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The preparation of multipartite entangled states is the prerequisite for exploring quantum information networks and quantum com-
putation. In this paper, we review the experimental progress in the preparation of cluster states and multi-color entangled states with
continuous variables. The preparation of lager scale multipartite entangled state provide valuable quantum resources to implement
more complex quantum informational tasks.
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Developing quantum information (QI) science has exhib-
ited unusual potentiality to realize qualitatively informa-
tion processing with new modes which are unavailable in
the classical world [1–3]. Optical QI based on exploiting
discrete-variable (DV) of single-photon states (qubits) and
continuous-variable (CV) of optical modes (qumodes) has
an important role in the development of QI. So far, a va-
riety of fundamental protocols for QI processing have been
experimentally demonstrated [4–11]. To build practical QI
systems applied in the real world we must establish QI net-
works, and thus the study on the preparation of multipar-
tite and multi-color entangled states, which are the neces-
sary resources for QI networks, becomes the crucially pre-
ceding task. The measurement-based one-way quantum com-
putation (QC) utilizing multipartite cluster states provides a
promising QI scheme, which has been extensively investi-
gated in both DV and CV regimes [8–20]. Recently, the opti-
cal cluster states of eight-photon [21,22], eight-qumode [23,
24] and up to 10000-qumodes [25] have been successfully
produced. On the other hand, to develop a complete quantum
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network composed of many nodes and channels, quantum
memories usually constructed by atomic systems must be re-
quired [26–30]. The quantum connectivity in information
networks, such as distributing entanglement throughout a net-
work with large size and teleporting quantum states between
nodes, can be accomplished by the interaction of light and
atoms in quantum memories. Thus, it is necessary to prepare
multi-color entangled states involving different wavelengths
at atomic transitions for storing information and transparency
windows of channels for transmitting quantum states with
possibly low loss.

In this review article, we briefly introduce the physical
conception of multipartite optical CV cluster states and dif-
ferent preparation methods. Then, we describe the graph
and mathematic representations of CV eight-partite linear and
two-diamond shape cluster states, deduce the inseparability
criterion inequalities for quantitating the CV entanglement,
and present the experimental set-up and results completed by
our group. Successively, we discuss the research progress in
the generation of CV multi-color entangled states in sect. 2.
The generations of two-color entanglement are summarized
and the three-color CV entanglement for qumodes are ana-
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lyzed, in which the theoretical protocol and the experimental
demonstration achieved by our group are mainly introduced.

1 Optical cluster state with continuous vari-
ables

1.1 Basic conception

Cluster state is a type of multipartite quantum entangled
graph states corresponding to some mathematic graphs [13–
16]. The CV cluster quadrature correlations (so-called nulli-
fiers) can be expressed by [14–16]
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where x̂a = (â + â†)/2 and p̂a = (â − â†)/2i represent the
quadrature-amplitude and quadrature-phase operators of an
optical mode ˆa, respectively. The subscripta (b) expresses
the designated mode ˆa (b̂). The modes ofa ∈ G denote
the vertices of the graphG, while the modes ofb ∈ Na are
the nearest neighbors of mode ˆa. For an ideal cluster state
the left-hand side of eq. (1) tends to zero, which represents
a simultaneous zero eigenstate of the quadrature combina-
tion [16]. The CV cluster quantum entanglements generated
by experiments are deterministic, but also are imperfect, the
entanglement features of which have to be verified and quan-
tified by the sufficient conditions for the fully inseparability
of multipartite CV entanglement [31–34]. Different correla-
tion combinations are given (left-hand side of eq. (1)) in a va-
riety of CV cluster multipartite entangled states, which reflect
the complexity and rich usability of these quantum systems.
The expressions of the nullifiers for different graph states de-
pend on the graph configuration.

1.2 Preparation methods

There are several different methods of preparing multipar-
tite CV cluster states. The linearly optical transformation of
squeezed states on a specially designed beam-splitter network
is the initially and frequently used method [23,31–33]. In
this way, the prepared cluster state is space-separated, which
can be easily utilized to implement one-way QC. The draw-
back of this method is that with increasing of the entangled
modes the complexity of the experimental setup is also subse-
quently increased. Using this method, space-separated four-
mode and eight-mode CV cluster states are prepared experi-
mentally in two labs, respectively [23,31–33].

Successively, the technique of the optical frequency comb
is applied in the preparation of CV cluster states, with which
the lager scale cluster states can be prepared in principle [34].
However, in this way, these entangled modes are not easily
separated and thus the schemes of utilizing them to imple-
ment quantum information need to be redesigned.

Recently a new method of using spatial entanglement to
prepare multipartite entangled state has been presented, in

which a virtual beam-splitter network was applied and a
eight-mode Greenberger-Horne-Zeilinger (GHZ) entangled
state was obtained [35]. The advantage of this method is
that the experimental setup is simpler than the initial scheme
of optical transformation. The challenge in this technique is
the manufacture of the necessary multi-pixel detector. When
the number of entangled states increases the technic difficulty
also increases correspondingly. Moreover the application of
it is also not convenient since every entangled modes are de-
tected simultaneously, and thus how to implement one-way
QC based on the feedforward of the measured results on an
individual mode needs to be reconsidered.

Currently a super large cluster state in the time domain
with up to 10000 submodes has been experimentally pro-
duced by the technique of time-domain multiplexing [25].
When applying such a cluster state to implement QC, very
fast feedforward loops are required.

1.3 Preparation of eight-partite CV cluster states

Figures 1(a) and (b) show the graph representations of CV
eight-partite linear (a) and two-diamond (b) shape CV clus-
ter states, respectively, each node of which corresponds to an
optical mode and the connection lines between neighboring
nodes stand for the interaction between the connected two
nodes. From eq. (1) and Figure 1, we can write the nullifiers
of the linear and the two-diamond shape CV cluster states,
respectively, which are ˆpL1− x̂L2 = δL1, p̂L2− x̂L1− x̂L3 = δL2,
p̂L3− x̂L2− x̂L4 = δL3, p̂L4− x̂L3− x̂L5 = δL4, p̂L5− x̂L4− x̂L6 =

δL5, p̂L6− x̂L5− x̂L7 = δL6, p̂L7− x̂L6− x̂L8 = δL7, p̂L8− x̂L7 = δL8

for the linear states; and ˆpD1 − x̂D3 − x̂D4 = δD1, p̂D2 − x̂D3 −
x̂D4 = δD2, p̂D3− x̂D1− x̂D2 = δD3, p̂D4− x̂D1− x̂D2− x̂D5 = δD4,
p̂D5 − x̂D4 − x̂D7 − x̂D8 = δD5, p̂D6 − x̂D7 − x̂D8 = δD6,
p̂D7 − x̂D5 − x̂D6 = δD7, p̂D8 − x̂D5 − x̂D6 = δD8 for the
two-diamond states, where the subscriptsLi and Di (i =
1, 2, . . . , 8) denote the individual nodes of the linear and the
two-diamond shape cluster states, respectively,δLi andδDi ex-
press the excess noises resulting from the imperfect quantum
correlations. When the variance ofδLi (δDi) is smaller than
the corresponding quantum noise limit (QNL) determined by
vacuum noises, the correlations among the combined optical
modes is within the quantum region, otherwise the quantum
correlations do not exist.

The schemes of generating CV multipartite entangled
states commonly used in experiments are to achieve a linearly
optical transformation of input squeezed states on a specific
beam-splitter network [15]. Assuming ˆal andUkl represent
the input squeezed states and the unitary matrix of a given
beam-splitter network, respectively, the output optical modes
after the transformation are given byb̂k =

∑

l Uklâl, where
the subscriptsl andk express the designated input and output
modes, respectively. In our experiment, four quadrature-
amplitude ˆx-squeezed states, ˆam = e−r x̂(0)

m + ie+r p̂(0)
m (m =

1, 3, 5, 7), and four quadrature-phase ˆp-squeezed states,
ân = e+r x̂(0)

n + ie−r p̂(0)
n (n = 2, 4, 6, 8), are applied, where ˆx(0)

j
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Figure 1 (Color online) Graph representation of eight-partite cluster states.
(a) Linear cluster state [23]; (b) two-diamond shape cluster state. Each clus-
ter node corresponds to an optical mode. The connected lines between neigh-
boring nodes stand for the interaction among these nodes [24].

and p̂(0)
j denote the quadrature-amplitude and the quadrature-

phase operators of the corresponding vacuum field, respec-
tively, r is the squeezing parameter to quantify the squeezing
level, r = 0 andr = +∞ correspond to the two cases of no
squeezing and the ideally perfect squeezing,respectively. The
unitary matrix for generating the CV eight-partite linear clus-
ter state by combining eight squeezed states on optical beam
splitters equals to

UL =
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. (2)

The unitary matrix in eq. (2) expresses an optical
transformation on a beam-splitter network consisting of
seven beam splitters and can be decomposed intoUL

= F8I7(−1)F†6F4I3(−1)F†2B−78(1/2)F8B−12(1/2)F1B−67(1/3)F7

B−23(1/3)F2B−56(2/5)F6B−34(2/5)F3B+45(25/34), whereFk de-
notes the Fourier transformation of modek, which corre-
sponds to a 90◦ rotation in the phase space;B±kl(T j) stands
for the linearly optical transformation on the jth beam-splitter
with the transmission ofT j ( j = 1, 2, . . . , 7), where (B±kl)kk =√

1− T , (B±kl)kl =
√

T , (B±kl)lk = ±
√

T , and (B±kl)ll =

∓
√

1− T , are elements of beam-splitter matrix.Ik(−1) = eiπ

corresponds to a 180◦ rotation of modek in the phase space.
Figure 2 shows the schematic of the experimental set-up

for preparing the eight-partite CV linear cluster state. The
four x̂-squeezed and four ˆp-squeezed states are produced by
four NOPAs pumped by a common laser source, which is a
CW intracavity frequency-doubled and frequency-stabilized
Nd:YAP/LBO (Nd-doped YAlO3 perorskite/lithium tribo-
rate) with both outputs of the fundamental and the second-
harmonic waves [36]. The output fundamental wave at 1080
nm wavelength is used for the injected signals of NOPAs
and the local oscillators of the balanced homodyne detectors

(BHDs), which are applied to measure the quantum fluctu-
ations of the quadrature-amplitude and the quadrature-phase
of the output optical modes [31]. The second-harmonic wave
at 540 nm wavelength serves as the pump field of the four
NOPAs, in which through an intracavity frequency-down-
conversion process a pair of signal and idler modes with the
identical frequency at 1080 nm and the orthogonal polariza-
tions are generated [7,37]. Each of NOPAs consists of an
α-cut type-II KTP crystal and a concave mirror [37]. Since
the amplitude and the phase quadratures of the signal and
the idler modes are entangled each other, the two coupled
modes of them at±45◦ polarization directions both are the
squeezed states [31,38]. In our experiment, the four NOPAs
are operated at the parametric deamplification situation, that
is the phase difference between the pump field and the in-
jected signal is (2n + 1)π (n is an integer). Under this condi-
tion, the coupled modes at+45◦ and−45◦polarization direc-
tions are the quadrature-amplitude and the quadrature-phase
squeezed states, respectively [31,38]. When the transmis-
sions of the seven beam splitters are chosen asT1 = 25/34,
T2 = T3 = 2/5, T4 = T5 = 1/3, T6 = T7 = 1/2, the
eight output optical modeŝb j ( j = 1, 2, . . . , 8) are in a eight-
partite CV linear cluster state. The quadrature-amplitude and
quadrature-phase of eachb̂ j are measured by eight BHDs, re-
spectively. The nullifiers of the eight output modes depend
on the squeezing parameters of the resource squeezed states.
For our experimental system all four NOPAs have the identi-
cal configuration and are operated under identical conditions.
Each of NOPAs is also adjusted to produce two balanced
squeezed states. Thus, the eight initial squeezed states own
the same squeezed parameterr. In this case we can easily cal-
culate the excess noises of the nullifiers for the eight-partite
linear CV cluster state consisting of the eight output modesb̂ j

( j = 1, . . . , 8), which areδL1 =
√

2e−r x̂(0)
1 , δL2 =

√
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2 ,

δL3 =
1√
2
e−r x̂(0)

1 −
√

5
2e−r x̂(0)

3 , δL4 =
1√
3
e−r p̂(0)

2 +

√

2
5e−r p̂(0)

6 +
√

34
15e−r x̂(0)

5 , δL5 =

√

34
15e−r p̂(0)

4 −
√

2
5e−r x̂(0)

3 −
1√
3
e−r x̂(0)

7 ,

δL6 =

√

5
2e−r p̂(0)

6 −
1√
2
e−r p̂(0)

8 , δL7 = −
√

3e−r x̂(0)
7 andδL8 =

−
√

2e−r p̂(0)
8 , respectively.

i

i

i

i

i

i

i

-i

-1

i

-i

-1

a8

T7
aaaaaaaa

T1

T3T2

T5T4

T6

a7

a6a5
a4

a3

a2
a1

x

p

NOPA2 NOPA3

NOPA4

Cavity mirror 

LO

BHD

Laser

KTP
NOPA4

NOPA1

Figure 2 (Color online) Schematic of experimental setup for CV eight-
partite cluster state generation.T : transmission efficient of beam splitter,
Boxes including i are Fourier transforms (90◦ rotations in phase space),−i
is a −90◦ rotation, and−1 is a 180◦ rotation, BHD: balanced homodyne
detector.
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The unitary matrix of the two-diamond cluster stateUD

equals toUFUL, with UF = diag{−1,−i, i, 1, 1, i,−i,−1},
thus the two-diamond shape cluster state can be prepared
from the linear cluster state via local Fourier transforms and
phase rotations. The excess noise terms of the nullifiers of
the two-diamond shape cluster state are expressed byδD1 =

− 1√
2
e−r x̂(0)

1 +

√

5
2e−r x̂(0)

3 , δD2 =
1√
2
e−r x̂(0)
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5
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3 , δD3 =
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3
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3
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3e−r x̂(0)
7 ,
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2
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8 , and δD8 =

√

5
2e−r p̂(0)

6 +

1√
2
e−r p̂(0)

8 , respectively. According to the inseparability cri-
teria for CV multipartite entangled states proposed by van
Loock and Furusawa [39], we can deduce the inseparabil-
ity criterion inequalities for CV eight-partite linear and two-
diamond shape cluster states, which are given by eqs. (3a)–
(3g) and eqs. (4a)–(4i), respectively.

V( p̂L1 − x̂L2) + V( p̂L2 − x̂L1 − gL3x̂L3) < 1, (3a)

V( p̂L2 − gL1 x̂L1 − x̂L3) + V( p̂L3 − x̂L2 − gL4 x̂L4) < 1, (3b)

V( p̂L3 − gL2 x̂L2 − x̂L4) + V( p̂L4 − x̂L3 − gL5 x̂L5) < 1, (3c)

V( p̂L4 − gL3 x̂L3 − x̂L5) + V( p̂L5 − x̂L4 − gL6 x̂L6) < 1, (3d)

V( p̂L5 − gL4 x̂L4 − x̂L6) + V( p̂L6 − x̂L5 − gL7 x̂L7) < 1, (3e)

V( p̂L6 − gL5 x̂L5 − x̂L7) + V( p̂L7 − x̂L6 − gL8 x̂L8) < 1, (3f)

V( p̂L7 − gL6 x̂L6 − x̂L8) + V( p̂L8 − x̂L7) < 1, (3g)

and

V( p̂D1 − x̂D3 − gD1x̂D4) + V( p̂D3 − x̂D1 − gD2x̂D2) < 1, (4a)

V( p̂D2 − x̂D3 − gD1x̂D4) + V( p̂D3 − x̂D2 − gD2x̂D1) < 1, (4b)

V( p̂D1 − gD3x̂D3 − x̂D4) + V( p̂D4 − x̂D1 − gD4x̂D2 − gD5x̂D5)

< 1, (4c)

V( p̂D2 − gD3x̂D3 − x̂D4) + V( p̂D4 − gD4x̂1 − x̂D2 − gD5x̂D5)

< 1, (4d)

V( p̂D4 − gD6x̂D1 − gD6 x̂D2 − x̂D5) + V( p̂D5 − x̂D4 − gD6x̂D7

− gD6x̂D8) < 1, (4e)

V( p̂D5 − gD5x̂D4 − x̂D7 − gD4x̂D8) + V( p̂D7 − x̂D5 − gD3x̂D6)

< 1, (4f)

V( p̂D5 − gD5x̂D4 − gD4 x̂D7 − x̂D8) + V( p̂D8 − x̂D5 − gD3x̂D6)

< 1, (4g)

V( p̂D6 − x̂D7 − gD2x̂D8) + V( p̂D7 − gD1x̂D5 − x̂D6) < 1, (4h)

V( p̂D6 − gD2x̂D7 − x̂D8) + V( p̂D8 − gD1x̂D5 − x̂D6) < 1, (4i)

where left-hand sides and right-hand sides of these inequal-
ities are the combination of variances of nullifiers and the
boundary, respectively.

The experimentally measured initial squeezing degrees of
the output fields from four NOPAs are (4.30± 0.07) dB be-
low the QNL which corresponds to the squeezing parameter
r = 0.50±0.02. During the measurements the pump power of

NOPAs at 540 nm wavelength is∼ 180 mW, which is below
the oscillation threshold of 240 mW, and the intensity of the
injected signal at 1080 nm is 10 mW. The phase difference
on each beam-splitters are locked according to the require-
ments. The light intensity of the local oscillator in all BHDs
is set to approximately 5 mW. The measured QNL is approx-
imately 20 dB above the electronics noise level, which guar-
antees that the results of the homodyne detections are almost
not affected by electronic noises.

The correlation variances measured experimentally are
shown in Figure 3 for the linear cluster and Figure 4 for the
two-diamond cluster. They areV( p̂L1− x̂L2) = (−2.67±0.06)
dB,V( p̂L2−x̂L1−x̂L3) = (−2.65±0.13)dB,V( p̂L3−x̂L2−x̂L4) =
(−2.52± 0.20) dB,V( p̂L4 − x̂L3 − x̂L5) = (−2.69± 0.09) dB,
V( p̂L5− x̂L4− x̂L6) = (−2.68± 0.08) dB,V( p̂L6− x̂L5− x̂L7) =
(−2.56± 0.10) dB,V( p̂L7 − x̂L6 − x̂L8) = (−2.22± 0.09) dB,
V( p̂L8 − x̂L7) = (−2.21± 0.09) dB andV( p̂D1 − x̂D3 − x̂D4) =
(−2.61 ± 0.10) dB, V( p̂D2 − x̂D3 − x̂D4) = (−2.57 ± 0.09)
dB, V( p̂D3 − x̂D1 − x̂D2) = (−2.39± 0.06) dB,V( p̂D4 − x̂D1 −
x̂D2 − x̂D5) = (−2.58± 0.09) dB,V( p̂D5 − x̂D4 − x̂D7 − x̂D8) =
(−2.61± 0.09) dB,V( p̂D6 − x̂D7 − x̂D8) = (−2.52± 0.10) dB,
V( p̂D7− x̂D5− x̂D6) = (−2.59±0.09) dB,V( p̂D8− x̂D5− x̂D6) =
(−2.58 ± 0.10) dB, V( p̂D4 − gD6x̂D1 − gD6x̂D2 − x̂D5) =
(−1.57 ± 0.09) dB, V( p̂D5 − x̂D4 − gD6x̂D7 − gD6 x̂D8) =
(−1.53± 0.09) dB. From these measured results we can cal-
culate the combinations of the correlation variances in the
left-hand sides of the inequalities (3a)–(3g) and (4a)–(4i),
which are 0.68± 0.02, 0.83± 0.02, 0.82± 0.02, 0.81± 0.02,
0.82±0.02, 0.87±0.02, 0.75±0.02, for the linear cluster and
0.84±0.02, 0.85±0.02, 0.96±0.02, 0.97±0.02, 0.95±0.02,
0.96± 0.02, 0.96± 0.02, 0.83± 0.02, 0.83± 0.02 for the two-
diamond cluster, respectively. All these values are smaller
than the normalized boundary. This indicates that the pre-
pared two types of CV cluster states satisfy the inseparabil-
ity criteria for verifying multipartite CV entanglement, so the
spatially separated eight-partite entangled states of qumodes
are experimentally obtained. In the experiment we detected
the correlation variances undergL1−L8 = 1, gD1−D5 = 1 and
gD6 = gopt

D6 = 0.60± 0.02 (gopt is the optimal gain factor).
For our system, the total transmission efficiency of squeezed
beams are about 87% and the detection efficiency is about
90%, which leads to the efficient squeezing parameter as be-
ing re = 0.30 which is smaller than the initially measured
squeezing parameter. When the gain factors exceptgD6 are
taken as 1 and onlygopt

D6 is utilized, all inequalities in eqs. (3)
and (4) are satisfied.

2 The research progress on the generation of
multi-color entanglement

2.1 Two-color entanglement

Non-degenerate optical parametric oscillators (NOPOs)
above the oscillation threshold are the most successful de-
vices for the experimental generation of the multi-color CV



1214 SuX L, et al. Sci China-Phys Mech Astron July (2014) Vol. 57 No. 7

N
o

is
e

 p
o

w
e

r 
(d

B
) 

  
  
  
N

o
is

e
 p

o
w

e
r 

(d
B

) 
  
  
  
 N

o
is

e
 p

o
w

e
r 

(d
B

) 
  
  
  
 N

o
is

e
 p

o
w

e
r 

(d
B

)

(a)                                                                                                          (b)

(c)                                                                                                          (d)

(e)                                                                                                          (f)

(g)                                                                                                          (h)

1

0

−1

−2

−3

1

0

−1

−2

−3

1

0

−1

−2

−3

1

0

−1

−2

−3

Time (ms)                                                                                              Time (ms)

Time (ms)                                                                                              Time (ms)

Time (ms)                                                                                              Time (ms)

Time (ms)                                                                                              Time (ms)

0              20              40              60             80            100                   0              20              40              60             80            100

0              20              40              60             80            100                   0              20              40              60             80            100

0              20              40              60             80            100                   0              20              40              60             80            100

0              20              40              60             80            100                   0              20              40              60             80            100

1

0

−1

−2

−3

1

0

−1

−2

−3

1

0

−1

−2

−3

1

0

−1

−2

−3

N
o
is

e
 p

o
w

e
r 

(d
B

) 
  
  
  
N

o
is

e
 p

o
w

e
r 

(d
B

) 
  
  
  
 N

o
is

e
 p

o
w

e
r 

(d
B

) 
  
  
  
 N

o
is

e
 p

o
w

e
r 

(d
B

)

Figure 3 (Color online) Measured noise powers of eight-partite linear cluster state. The upper and lower lines in all graphs are shot noise level and correlation
variances of nullifiers, respectively. (a)–(h) are noise powers ofV(p̂L1 − x̂L2), V(p̂L2 − x̂L1 − x̂L3), V(p̂L3 − x̂L2 − x̂L4), V(p̂L4 − x̂L3 − x̂L5), V(p̂L5 − x̂L4 − x̂L6),
V(p̂L6 − x̂L5 − x̂L7), V(p̂L7 − x̂L6 − x̂L8), andV(p̂L8 − x̂L7), respectively. The measurement frequency is 2 MHz, resolution bandwidth is 30 kHz, and video
bandwidth is 100 Hz [23].
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Figure 4 (Color online) Measured noise powers of eight-partite two-diamond shape cluster state. The upper and lower lines in all graphs are shot noise
level and correlation variances of nullifiers, respectively. (a)–(j) are noise powers ofV(p̂D1 − x̂D3 − x̂D4), V(p̂D2 − x̂D3 − x̂D4), V(p̂D3 − x̂D1 − x̂D2),
V(p̂D4 − x̂D1 − x̂D2 − x̂D5), V(p̂D5 − x̂D4 − x̂D7 − x̂D8), V(p̂D6 − x̂D7 − x̂D8), V(p̂D7 − x̂D5 − x̂D6), V(p̂D8 − x̂D5 − x̂D6), V(p̂D4 − gD6x̂D1 − gD6x̂D2 − x̂D5),
V(p̂D5 − x̂D4 − gD6x̂D7 − gD6 x̂D8), respectively. The measurement frequency is 2 MHz, resolution bandwidth is 30 kHz, and video bandwidth is 100 Hz [24].
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entangled optical beams [40–46]. Two-color entangled op-
tical beams at different frequency regions have been experi-
mentally prepared by means of above-threshold NOPOs with
various pump lasers and nonlinear crystals [40–44]. The
first measurement of squeezed-state entanglement of the twin
beams between bright fields of truly different frequencies
produced in a NOPO operating above threshold was reported
by Villar et al. [40]. They used a 532 nm laser to pump
a NOPO and record noise spectra of the generated beams
with the synchronous analysis cavity, the squeezing in the in-
tensity difference as well as the sum of phase between the
twin beams were measured simultaneously [40]. Succes-
sively, the quantum entanglement of amplitude (−1.25 dB)
and phase quadratures (−0.60 dB) between two intense opti-
cal beams with a total intensity of 22 mW and a frequency
difference of 1 nm has been experimentally verified by the
authors, in which the quantum correlation noise was mea-
sured by two sets of unbalanced Mach-Zehnder interferome-
ters [41]. Jing et al. [42] observed CV entanglement between
the bright beams emitted above threshold by an ultra-stable
NOPO, classically phase locked at a frequency difference
of 161.827324 MHz. The measured amplitude-difference
squeezing and the phase-sum squeezing are−3 dB and−1.35
dB, respectively [42]. Recently, bright two-color CV entan-
gled optical beams at 800 nm and 1500 nm has been exper-
imentally generated by Li et al. [44]. In the experiment, a
phase-insensitive optical parametric amplifier with a single
injection beam at 1500 nm was utilized. Without locking the
relative phase between the signal and pump fields, the ampli-
tude quadrature difference squeezing of−3.30 dB and phase
quadrature sum squeezing of−3.35 dB were observed, which
satisfy the entanglement criterion [44].

2.2 Three-color entanglement

During past years, to satisfy the requirements of the devel-
oping QI networks the generation schemes of multi-color
CV entangled states via intra-cavity nonlinear processes have
been theoretically proposed [47–49]. In 2009, the first CV
three-color entangled state was experimentally produced by
an above-threshold NOPO at a low temperature of−23◦C
[45]. The three entangled sub-modes produced in this ex-
periment are the output signal, idler and reflected pump
modes from a NOPO above the threshold, the wavelengths
are 1062.102 nm, 1066.915 nm and 532.251 nm, respec-
tively. For developing practical CV QI networks with both
nodes and fiber transmission lines, it is important to prepare
multi-partite entangled states consisting of optical sub-modes
at variously designated wavelengths.

For reducing the influence of the phonon noise on the re-
flected pump field and improving the wavelength selectiv-
ity of the system, we proposed a generation system of CV
three-color entangled optical beams, in which two cascaded
NOPO1 and NOPO2 are utilized [46,49]. The idler optical
beams produced by NOPO1, is used for the pump light of

NOPO2. The three-color entanglement among signal and
idler beams produced by NOPO2 and the retained signal
beam from NOPO1 is theoretically demonstrated and the op-
timal operation conditions of the cascaded NOPOs system
are numerically analyzed in ref. [49]. Following the theoret-
ical design we have achieved the experimental generation of
three-color CV entangled state by using the cascaded NOPOs
system for the first time [46]. Through the special selections
of the pump laser and the nonlinear crystals in the two NO-
POs, the wavelength of one of the obtained three-color entan-
gled beams is 852 nm which can be tuned to a transition fre-
quency of Cs atoms thus can be used for the storage of quan-
tum information. The wavelengths of other two beams are
1550 nm matched for optimal transmission in optical fibers
and 1440 nm close to the fiber window with comparatively
low transmission losses. The produced three-color CV en-
tangled states are suitable to be applied in the future quantum
information networks containing both atomic storage unit and
optical fiber transmission line.

Figure 5 shows the principle schematic of the three-color
entanglement generation system, which consists of NOPO1
and NOPO2. The coherent optical field at 795 nm from
a continuous-wave Ti: Sapphire laser (MBR110, Coherent
Ltd.) is frequency-doubled by a second harmonic generator
(SHG) to obtain the light at 398 nm (a0) for pumping the
NOPO1 to create a pair of intense optical beams (a1 anda2),
The generated idler beam (aout

1 ) drives the NOPO2 to achieve
the cascaded intra-cavity optical parametric down-conversion
and to produce the output fieldsa3 and a4. Both NOPO1
and NOPO2 are in a Fabre-Perot cavity configuration con-
sisting of two concave mirrors with a 50-mm radius curva-
ture. For obtaining the desired frequencies two different non-
linear crystals are chosen respectively for the two NOPOs,
which are 1 mm× 2 mm× 10 mm3 PPKTP for NOPO1 and
1 mm×2 mm×10 mm3 PPLN (periodically poled lithium nio-
bate) for NOPO2. The temperature of two nonlinear crystals
are controlled by an electronic temperature-controller with
the precision of 0.01◦C (YG-IIS-RA, Yuguang Ltd.). It has
been theoretically shown by Tan et al. [49] that the three final
output light beams (a2, a3 anda4) have strong intensity corre-
lation. On the other hand, the frequency constraint among the
three optical modes translates into a constraint for the phase
variations, so the phase fluctuations of the optical modesa1

anda2 (a3 anda4) should be anti-correlated each other, the
sum of their phase fluctuations should be correlated with the
phase fluctuation of the pump field. Three M-Z interferome-
ters with unbalanced arm lengths are applied to measure the
noise powers of the phase and the amplitude quadratures for
the three resultant subharmonic modes ofa2, a3 and a4 as
well as to determine the corresponding QNLs [41,50]. The
noise powers measured simultaneously by the three M-Z in-
terferometers are combined by the positive or negative power
combiners and then the combined correlations variances of
the amplitude and the phase quadratures are analyzed by a
spectrum analyzer.
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a0 NOPO1

NOPO2

852 nm

1440 nm

1550 nm

SHG Ti:Sapphire

795  nm

398 nm

746 nm
a1

a2

a4

a3

Figure 5 (Color online) Principle schematic of the three-color entangle-
ment generation system.

The measured correlation variances of the noise powers of
the amplitude and the phase quadratures among the three re-
sultant optical beams at 852.35 nm, 1550.60 nm and 1440.06
nm are shown in Figures 6(a)–(f), where the traces (i) and
the traces (ii) stand for the QNLs and the correlation vari-
ances, respectively. From Figure 6 we have〈δ2(X3 − X4)〉 =
(−4.1 ± 0.1) dB, 〈δ2(gopt

1 Y2 + Y3 + Y4)〉 = (−1.1 ± 0.1) dB,
〈δ2(X2 − X3)〉 = (−3.2 ± 0.1) dB, 〈δ2(Y2 + gopt

2 Y3 + Y4)〉 =
(−0.5 ± 0.1) dB, 〈δ2(X2 − X4)〉 = (−3.2 ± 0.1) dB and
〈δ2(Y2 + Y3 + gopt

3 Y4)〉 = (−0.5 ± 0.1) dB. The minus sym-
bol before the first numbers in the right sides of these equal-
ities indicates that the variances are below the corresponding
QNL andgopt

j ( j = 1, 2, 3) represents the optimal gain val-
ues ofg j taken in the experiment for obtaining the highest
correlations [39]. The three combinations of the correlation
variances are

〈δ2(X3 − X4)〉 + 〈δ2(gopt
1 Y2 + Y3 + Y4)〉 = 0.76< 1,

〈δ2(X2 − X4)〉 + 〈δ2(Y2 + gopt
2 Y3 + Y4)〉 = 0.92< 1, (5)

〈δ2(X2 − X3)〉 + 〈δ2(Y2 + Y3 + gopt
3 Y4)〉 = 0.92< 1.

All of them are smaller than the criteria “1” for the CV
three-partite entanglement of optical modes. Thus, the three-
color CV entanglement is experimentally demonstrated.
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Figure 6 (Color online) The measured correlation variance of three-color
entangled states at 2 MHz. (a)〈δ2(X3 − X4)〉; (b) 〈δ2(gopt

1 Y2 + Y3 + Y4)〉;
(c) 〈δ2(X2 − X4)〉; (d) 〈δ2(Y2 + gopt

2 Y3 + Y4)〉; (e) 〈δ2(X2 − X3)〉; (f)

〈δ2(Y2 + Y3 + gopt
3 Y4)〉. (i) The QNL; (ii) The correlation noise power. The

measurement parameters of SA: RBW 30 kHz; VBW 100 Hz [46].

3 Conclusion

We have reviewed the experimental progress in the prepara-
tions of cluster states and multi-color entangled states. The
multipartite entangled states are the essential resources to
construct a variety of CVQI networks. The complexity and
versatility of CV multipartite entanglement for qumodes not
only offer richly potential applications in QC and QI, but also
provide the basic and handleable entangled quantum states
which can be an important tool for further studying and un-
derstanding quantum entanglement phenomena as well as the
unusual conventions of quantum mechanics.
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