, “Long lifetime and high-fidelity
quantum memory of photonic polarization qubit by lifting zeeman
degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).

9. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky,
“Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602
(2008).

10. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka,
T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of
a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008).

11. J. Cviklinski, J. Ortalo, J. Laurat, A. Bramati, M. Pinard, and E.
Giacobino, “Reversible quantum interface for tunable single-sideband
modulation,” Phys. Rev. Lett. 101, 133601 (2008).

12. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic
entanglement into and out of a quantum memory,” Nature 452, 67–71
(2008).

13. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of
Einstein–Podolsky–Rosen entanglement,”Nature 457, 859–862 (2009).

14. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C.
Buchler, “Unconditional room-temperature quantum memory,” Nat.
Phys. 7, 794–798 (2011).

15. K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen,
M. Owari, M. B. Plenio, A. Serafini, M. M. Wolf, and E. S. Polzik,
“Quantum memory for entangled continuous-variable states,” Nat.
Phys. 7, 13–16 (2010).

16. H. Hubel, D. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, and T.
Jennewein, “Direct generation of photon triplets using cascaded
photon-pair sources,” Nature 466, 601–603 (2010).

17. L. Shalm, D. Hamel, Z. Yan, C. Simon, K. Resch, and T. Jennewein,
“Three-photon energy-time entanglement,” Nat. Phys. 9, 19–22 (2012).

18. A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P.
Nussenzveig, “Generation of bright two-color continuous variable
entanglement,” Phys. Rev. Lett. 95, 243603 (2005).

19. X. L. Su, A. H. Tan, X. J. Jia, Q. Pan, C. D. Xie, and K. C. Peng,
“Experimental demonstration of quantum entanglement between fre-
quency-nondegenerate optical twin beams,” Opt. Lett. 31, 1133–1135
(2006).

20. J. Jing, S. Feng, R. Bloomer, and O. Pfister, “Experimental continu-
ous-variable entanglement from a phase-difference-locked optical
parametric oscillator,” Phys. Rev. A 74, 041804 (2006).

21. G. Keller, V. D’Auria, N. Treps, T. Coudreau, J. Laurat, and C. Fabre,
“Experimental demonstration of frequency-degenerate bright EPR

beams with a self-phase-locked OPO,” Opt. Express 16, 9351–9356
(2008).

22. Y. M. Li, X. M. Guo, Z. L. Bai, and C. C. Liu, “Generation of two-color
continuous variable quantum entanglement at 0.8 and 1.5 mm,” Appl.
Phys. Lett. 97, 031107 (2010).

23. A. S. Villar, M. Martinelli, C. Fabre, and P. Nussenzveig, “Direct
production of tripartite pump-signal-idler entanglement in the above-
threshold optical parametric oscillator,” Phys. Rev. Lett. 97, 140504
(2006).

24. A. S. Coelho, F. A. S. Barbosa, K. N. Cassemiro, A. S. Villar, M.
Martinelli, and P. Nussenzveig, “Three-color entanglement,” Science
326, 823–826 (2009).

25. A. H. Tan, C. D. Xie, and K. C. Peng, “Bright three-color entangled
state produced by cascaded optical parametric oscillators,” Phys.
Rev. A 85, 013819 (2012).

26. X. J. Jia, Z. H. Yan, Z. Y. Duan, X. L. Su, H. Wang, C. D. Xie, and K. C.
Peng, “Experimental realization of three-color entanglement at optical
fiber communication and atomic storage wavelengths,” Phys. Rev.
Lett. 109, 253604 (2012).

27. D. Hamel, L. Shalm, H. Hubel, A. J. Miller, F. Marsili, V. B. Verma,
R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein, “Direct gen-
eration of three-photon polarization entanglement,” Nat. Photonics 8,
801–807 (2014).

28. N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn,
“Polarization squeezing and continuous-variable polarization entan-
glement,” Phys. Rev. A 65, 052306 (2002).

29. C. Peuntinger, B. Heim, C. R. Muller, C. Gabriel, C. Marquardt, and G.
Leuchs, “Distribution of squeezed states through an atmospheric
channel,” Phys. Rev. Lett. 113, 060502 (2014).

30. W. Bowen, N. Treps, R. Schnabel, and P. Lam, “Experimental
demonstration of continuous variable polarization entanglement,”
Phys. Rev. Lett. 89, 253601 (2002).

31. V. Josse, A. Dantan, A. Bramati, M. Pinard, and E. Giacobino,
“Continuous variable entanglement using cold atoms,” Phys. Rev.
Lett. 92, 123601 (2004).

32. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability
criterion for continuous variable systems,” Phys. Rev. Lett. 84,
2722–2725 (2000).

33. P. van Loock and A. Furusawa, “Detecting genuine multipartite
continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003).

34. R. Simon, “Peres–Horodecki separability criterion for continuous
variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).

35. R. F. Werner and M. M. Wolf, “Bound entangled Gaussian states,”
Phys. Rev. Lett. 86, 3658–3661 (2001).

Research Article Vol. 32, No. 10 / October 2015 / Journal of the Optical Society of America B 2145


