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Abstract: A quantum random number generator (QRNG) provides a reliable means for the
generation of true random numbers. The inherent randomness of the vacuum fluctuations makes
the quantum vacuum state a superior source of entropy. However, in practice, the raw sequences of
QRNG are inevitably contaminated by classical technical noise, which compromises the security
of the QRNG. Min-entropy conditioned on the classical noise is a useful method that can quantify
the side-information independent randomness. To improve the extractable randomness from the
raw sequences arising from the quantum vacuum-based QRNG, we propose and experimentally
demonstrate two approaches, discarding-boundary-bin measurement and multi-interval sampling.
The first one increases the conditional min-entropy at a low quantum-to-classical-noise ratio.
The latter exploits parallel sampling using multiple analog-to-digital converters (ADCs) and
effectively overcomes the finite resolution limit and uniform sampling of a single ADC. The
maximum average conditional min-entropy can reach 9.2 per sample when combining these two
approaches together in contrast to 6.93 with a single 8-bit ADC.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum random number generator (QRNG) plays an essential role in various applications, such as
simulation, cryptography, and fundamental science [1,2]. For instance, quantum key distribution
requires a reliable randomness source to guarantee its information-theoretical security [3–7].
If the quantum states are not prepared in a truly random manner, the quantum key distribution
protocol will inevitably suffer from attacks, which has been shown for the BB84 protocol [8].
Therefore, in such applications, the random sequence must be genuinely unpredictable and has
sufficient security.

The quality of the entropy source fundamentally determines the performance of a random
number generator. Random number generators based on noise in electronic circuits can be used
to generate high-speed random numbers and easily integrated into application systems [9,10].
However, the randomness of most of the noise in electronic circuits is not theoretically provable.
More precisely, noise in such systems come basically from two types, shot noise and thermal
noise. Shot noise arises from quantum effects due to the discrete charges nature of the current,
which shows quantum fluctuations. In contrast, thermal noise arises from the thermal agitation
of the carriers and is subject to thermally activated statistical motion. In practice, it is difficult to
characterize precisely the amount of quantum fluctuations inside electric noise.

QRNG offers a perfect source of entropy due to the inherent randomness of quantum mechanics
[11–14]. At present, various optical QRNGs have been proposed and implemented, such as
vacuum fluctuations [15–18], phase noise [19–21], stimulated Raman scattering [22], photon
arrival times [23–26], photon path [27], and photon number counting [28,29]. These QRNGs
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can generate information-theoretical randomness only when model assumptions fulfill practical
implementation. The imperfection of the practical devices of a QRNG, such as classical noise in
detector, the unused port of the interferometer, may leak side-information correlated with the
random sequence [2]. Such side-information could be exploited by a potential attacker to guess
the measurement outcomes and compromise the security.

To address the security issues, several protocols have been proposed. The device-independent
(DI) QRNG utilizes the violation of loophole-free Bell inequality to generate true randomness in
a self-testing way [30–33]. However, the extremely low rate and the sophisticated experimental
setup of DI-QRNG severely limit its practical applications. The semi-device-independent (SDI)
QRNG [11,18,34–40] relies on weaker assumptions to bound the side information and can achieve
a higher generation rate than DI-QRNG. Different from the DI-QRNGs and SDI-QRNGs, the
practical QRNGs calibrate the devices in a fully trusted way to bound the classical side-information
and ensure the security of random sequence [41,42].

A typical QRNG consists of three parts: quantum entropy source, measurement of quantum
states, and extraction of true random numbers. To extract genuine randomness independent of
classical noise from a practical QRNG, one should properly model the implementation of the
QRNG. Ma et al. presented a framework for quantifying the quantum randomness by min-entropy
and provided information-theoretically provable randomness extractors for post-processing
[43]. Haw et al. proposed a method to maximize the conditional min-entropy from a given
quantum-to-classical-noise ratio [42]. Huang et al. systematically analyzed the effects of the
local oscillator fluctuation under imbalanced homodyne detection on the security of QRNG [44].

In this work, we proposed and demonstrated two approaches to improve the extractable
randomness in a quantum vacuum fluctuations based QRNG. The first one is the discarding-
boundary-bin measurement (DBBM), which increases the upper bound of the conditional
min-entropy. The other one is the multi-interval sampling (MIS) technique, which uses parallel
sampling based on multiple Analog-to-Digital Converters (ADCs) and effectively overcomes the
finite resolution limit and uniform sampling of a single ADC. By combining these two methods
together, we show that the conditional min-entropy is significantly improved, and more secure
randomness can be extracted from the output signal of the homodyne detector.

2. Randomness and conditional min-entropy

2.1. Randomness quantification

The min-entropy of variable X with a probability distribution PX(xi) is defined by [45]

Hmin(X) = −log2[
max
xi∈XPX(xi)], (1)

which is widely used for quantifying the randomness and associated with the maximum guessing
probability for an adversary about variable X.

In practical QRNGs, the randomness of the entropy source can be evaluated by the conditional
min-entropy, which depends on the specific attacks that how the adversary interacts with the
classical side-information. We assume that the adversary has no limit on computational power and
fully knows the classical noise with arbitrary precision. Two attack scenarios (worst-case scenario
and average-case scenario) are considered hereafter. In the worst-case scenario, the adversary
has full control of the classical noise to maximize his ability to predict random sequences. In this
case, the maximum conditional probability is exploited to estimate the amount of information
she successfully captured, and the worst-case min-entropy of random sequences conditioned on
the classical side-information is given by [46]

H̃min(X |E) = −log2[
max
ej ∈[emin,emax]

max
xi∈XPX |E(xi |ej)]. (2)

In the average-case scenario, the adversary can freely monitor the classical noise with infinite
sampling range and digitization resolution but cannot modify it. Therefore, we estimate the
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extractable randomness of the device using the average conditional min-entropy

H̄min(X |E) = −log2[Pguess(Xdis |E)], (3)

where Pguess(Xdis |E) is the average guessing probability of an adversary that can correctly guess
the bit information with the best strategy [45],

Pguess(Xdis |E) =
∫ ∞

−∞

PE(e)max
xi∈Xdis

PXdis |E(xi |e)de. (4)

According to Eqs. (2)–(4), we know that extractable secure randomness is bounded by the
worst-case conditional min-entropy or the average conditional min-entropy, which directly relates
to the maximum (average) guessing probability of an adversary conditioned on the classical noise.
A smaller maximum conditional probability means a lower amount of an adversary’s knowledge
on the random sequence and therefore more extractable randomness. Given the entropy source,
the guessing probability of an adversary strongly depends on the measurement model, as we will
show in the following section.

2.2. Conventional measurement model

For QRNG based on the vacuum fluctuations noise, the output signal M of the balanced homodyne
detector (BHD) is a mixture of vacuum fluctuations noise Q and classical electronic noise E [15].
We suppose both the noises are time-independent and follow Gaussian distributions centered at
zero, N(0,σ2

E) and N(0,σ2
Q), where σ2

Q is the variance of quantum noise and σ2
E is the variance of

classical electronic noise. The quantum-to-classical noise ratio is defined as QCNR, i.e., QCNR
= 10log10(σ

2
Q/σ

2
E) dB.

The probability density functions (PDF) of the vacuum quantum noise Q and the classical
noise E can be expressed as

pQ (q) =
1

√
2πσQ

exp

[︄
−

q2

2σ2
Q

]︄
, pE (e) =

1
√

2πσE
exp

[︄
−

e2

2σ2
E

]︄
. (5)

By performing a convolution of pQ and pE, the PDF of the measurements M is

pM (m) =
1

√
2πσM

exp

[︄
−

m2

2σ2
M

]︄
=

1√︂
2π(σ2

Q + σ
2
E)

exp

[︄
−

m2

2(σ2
Q + σ

2
E)

]︄
. (6)

Then the PDF of the measurements M conditional on the classical noise E is given by

pM |E (m|e) =
1

√
2π

(︁
σ2

M − σ2
E
)︁ exp

[︄
−

(m − e)2

2
(︁
σ2

M − σ2
E
)︁ ]︄ = 1

√
2πσQ

exp

[︄
−
(m − e)2

2σ2
Q

]︄
. (7)

Hereafter we normalize all the relevant quantities by the quantum noise (σ2
Q = 1). When we

sample the output signal of BHD with an n-bit ADC with dynamical range [−R+δ, R− 3δ/2], the
conditional probability distribution of measurements M on classical noise E is [42]

PMdis |E (mi |e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫

−R+δ/2
−∞ pM |E (m|e) dm, i = imin,∫ mi+δ/2
mi−δ/2

pM |E (m|e) dm, imin + 1 ≤ i ≤ imax − 1,∫
∞
R−3δ/2pM |E (m|e) dm, i = imax.

(8)

Combine Eqs. (2) and (8), the worst-case min-entropy can be expressed by

H̃min(Mdis |E) = −log2[max(c1, c2)], (9)

where c1 is the maximum conditional probability of the boundary bins (i = imax, imin) and c2
is the maximum conditional probability within the sampling range (imin + 1 ≤ i ≤ imax − 1).
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Starting from Eq. (9) and given the QCNR, we find that c1 and c2 are two key parameters to
determine the maximum conditional min-entropy [42]. Besides, the classical noise e in Eq. (2)
can be bounded for practical purposes in the worst-case scenario. When the value range of the
variable e is bounded by [−5σE, 5σE], it is valid for 99.9999% of the time and enough for the
practical scenario. Here, we chose the range [−5σE, 5σE] as the smallest confidence interval of
the classical noise e. By optimizing the dynamic ADC range R, we can maximize the worst-case
conditional min-entropy, which is obtained when c1 = c2.

3. Modified model of entropy quantification

In this section, we present a modified model of entropy quantification for a practical QRNG.
Two approaches are employed in the modified model, DBBM and MIS. We will show that the
proposed methods effectively improve the extractable randomness from the entropy source in
comparison with the conventional model (CM) of entropy quantification.

3.1. Discarding-boundary-bin measurement

From previous section, we know that the maximum conditional min-entropy relies on the maximum
conditional probability of the boundary bins c1 and the maximum conditional probability within
the sampling the range c2. In the CM, the first bin i = imin and last bin i = imax of an ADC cover
the input signals with a range of [-∞,−R+ δ/2] and [R− 3δ/2,∞], respectively. If we discard the
boundary bins, the conditional probability distribution of measurements M on classical noise E
will change from Eqs. (8) to (10). By further optimizing R, we can set the maximum conditional
probability of the boundary bins c1 equal to c2. In this case, the new c1 will be lower than
before, which results in a higher maximum conditional min-entropy. The basic reason is that the
boundary bins cover an infinite range of input signals. If we discard them, we can decrease the
optimized R, which results in a lower maximum conditional probability and therefore a higher
maximum conditional min-entropy can be obtained. The schematic of DBBM is depicted in
Fig. 1.

Fig. 1. Discarding-boundary-bin measurement model. The output signal of the BHD is
discretized into 2n sampling bins by n-bit ADC with dynamical range [−R − δ/2, R − δ/2].
The bin width and discrete measurement outcomes are δ = R/2n-1 and mi = δ × i. The
measured data that distributed in the boundary bins (shaded) are discarded. Therefore, the
first bin iL and the last bin iH of the remaining bins centered round −R + δ and R − 2δ,
respectively.

Based on the DBBM, the conditional probability of measurements Mdis on classical noise E is
given by

PMdis |E (mi |e) =
∫ mi+δ/2

mi−δ/2
pM |E (m|e) dm, iL ≤ i ≤ iH , (10)

where iL = −2n−1 + 1 and iH = 2n−1 − 2.
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For each measurement, there will be a probability that the measurement results fall in the
boundary bins (imin and imax). Those results are discarded and the total conditional probability of
effective measurements is

PT (Mdis |e) = 1 − PMdis |E
(︁
mimax |e

)︁
− PMdis |E

(︁
mimin |e

)︁
, (11)

where imin = −2n−1 and imax = 2n−1 − 1. Then, the normalized conditional probability of the
effective measurements is

PT
Mdis |E (mi |e) = PMdis |E (mi |e) /PT (Mdis |e). (12)

In terms of Eq. (12), the maximum conditional probability distribution is written as

max
mi∈Mdis

PT
Mdis |E (mi |e) = max{PT

Mdis |E
(︁
mimid |e

)︁
, PT

Mdis |E
(︁
miL |e

)︁
, PT

Mdis |E
(︁
miH |e

)︁
}, (13)

where PT
Mdis |E

(︁
mimid |e

)︁
=

⎧⎪⎪⎨⎪⎪⎩
erf [δ/2

√
2]/PT (e, R), iL<imid<iH ,

0, other.
Given the bound of the classical noise [emin, emax], which can be manipulated by an adversary,

Eq. (13) can be rewritten as

max
e∈[emin,emax]

max
mi∈Mdis

PT
Mdis |E (mi |e) = max{

max
e∈[emin,emax]

PT
Mdis |E

(︁
mimid |e

)︁
,

max
e∈[emin,emax]

PT
Mdis |E

(︁
miL |e

)︁
,

max
e∈[emin,emax]

PT
Mdis |E

(︁
miH |e

)︁
}.

(14)

Notice that the DBBM approach decreases the number of effective measurements, we should
carefully choose the optimal R to achieve the balance between the conditional min-entropy and
the amount of effective data to maximize the throughput of our QRNG. To resolve this problem,
we introduce the concept of equivalent conditional min-entropy.

In the worst-case scenario, the equivalent conditional min-entropy is expressed as

H̃T
eq min(Mdis |E) = H̃T

min(Mdis |E) × P̃T (Mdis |E), (15)

where P̃T (Mdis |E) is the total probability of the effective measurements corresponding to the
maximum conditional min-entropy H̃T

min(Mdis |E),

H̃T
min(Mdis |E) = −log2{

max
e∈[emin,emax]

max
mi∈Mdis

PT
Mdis |E(mi |e)}. (16)

In the average-case scenario, the equivalent conditional min-entropy is

H̄T
eq min(Mdis |E) = H̄T

min(Mdis |E) × P̄T (Mdis |E), (17)

where P̄T (Mdis |E) is the mean of the total probability of valid measurements changing with e,

P̄T (Mdis |E) =
∫ +∞

−∞

PT (Mdis |e)de, (18)

and
H̄T

min(Mdis |E) = −log2[

∫ +∞

−∞

pE(e)max
mi∈Mdis

PT
Mdis|E(mi |e)de]. (19)

From Eqs. (14), (15), and (16), we can optimize the ADC dynamical range R and obtain the
maximum value of the worst-case equivalent conditional min-entropy in the DBBM. When the
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confidence interval of the classical noise e is [−10δE, 10δE] ([−20δE, 20δE]), the worst-case
equivalent conditional min-entropy of DBBM is 14.43 (14.06) for n = 16 and QCNR = 20 dB. In
Fig. 2, we plot the discretized conditional probability distribution PMdis |E(mi |e) with optimized
dynamical range R for the CM (Fig. 2(a)) and the DBBM (Fig. 2(b)). Compared to the CM, the
maximum conditional probability distribution in the DBBM can be effectively reduced from
5.91 × 10-5 to 4.05 × 10-5, which increases the worst-case conditional min-entropy from 14.05 to
14.43. Furthermore, we notice that unlike the CM, the maximum conditional probability c1 of the
boundary bins is no longer equal to the maximum conditional probability c2 within the sampling
range for the DBBM. Instead, the amount of effective data and the conditional min-entropy are
balanced to maximize the throughput of the QRNG.

Fig. 2. The discretized worst-case conditional probability distribution PMdis |E(mi |e) with
optimized dynamical range R for (a) CM and (b) DBBM. The parameter used are e =
{−10δE, 0, 10δE} (from left to right), QCNR = 20 dB, and n = 16. Given the optimized
dynamic range R = 4.85, the maximum conditional probability of the CM is 5.91 × 10-5

and the corresponding condition min-entropy is 14.05. Given the optimized dynamic range
R = 3.3, the maximum conditional probability of the DBBM is 4.05×10-5, and the optimized
equivalent conditional min-entropy is 14.43.

Combining Eqs. (17)–(19), we calculate the optimized equivalent conditional min-entropy
for DBBM with n = 8 and n = 16 (average-case scenario). The simulated results are listed in
Table 1. For a 16-bit ADC and QCNR = 20 dB, the equivalent conditional min-entropy can reach
14.79 for DBBM instead of 14.28 with the CM. In the case of QCNR = 0 dB, the equivalent
conditional min-entropy obtained using the DBBM is 14.30, which is an improvement of 5.38%
compared to the CM. Note that the improvement on average min-entropy decreases with the
increasing QCNR, and the improvement is better for a higher resolution ADC. The above results
indicate that more secure randomness can be extracted using the DBBM approach.

Table 1. Optimized H̄min(Mdis |E) (and R) for 8-bit and 16-bit ADCs.

n = 8 n = 16

QCNR (dB) DBBM CM Improvement DBBM CM Improvement

20 6.93 (2.2) 6.93 (2.59) 0.00% 14.79 (2.5) 14.28 (4.09) +3.57%

10 6.87 (2.3) 6.72 (2.93) +2.23% 14.73 (2.6) 14.11 (4.55) +4.39%

0 6.44 (3.1) 6.11 (4.33) +5.41% 14.30 (3.5) 13.57 (6.48) +5.38%
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3.2. Multi-interval sampling model

Figure 3 shows the schematic of our MIS model. The output signal of the BHD is divided into L
measurement intervals and sampled synchronously by L parallel ADCs with the total sampling

range 2R =
L∑︁

w=1
2Rw. By using the MIS model, an equivalent ADC resolution of neq can be

obtained, where 2neq =
L∑︁

w=1
2nw and nw is the ADC resolution of each channel. In this way, we

can overcome the finite resolution limit of a single ADC.

Fig. 3. The multi-interval sampling model. The output signal of the BHD is divided into
L measurement ranges (In our experiment we set L = 4) and sampled synchronously by

L parallel ADCs with the total sampling range 2R =
L∑︁

w=1
2Rw. The total equivalent ADC

resolution is 2neq =
L∑︁

w=1
2nw , where nw is ADC resolution of each channel.

Notice that the conditional min-entropy is directly related to the conditional probability
distribution function, which is associated with the PDF of the sampling signal and the sampling
bin δ. According to Eq. (19), for a given QCNR and sampling range R, a larger bin width will
lead to a higher conditional probability and thus a lower conditional min-entropy. To suppress
the conditional min-entropy and enhance the randomness, it is desired that one has a small bin
width in the high probability density region and a large bin width in the low probability density
region. Such unequal bin width sampling configuration can be implemented using the MIS and
is impossible using the CM where only equal bin sampling is feasible.

For MIS, the conditional probability distribution function P1
Mdis |E

(mi |e) of the measurement
outcomes for the first sampling range is given by

P1
Mdis |E (mi |e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∫ −R+δ/2
−∞

pM |E(m|e)dm, i = i1min,∫ m1
i +δ/2

m1
i −δ/2

pM |E(m|e)dm, i1min<i<i1max,

0 i = i1max.

(20)

Accordingly, the conditional probability distribution function PL
Mdis |E

(mi |e) of the measurement
outcomes for the last sampling interval is

PL
Mdis |E (mi |e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 i = iLmin,∫ mL

i +δ/2
mL

i −δ/2
pM |E(m|e)dm, iLmin<i<iLmax,∫ +∞

R−3δ/2 pM |E(m|e)dm, i = iLmax.

(21)
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For other sampling ranges, the conditional probability distribution function can be modeled as
the DBBM.

Finally, the worst-case (average) conditional min-entropy of the MIS model can be expressed
as

H̃min(Mdis |E) = −log2[
max
w∈[1,L]

max
e∈[emin,emax]

max
mi∈Mdis

Pw
Mdis |E(mi |e)], (22)

and
H̄min(Mdis |E) = −log2[

∫ +∞

−∞

pE(e)max
w∈[1,L]

max
mi∈Mdis

Pw
Mdis |E(mi |e)de]. (23)

Based on the MIS, we calculate the conditional min-entropy when L = 4 and the corresponding
digitization resolutions are {n1 = n2 = n3 = n4 = 8}. We have maximized the extractable
min-entropy by optimizing the total sampling range R and the scale factor k of the measurement
interval R2 = R3 = k × R1 = k × R4.

To illustrate the improvement of the conditional min-entropy using MIS in the worst-case
scenario, we plot the conditional probability distributions of both the CM and MIS with optimized
R and k in Fig. 4. The optimized worst-case conditional min-entropy is obtained when the
maximum conditional probability of the right-hand boundary-bin is equal to that in the middle
interval. We can see that the maximum conditional probability of the MIS (Fig. 4(c)) is smaller
than that of the CM sampling of a single ADC (Figs. 4(a) and 4(b)). Notice that the optimized
bin width of the measurement intervals from left to right are 0.0083, 0.0066, 0.0066, and 0.0083.
This verifies that non-uniform sampling is superior to uniform sampling.

Fig. 4. The worst-case PMdis |E (m|e) for (a) the CM (n = 8) and (b) the CM (n = 10) and (c)
the MIS (neq = 10) with e = {−10δE, 0, 10δE}, QCNR = 20 dB, and optimized R. In (a),
the maximum conditional probability is 0.0104 and the corresponding optimized conditional
min-entropy is 6.58 (the optimized dynamical range R is 3.35). In (b), the optimized
maximum conditional probability reaches 0.0104 and the maximum conditional min-entropy
can be extracted is 8.41 (the optimized dynamical range R is 3.77). In (c), with the optimized
total sampling range R of 3.39 and the scale factor k = R2/R1 (R1 = R4, R2 = R3) of 0.8, the
maximum conditional probability is 0.00265 and the corresponding conditional min-entropy
is 8.56, which is higher than that in the CM with a single 8 or 10-bit ADC.

Table 2 lists the simulation results of the optimized average conditional min-entropy of the
CM (n = 8 and n = 10) and MIS (neq = 10). It shows that the optimized average conditional
min-entropy of our MIS is larger than that of the CM with a single 8 or 10-bit ADC. For
example, when QCNR = 20 dB, the average conditional min-entropy that can be extracted by
MIS (neq = 10) can reach 9.11, which is higher than 6.93 by CM (n = 8), and about 31.46%
improvement is achieved. Compared with the average conditional min-entropy in CM (n = 10),
our MIS (neq = 10) also improves the average conditional min-entropy by 4.47%. Therefore,
MIS not only breaks the finite resolution limit of a single ADC but also improves the robustness
of QRNG against the potential attacks, and more randomness independent of classical noise can
be extracted. Note that the improvement on average min-entropy by MIS decreases with QCNR.
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Similar to the worst-case scenario, non-uniform sampling is beneficial to the extraction of the
randomness in the average-case scenario.

Table 2. Optimized H̄min(Mdis |E) (and k , R) for n = 8-bit, 10-bit.

QCNR (dB) MIS (neq = 10) CM (n = 8) Improvement CM (n = 10) Improvement

50 9.22 (0.57, 2.95) 7.03 (2.45) +31.15% 8.81 (2.86) +4.65%

20 9.11 (0.58, 3.09) 6.93 (2.59) +31.46% 8.72 (3.01) +4.47%

10 8.84 (0.60, 3.47) 6.72 (2.93) +31.54% 8.52 (3.39) +3.76%

0 8.14 (0.62, 5.13) 6.11 (4.33) +33.22% 7.93 (4.95) +2.65%

4. Experimental implementation and results

To verify our proposed approaches, we experimentally demonstrate the QRNG with both the
DBBM and MIS (DBB + MIS). As shown in Fig. 5(a), the continuous-wave laser from a
fiber-coupled laser at 1550 nm is acted as the local oscillator (LO) and injected into one port of
the 50:50 fiber beam splitter (BS). The vacuum fluctuations are interfered with the LO beam and
amplified, and the output beams are coupled to a fiber-based BHD and converted into random
electric signals. When the LO is physically blocked, the output signal of the BHD is classical
electronic noise. In contrast, it is a mixture of quantum vacuum fluctuations and classical
electronics noise if the LO is active. Figure 5(b) shows the power spectral density of the electric
signal with the LO active and not. To accurately estimate the QCNR of the output signal of the
BHD and reduce the interference of low-frequency signals on the randomness, we select a 200
MHz sideband signal centered around 300 MHz, and the average QCNR is approximately 10 dB.

Fig. 5. (a) Schematic diagram of our QRNG based on quantum vacuum fluctuations. (b)
Spectrum of the technical noise and vacuum fluctuation noise obtained from the balanced
homodyne detector (BHD). The spectrum range highlighted in orange with clearance of
10 dB between the vacuum noise and technical noise is used for the generation of random
numbers.

The signal generated by BHD is mixed down at 300 MHz and low pass filtered with a cutoff
frequency of 100 MHz. By using a power splitter, the filtered signal is split into four output
signals which are simultaneously sampled and digitalized by a multi-channel high bandwidth
oscilloscope with a sampling rate of 200 MSample/s. For the given number of sampling intervals
and digitization resolution in our model, the sampling range of each interval is optimized to
improve the maximum conditional min-entropy.

In the data post-processing of DBB +MIS, the data from the boundary bins of each sampling
interval is discarded by the data filter unit. The data output from each measurement interval
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does not include the position information of the sampling intervals, which will result in a data
overlap problem and degradation of the randomness. To resolve this issue, a data mixer unit is
constructed, which inserts two flag bits before the most significant bit of each data according to
the position of the corresponding sampling interval. In this way, the data acquired from different
sampling channels is identified and mixed together to generate raw data. Finally, the random bits
are extracted with the Toeplitz extractor based on the conditional min-entropy [43].

In our experiment, we investigate two different digitization resolutions, n1 = n2 = n3 = n4 = 8
(neq = 10) and n1 = n2 = n3 = n4 = 16 (neq = 18). Figure 6 plots the extractable randomness
independent of classical noise with equivalent conditional min-entropy for the worst-case under the
confidence interval of 5δE ≤ |e| ≤ 20δE. For comparison, the optimized worst-case conditional
min-entropy for the CM is also shown [42]. As we can see from Figs. 6(a) and 6(b), the DBB +
MIS method effectively improves the worst-case conditional min-entropy. For both n = 10 and
n = 18, the improvements of the worst-case conditional min-entropy are more obvious at higher
QCNR. We also notice that higher digitization resolution n is beneficial to the extractable secure
randomness.

Fig. 6. The extractable secure randomness of CM and DBB + MIS as a function of
QCNR for (a) 10-bit measurement and (b) 18-bit measurements in the worst-case under the
confidence interval of 5δE ≤ |e| ≤ 20δE.

Figure 7 depicts the extractable randomness independent of classical noise with equivalent
conditional min-entropy for the average-case. We find that there exist upper bounds for the
extractable secure randomness in both the average-case and worst-case at a high QRNG regime,
and the two bounds are approximately equal when QCNR→ ∞. Compared with the CM for
n = 8 (n = 16), the upper bound of the conditional min-entropy of the DBB +MIS for neq = 10
(neq = 18) increases approximately by 31.30% (19.62%). For the same digitization resolution
, the DBB + MIS method can still achieve improvement of 4.77% for n = 10 and 5.71% for
n = 18, respectively. The final random bit generation rate in our experiment can reach 3.2 Gbits/s
with neq = 18 and QCNR = 10 dB.

To evaluate the randomness of the extracted bit sequence from our QRNG, we calculate the
autocorrelation coefficients using a typical record of 5 × 107 bits. As shown in Fig. 8, both the
average-case and worst-case are plotted for 10-bit ADC and QCNR of 10 dB, and the confidence
interval of classical noise is −5δE ≤ e ≤ 5δE. The low autocorrelation coefficients indicate the
extracted bitstream from our QRNG has a good randomness and is close to independent and
identically distributed.

To further verify the randomness, we employ the NIST SP 800-22 suite [47] for data’s statistical
tests. The total amount of extracted random numbers used for the test is 1 Gbits. As shown
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Fig. 7. The extractable secure randomness of CM and DBB +MIS in the average-case.

Fig. 8. Autocorrelation coefficients calculated from 5 × 107 extracted random bits for (a)
the average-case and (b) the worst-case when QCNR = 10 dB and −5δE ≤ e ≤ 5δE. The
theoretical standard deviation of the autocorrelation for truly random 5 × 107 bits is shown
as dashed lines.

in Fig. 9, the test results show that the NIST statistical test suite is passed successfully, which
indicates that the generated random sequence has a good statistical characteristic.

Fig. 9. The NIST test results.
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5. Conclusion

In this work, we propose two novel approaches to improve the extractable randomness in a vacuum
fluctuations based QRNG independent of classical noise in the worst-case and average-case
scenarios. By discarding the boundary bins after discretization of vacuum fluctuations, we
suppress the influence of the conditional probability of the boundary bins on the conditional
min-entropy and enhance the randomness of the output sequence. It is a challenge to operate an
ADC at both high speed and high resolution. We release the bottleneck of the finite resolution limit
of a single ADC by adopting a multi-interval sampling. Combine with an unequal-bins-sampling,
the conditional probability distributions of different sampling intervals are well balanced. We
show that unequal-bins-sampling can provide more randomness independent of classical noise
than the equal-bins-sampling. Finally, we apply the above two approaches to quantum vacuum
fluctuations based random number generators. The secure random bits generation rate of our
QRNG can reach 3.2 Gbits/s. Compared with the previous QRNGs based on a homodyne
measurement of vacuum state, our methods can extract more secure randomness from the output
signal of the balanced homodyne detector.

For further study, it will be interesting to apply the proposed protocol to other kinds of QRNGs,
such as the Source-DI QRNGs introduced in Ref. [38], where the bound to the conditional
min-entropy of the random numbers is determined by the resolution of the trusted measurement
apparatus.
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