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Multipartite entangled state is the basic resource for implementing quantum information networks
and quantum computation. In this paper, we present the experimental demonstration of the eight-
partite two-diamond shape cluster states for continuous variables, which consist of eight spatially
separated and entangled optical modes. Eight resource squeezed states of light with classical co-
herence are produced by four nondegenerate optical parametric amplifiers and then they are trans-
formed to the eight-partite two-diamond shape cluster states by a specially designed linear optical
network. Since the spatially separated multipartite entangled state can be prepared off-line, it can
be conveniently applied in the future quantum technology.

Keywords quantum computation, continuous variable, cluster state, squeezed state

PACS numbers 03.67.Bg, 03.67.Lx, 03.65.Ud, 42.50.Dv

1 Introduction

Quantum information (QI) science has exhibited unusual
potentiality in recent years [1, 2]. Optical QI exploiting
discrete-variable (DV) of single-photon states (photonic
qubits) and continuous-variable (CV) of optical modes
(photonic qumodes) play important role for the develop-
ment of QI in both fundamental research and application
exploration. The one-way quantum computation (QC)
based on multipartite cluster entanglement is initially
proposed by Raussendorf and Briegel in the DV model
[3], then it is extended to the CV regime by Menicucci
et al. [4]. For one-way QC model the qubits (qumodes)
are initialized in a multipartite cluster entangled state
firstly, then a variety of quantum logical operations can
be achieved only via the single-qubit (qumode) projective
measurement and the classical feedforward of the mea-
sured outcomes, in which the order and choices of mea-
surements are determined by the required algorithm [3].
The basic logical operations of one-way DVQC has been
experimentally demonstrated by several groups [5–7].

Parallelly, the theoretical and experimental explo-
rations on one-way CVQC have also been proceeding

continually [8–14]. In contrast to the probabilistic gen-
eration of photonic qubits in most cases, CV cluster
states are produced in an unconditional fashion and thus
the one-way QC with CV cluster entangled photonic
qumodes can be implemented deterministically [11–18].
Following the theoretical proposals on one-way CVQC
the principally experimental demonstrations of various
one-way QC logical operations over CVs were achieved
by utilizing bipartite or four-partite cluster entangled
photonic qumodes [11–14]. To develop more complicated
QC larger cluster states with more numbers of entan-
gled qubits (qumodes) are desired. Very recently, we
experimentally prepared CV eight-partite linear clus-
ter state with a one-dimensional structure [19]. In this
paper, we present the first experimental achievement
on producing CV eight-partite two-diamond shape en-
tangled state, which has a two dimensional structure
and thus has potential applications in complex CVQI
network and CVQC. We use eight squeezed states of
light to be the initial resource quantum states and pass
through the linearly optical transformation on a specially
designed beam-splitter network, the eight-partite two-
diamond shape cluster states for photonic qumodes are
prepared. The entanglement feature among the obtained
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eight space-separated photonic qumodes is confirmed by
the fully inseparability criteria for CV multipartite en-
tangled states proposed by van Loock and Furusawa [20].

2 Preparation scheme of the cluster state

At first, we briefly introduce the definition of CV cluster
state. The cluster state is a type of multipartite quan-
tum entangled graph states corresponding to some math-
ematic graphs [4,10,21]. The CV cluster quadrature cor-
relations (so-called nullifiers) are expressed by [10,21,22]

(p̂a −
∑

b∈Na

x̂b) → 0, ∀ a ∈ G (1)

where x̂a = (â + â†)/2 and p̂a = (â − â†)/(2i) stand
for the quadrature-amplitude and the quadrature-phase
operators of an optical mode â, respectively. The sub-
script a (b) expresses the designated mode â (b̂). The
modes of a ∈ G denote the vertices of the graph G, while
the modes of b ∈ Na are the nearest neighbors of mode
â. For an ideal cluster state the left-hand side of Eq.
(1) trends to zero, which stands for a simultaneous zero
eigenstate of the quadrature combination [10]. The CV
cluster quantum entanglement generated by experiments
is deterministic, but also is imperfect, the entanglement
features of which have to be verified and quantified by
the sufficient conditions for the fully inseparability of
multipartite CV entanglement [15–18]. There are differ-
ent correlation combinations [left-hand side of Eq. (1)]
in a variety of CV cluster multipartite entangled states,
which reflect the complexity and rich usability of these
quantum systems. The expressions of the nullifiers for
different graph states depend on their graph configura-
tions.

Figure 1(a) shows the graph representations of CV
eight-partite two-diamond shape cluster state, each node
of which corresponds to an optical mode and the connec-
tion lines between neighboring nodes stand for the inter-
action between the nodes. From Eq. (1) and Fig. 1(a), we
obtain the nullifiers of the two-diamond shape CV cluster
state, which are p̂D1−x̂D3−x̂D4 = δD1 , p̂D2−x̂D3−x̂D4 =
δD2 , p̂D3−x̂D1−x̂D2 = δD3 , p̂D4−x̂D1−x̂D2−x̂D5 = δD4 ,
p̂D5 − x̂D4 − x̂D7 − x̂D8 = δD5 , p̂D6 − x̂D7 − x̂D8 = δD6 ,
p̂D7 − x̂D5 − x̂D6 = δD7 , p̂D8 − x̂D5 − x̂D6 = δD8 , where
the subscripts Di (i = 1, 2, · · · , 8) denote the individ-
ual nodes of the two-diamond shape cluster state, and
δDi express the excess noises resulting from the imper-
fect quantum correlations. When the variance of δDi

is smaller than the corresponding quantum noise limit
(QNL) determined by vacuum noises, the correlations
among the combined optical modes is within the quan-
tum region, otherwise the quantum correlations do not

exist.

Fig. 1 (a) The graph representation of the two-diamond shape
eight-partite cluster states. Each node corresponds to an optical
mode. The connected lines between neighboring nodes stand for
the interaction among these nodes. (b) Schematic of experimental
setup for CV eight-partite two-diamond shape cluster state gener-
ation. T : Transmission efficient of beam splitter, Boxes including
i express Fourier transforms (90◦ rotations in phase space), −i ex-
press a −90◦ rotation, and −1 express a 180◦ rotation, NOPA:
The nondegenerate optical parametric amplifier, BHD: Balanced
homodyne detector, LO: Local oscillator.

2.1 Unitary matrix of the linear transformation

The schemes of generating CV multipartite entangled
states commonly used in experiments are to achieve a
linearly optical transformation of input squeezed states
on a specific beam-splitter network [21, 22]. Accord-
ing to the proposal of Refs. [21] and [22], CV cluster
states of photonic qumodes can be created via a general
linear-optics transformation of p̂-squeezed input modes
âl = e+rx̂

(0)
l + ie−rp̂

(0)
l , where x̂

(0)
j and p̂

(0)
j denote the

quadrature-amplitude and the quadrature-phase opera-
tors of the corresponding vacuum field, respectively, r is
the squeezing parameter to quantify the squeezing level,
r = 0 and r = +∞ correspond to the two cases of
no squeezing and the ideally perfect squeezing, respec-
tively. Assuming âl and Ukl stand for the input squeezed
states and the unitary matrix of a given beam-splitter
network, respectively, the output optical modes after
the transformation are given by b̂k =

∑
l Uklâl, where

the subscripts l and k express the designated input and
output modes, respectively. The CV cluster states sat-
isfy IIm[UBin]−ARe[UBin] → 0 in the limit of infi-
nite squeezing, where I is the identity matrix, Bin =
(â1, â2, · · · , ân)T denotes the matrix of input states, A is
the adjacency matrix [23]. So we have IImU = AReU,
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and obtain the unitary matrix:

U = (I + iA)ReU (2)

Based on the unitarity of matrix U , UU † = I, we have

ReU(ReU)T = (I + A2)−1 (3)

In this case, we can calculate ReU and U from the adja-
cency matrix A.

For n-partite cluster state, assuming

ReU =

⎛
⎜⎜⎜⎜⎜⎝

�αT
1

�αT
2

...
�αT

n

⎞
⎟⎟⎟⎟⎟⎠

(4)

where �αT
i = (αi1, αi2, · · · , αin) is a real vector. According

to Eq. (3), we have �αT
i �αj = (I + A2)−1

ij (i, j = 1, · · · , n),
and the numbers of these equations are n(n + 1)/2 ac-
cording to the symmetry of matrix. Since there are n2 un-
known numbers in all these equations, we need n(n−1)/2
conditions to solve the equations. For simplicity and
without losing generality, some unknown numbers in the
equations are chosen to be 0 when we solve the equations.

Since the unitary matrix of the two-diamond shape
eight-partite cluster state can be obtained directly from
that of the linear cluster state. We calculate the matrix
elements for the linear cluster state, firstly. For CV eight-
partite linear cluster state [19], the adjacency matrix is
written as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

we have

(I + A2)−1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

21
34 0 −4

17 0 3
34 0 −1

34 0

0 13
34 0 −5

34 0 1
17 0 −1

34
−4
17 0 8

17 0 −3
17 0 1

17 0

0 −5
34 0 15

34 0 −3
17 0 3

34
3
34 0 −3

17 0 15
34 0 −5

34 0

0 1
17 0 −3

17 0 8
17 0 −4

17
−1
34 0 1

17 0 −5
34 0 13

34 0

0 −1
34 0 3

34 0 −4
17 0 21

34

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

The matrix elements in Eq. (4) are obtained in the fol-
lowing way. Considering the symmetry, we start from the
middle row, �αT

4 = (α41, α42, α43, α44, α45, α46, α47, α48).
We apply seven initial conditions, α41 = α42 = α43 =
α44 = α46 = α47 = α48 = 0, then it becomes �αT

4 =
( 0 0 0 0 α45 0 0 0 ). According to equations
�αT

4 �α4 = (I + A2)−1
44 = 15

34 , the first matrix elements in

Eq. (4) α45 = −
√

15
34 is obtained. Then applying six

conditions, α51 = α52 = α53 = α56 = α57 = α58 = 0 on
�αT

5 , we obtain �αT
5 = ( 0 0 0 α54 α55 0 0 0 ).

Using equations �αT
5 �α5 = (I + A2)−1

55 = 15
34 and αT

5 α4 =
(I + A2)−1

54 = 0, we obtain two matrix elements in Eq.

(4) α55 = 0, and α54 = −
√

15
34 . In the same way, other

matrix elements in Eq. (4) can be calculated.
After all the matrix elements in Eq. (4) are obtained,

the unitary matrix is given from Eq. (2). The unitary ma-
trix of the eight-partite linear cluster state transformed
from eight p̂-squeezed states are expressed by

Up
L =⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

i√
3

1√
10

−√
3√

170
i
√

5√
102

0 0 0
i√
2

1√
3

−i√
10

i
√

3√
170

√
5√

102
0 0 0

0 i√
3

−√
2√

5

√
6√
85

−i
√

10√
51

0 0 0

0 0 −i
√

2√
5

−i3
√

3√
170

−√
15√

34
0 0 0

0 0 0 −√
15√

34
−i3

√
3√

170
i
√

2√
5

0 0

0 0 0 −i
√

10√
51

√
6√
85

√
2√
5

i√
3

0

0 0 0
√

5√
102

i
√

3√
170

i√
10

1√
3

−i√
2

0 0 0 i
√

5√
102

−√
3√

170
−1√
10

i√
3

−1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

In our experiment, four quadrature-amplitude x̂-
squeezed states, âm = e−rx̂

(0)
m + ie+rp̂

(0)
m (m = 1, 3, 5, 7),

and four quadrature-phase p̂-squeezed states, ân =
e+rx̂

(0)
n + ie−rp̂

(0)
n (n = 2, 4, 6, 8), are used as the re-

source states. Applying Fourier transformation on modes
â1, â3, â5 and â7, which corresponds to multiplying i on
the values of columns 1, 3, 5 and 7 of the unitary matrix
Up

L, we obtain the unitary matrix of CV eight-partite
linear cluster state for our experimental system, which is

UL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i√
2

i√
3

i√
10

√
3√

170

√
5√

102
0 0 0

−1√
2

1√
3

1√
10

−i
√

3√
170

−i
√

5√
102

0 0 0

0 i√
3

−i
√

2√
5

−√
6√

85
−√

10√
51

0 0 0

0 0
√

2√
5

i3
√

3√
170

i
√

15√
34

0 0 0

0 0 0
√

15√
34

−3
√

3√
170

i
√

2√
5

0 0

0 0 0 i
√

10√
51

−i
√

6√
85

√
2√
5

1√
3

0

0 0 0 −√
5√

102

√
3√

170
i√
10

−i√
3

−i√
2

0 0 0 −i
√

5√
102

i
√

3√
170

−1√
10

1√
3

−1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)
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Similarly, we deduce the unitary matrix of CV eight-
partite two-diamond shape cluster state (UD) and find
that it equals to a unitary transformation UF =
diag{−1,−i, i, 1, 1, i,−i,−1} of the unitary matrix UL,
i.e. UD = UF UL, so we have

UD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i√
2

−i√
3

−i√
10

−√
3√

170
−√

5√
102

0 0 0
i√
2

−i√
3

−i√
10

−√
3√

170
−√

5√
102

0 0 0

0 −1√
3

√
2√
5

−i
√

6√
85

−i
√

10√
51

0 0 0

0 0
√

2√
5

i3
√

3√
170

i
√

15√
34

0 0 0

0 0 0
√

15√
34

−3
√

3√
170

i
√

2√
5

0 0

0 0 0 −√
10√

51

√
6√
85

i
√

2√
5

i√
3

0

0 0 0 i
√

5√
102

−i
√

3√
170

1√
10

−1√
3

−1√
2

0 0 0 i
√

5√
102

−i
√

3√
170

1√
10

−1√
3

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

The unitary matrix in Eq. (9) expresses an optical
transformation on a beam-splitter network consisting of
seven beam splitters and can be decomposed into UD =
F †

8 F7F4F
†
3 I2(−1)I1(−1)B−

78(1/2)F8B
−
12(1/2)F1B

−
67(1/3)

F7B
−
23(1/3)F2B

−
56(2/5)F6B

−
34(2/5)F3B

+
45(25/34), where

Fk denotes the Fourier transformation of mode k, which
corresponds to a 90◦ rotation in the phase space;
B±

kl(Tj) stands for the linearly optical transforma-
tion on the jth beam-splitter with the transmission
of Tj (j = 1, 2, 3, · · · , 7), where (B±

kl)kk =
√

1 − T ,
(B±

kl)kl =
√

T , (B±
kl)lk = ±√

T , and (B±
kl)ll = ∓√

1 − T ,

are elements of beam-splitter matrix. Ik(−1) = eiπ cor-
responds to a 180◦ rotation of mode k in the phase
space. The transmissions of the seven beam split-
ters are chosen as T1 = 25/34, T2 = T3 = 2/5,
T4 = T5 = 1/3 and T6 = T7 = 1/2. The excess noise
terms of the nullifiers in the two-diamond shape cluster

state are expressed by δD1 = − 1√
2
e−rx̂

(0)
1 +

√
5
2e−rx̂

(0)
3 ,

δD2 = 1√
2
e−rx̂

(0)
1 −

√
5
2e−rx̂

(0)
3 , δD3 = −√

3e−rp̂
(0)
2 ,

δD4 = − 2√
3
e−rp̂

(0)
2 +

√
2
5e−rp̂

(0)
6 +

√
34
15e−rx̂

(0)
5 , δD5 =√

34
15e−rp̂

(0)
4 −

√
2
5e−rx̂

(0)
3 + 2√

3
e−rx̂

(0)
7 , δD6 =

√
3e−rx̂

(0)
7 ,

δD7 =
√

5
2e−rp̂

(0)
6 − 1√

2
e−rp̂

(0)
8 , and δD8 =

√
5
2e−rp̂

(0)
6 +

1√
2
e−rp̂

(0)
8 , respectively.

2.2 Inseparability criteria for the cluster state

According to the inseparability criteria for CV multi-
partite entangled states proposed by van Loock and Fu-
rusawa [20], we deduce the concrete inseparability con-
ditions for CV eight-partite two-diamond shape cluster
state. For any separable quantum state, its total density
operator can be written as ρ̂ =

∑
i ηiρ̂i,k,···,m ⊗ ρ̂i,l,···,n

with a distinct pair of “separable modes” (m, n) and

the other modes k 	= l [see Eq. (25) in Ref. 20], where
ηi represent the mixture of these separable states. For
any combinations û = h1x̂1 + h2x̂2 + · · · + hN x̂N and
v̂ = g1p̂1 + g2p̂2 + · · ·+ gN p̂N , the inseparability criteria
are expressed by [20]

V (û) + V (v̂) <
1
2

( ∣∣∣hmgm +
∑

k
hkgk

∣∣∣
+

∣∣∣hngn +
∑

l
hlgl

∣∣∣
)

(10)

The inseparability criteria for CV eight-partite two-
diamond shape cluster state deduced from Eq. (10) are
expressed by the following inequalities:

V (p̂D1 − x̂D3 − gD1 x̂D4)+V (p̂D3 − x̂D1 − gD2 x̂D2 ) < 1

(11a)

V (p̂D2 − x̂D3 − gD1 x̂D4)+V (p̂D3 − x̂D2 − gD2 x̂D1 ) < 1

(11b)

V (p̂D1 − gD3 x̂D3 − x̂D4) + V (p̂D4 − x̂D1 − gD4 x̂D2

−gD5 x̂D5) < 1 (11c)

V (p̂D2 − gD3 x̂D3 − x̂D4) + V (p̂D4 − gD4 x̂1 − x̂D2

−gD5 x̂D5) < 1 (11d)

V (p̂D4 − gD6 x̂D1 − gD6 x̂D2 − x̂D5 ) + V (p̂D5 − x̂D4

−gD6 x̂D7 − gD6 x̂D8) < 1 (11e)

V (p̂D5 − gD5 x̂D4 − x̂D7 − gD4 x̂D8 ) + V (p̂D7 − x̂D5

−gD3 x̂D6) < 1 (11f)

V (p̂D5 − gD5 x̂D4 − gD4 x̂D7 − x̂D8 ) + V (p̂D8 − x̂D5

−gD3 x̂D6) < 1 (11g)

V (p̂D6 − x̂D7 − gD2 x̂D8)+V (p̂D7 − gD1 x̂D5 − x̂D6) < 1

(11h)

V (p̂D6 − gD2 x̂D7 − x̂D8)+V (p̂D8 − gD1 x̂D5 − x̂D6) < 1

(11i)

The left-hand sides and right-hand sides of these inequal-
ities are the combination of variances of nullifiers and
the boundary, respectively. When all inequalities in Eq.
(11) are satisfied, CV eight-partite two-diamond shape
cluster entanglement is demonstrated. Calculating the
minimal values of the left-hand sides of the inequalities
versus the gain factors (gD1−D6) for the two-diamond
shape eight-partite cluster state, we can obtain the op-
timal gain factors gopt

D1−D6
for achieving the detections

of the minimal correlation variances. For the two dia-
mond (gopt

D1−D6
) cluster states the optimal gain factors

are gD1 = 15(e4r−1)
19+15e4r , gD2 = 21(e4r−1)

13+21e4r , gD3 = 9(e4r−1)
8+9e4r ,

gD4 = 9(e8r−1)
7+18e4r+9e8r , gD5 = 3(3e8r−2e4r−1)

7+18e4r+9e8r , and gD6 =
4(e4r−1)
13+4e4r , respectively.
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The dependence of inseparability criteria of the CV
eight-partite two-diamond shape cluster state on the
squeezing parameter is shown in Fig. 2. Since the vari-
ances of inequalities (11a), (11b), (11h) and (11i) are the
same, and that of (11c), (11d), (11f) and (11g) are also
the same, we only plot the correlation variances of the
inequalities (11a), (11c) and (11e) in Fig. 2(a), (b) and
(c), respectively. From Fig. 2(a), (b) and (c), we can see
that when the squeezing parameters r > 0.20 for Fig.
2(a), r > 0.28 for Fig. 2(b), and r > 0.35 for Fig. 2(c),
the correlation variances (curve 1) are smaller than the
boundary for the case of g = 1. It means that if taking
g = 1, a lower limitation for the squeezing parameter is
required satisfy these inseparability criteria. However, if
taking the optimal gain factor gopt (curve 3), all vari-
ances are below the boundary for any value of r > 0.

3 The experiment

Figure 1(b) shows the schematic of the experimental
set-up for preparing the eight-partite CV two-diamond
shape cluster state. The four x̂ -squeezed and four p̂-
squeezed states are produced by four nondegenerate op-
tical parametric amplifiers (NOPAs) pumped by a com-
mon laser source, which is a CW intracavity frequency-
doubled and frequency-stabilized Nd:YAP/LBO(Nd-
doped YAlO3 perorskite/lithium triborate) with both
outputs of the fundamental and the second-harmonic
waves [24]. The output fundamental wave at 1080 nm
wavelength is used for the injected signals of NOPAs
and the local oscillators of the balanced homodyne de-
tectors (BHDs), which are applied to measure the quan-
tum fluctuations of the quadrature-amplitude and the
quadrature-phase of the output optical modes [15]. The
second-harmonic wave at 540 nm wavelength serves as
the pump field of the four NOPAs, in which through
an intracavity frequency-down-conversion process a pair
of signal and idler modes with the identical frequency
at 1080 nm and the orthogonal polarizations are gen-

erated [25, 26]. Each of the NOPAs consists of an α-
cut type-II KTP crystal and a concave mirror [26]. The
front face of the KTP was coated to be used for the
input coupler and the concave mirror serves as the out-
put coupler of the squeezed states, which is mounted
on a piezo-electric transducer for locking actively the
cavity length of NOPA on resonance with the injected
signal at 1080 nm. The transmissions of the input cou-
pler at 540 nm and 1080 nm are 99.8% and 0.04%, re-
spectively. The transmissions of the output coupler at
540 nm and 1080 nm are 0.5% and 5.2%, respectively.
The finesses of the NOPA for 540 nm and 1080 nm
are 3 and 117, respectively. In our experiment, the four
NOPAs are operated at the parametric deamplification
situation, i.e., the phase difference between the pump
fields and the injected signal is (2n + 1)π (n is an inte-
ger). Under this condition, the coupled modes at +45◦

and −45◦ polarization directions are the quadrature-
amplitude and the quadrature-phase squeezed states, re-
spectively [15, 27]. When the transmissions of the seven
beam splitters are chosen as T1 = 25/34, T2 = T3 = 2/5,
T4 = T5 = 1/3, T6 = T7 = 1/2, the eight output optical
modes b̂j (j = 1, 2, · · · , 8) are in a eight-partite CV two-
diamond shape cluster state. The quadrature-amplitude
and quadrature-phase of each b̂j are measured by eight
BHDs, respectively. The nullifiers of the eight output
modes depend on the squeezing parameters of the re-
source squeezed states. For our experimental system all
four NOPAs have the identical configuration and are op-
erated under the same conditions. So, the eight initial
squeezed states own the same squeezed parameter r.

The experimentally measured initial squeezing degrees
of the output fields from the four NOPAs were 4.30±0.07
dB below the QNL which corresponded to the squeezing
parameter r = 0.50 ± 0.02. For our system, the total
transmission efficiency of squeezed beams were about
87% and the detection efficiency is about 90%, which led
to the efficient squeezing parameter re = 0.30 which was
smaller than the initially measured squeezing. During
the measurements the pump power of NOPAs at 540 nm

Fig. 2 The dependence of eight-partite two-diamond shape cluster state to squeezing parameter, (a), (b) and (c) are
corresponding to inequalities (11a), (11c), and (11e), respectively. Lines 1 and 3 are left-hand sides of inequalities with unit
gain and optimal gain, respectively, line 2 is the boundary at the right-hand side of inequalities.
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Fig. 3 The measured noise powers of the eight-partite two-diamond shape cluster state. The upper and lower lines in all
graphs are shot noise level and correlation variances of nullifiers, respectively. (a)–(j) are noise powers of V (p̂D1 − x̂D3 − x̂D4),
V (p̂D2 − x̂D3 − x̂D4), V (p̂D3 − x̂D1 − x̂D2), V (p̂D4 − x̂D1 − x̂D2 − x̂D5), V (p̂D5 − x̂D4 − x̂D7 − x̂D8), V (p̂D6 − x̂D7 − x̂D8),
V (p̂D7 − x̂D5 − x̂D6), V (p̂D8 − x̂D5 − x̂D6), V (p̂D4 − gD6 x̂D1 − gD6 x̂D2 − x̂D5), V (p̂D5 − x̂D4 − gD6 x̂D7 − gD6 x̂D8),
respectively. The measurement frequency is 2 MHz, resolution bandwidth is 30 kHz, video bandwidth is 100 Hz, gD1−D5 = 1

and gD6 = gopt
D6

= 0.60 ± 0.02.

wavelength was kept at ∼ 180 mW, which was below
the oscillation threshold of 240 mW of the NOPAs, and
the intensity of the injected signal at 1080 nm was 10
mW. The phase difference on each beam-splitters were
locked according to the requirements. The light intensity
of the local oscillator in all BHDs was set to around 5
mW. The measured QNL was about 20 dB above the
electronics noise level, which guaranteed that the re-
sults of the homodyne detections were almost not af-
fected by electronic noises. The correlation variances
measured experimentally are shown in Fig. 3 for the
two-diamond shape cluster state. They are V (p̂D1 −
x̂D3 − x̂D4 ) = −2.61 ± 0.10 dB, V (p̂D2 − x̂D3 − x̂D4 ) =
−2.57 ± 0.09 dB, V (p̂D3 − x̂D1 − x̂D2) = −2.39 ± 0.06
dB, V (p̂D4 − x̂D1 − x̂D2 − x̂D5 ) = −2.58 ± 0.09 dB,
V (p̂D5 − x̂D4 − x̂D7 − x̂D8 ) = −2.61± 0.09 dB, V (p̂D6 −
x̂D7 − x̂D8 ) = −2.52 ± 0.10 dB, V (p̂D7 − x̂D5 − x̂D6 ) =
−2.59±0.09 dB, V (p̂D8 − x̂D5 − x̂D6) = −2.58±0.10 dB,
V (p̂D4 −gD6 x̂D1 −gD6 x̂D2 − x̂D5) = −1.57±0.09 dB, and
V (p̂D5−x̂D4−gD6 x̂D7−gD6 x̂D8) = −1.53±0.09 dB. From
these measured results we calculated the combinations of
the correlation variances in the left-hand sides of the in-
equalities (11a)–(11i), which are 0.84± 0.02, 0.85± 0.02,

0.96±0.02, 0.97±0.02, 0.95±0.02, 0.96±0.02, 0.96±0.02,
0.83± 0.02, 0.83± 0.02, respectively. All these values are
smaller than the boundary of 1. It means that the pre-
pared CV cluster state satisfies the inseparability criteria
for verifying eight-partite CV entanglement.

4 Conclusion

In the conclusion, we have experimentally prepared
spatially separated eight-partite two-diamond shape
CV cluster entangled state by using eight quadrature
squeezed states of light and a specifically designed op-
tical beam-splitter network. The multipartite entangled
states are the essential resources to construct a vari-
ety of CVQI networks. So far, the single-mode squeezed
states over 12.7 dB [28] and the two-mode squeezed
states over 8.1 dB [29] have been experimentally gener-
ated, respectively. Therefore the CV cluster state with
more space-separable qumodes and higher entanglement
are able to be realized. The complexity and versatility
of CV multipartite entanglement for photonic qumodes
not only offer richly potential applications in QC and
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QI, but also provide the basic and handleable quantum
states for studying the important and attractive quan-
tum phenomena.
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