
Received February 21, 2021, accepted March 9, 2021, date of publication March 12, 2021, date of current version April 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3065776

An FPGA-Based LDPC Decoder With Ultra-Long
Codes for Continuous-Variable Quantum
Key Distribution
SHEN-SHEN YANG 1,2,4,5, JIAN-QIANG LIU1,2, ZHEN-GUO LU1,2, ZENG-LIANG BAI3,
XU-YANG WANG1,2, AND YONG-MIN LI 1,2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
3School of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China
4College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
5Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Linfen 041004, China

Corresponding author: Yong-Min Li (yongmin@sxu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFA0301403, in part
by the National Natural Science Foundation of China (NSFC) under Grant 11774209 and Grant 11804208, in part by the Key Research and
Development Project of Shanxi Province under Grant 201803D121065, in part by the Applied Basic Research Program of Shanxi Province
under Grant 201801D221010, in part by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
under Grant 2019L0479, in part by the Youth Scientific Research Foundation of Shanxi University of Finance and Economics under Grant
QN-2019021, and in part by the Shanxi under Grant 1331KSC.

ABSTRACT In this paper, we propose a good decoding performance, low-complexity, and high-speed
decoder architecture for ultra-long quasi-cyclic LDPC codes by using the layered sum-product decoding
scheme. To reduce implementation complexity and hardware resource consumption, the messages in
the iteration process are uniformly quantified and the function 9(x) is approximated with second-order
functions. The decoder architecture improves the decoding throughput by using partial parallel and pipeline
structures. A modified construction method of parity check matrices was applied to prevent read&write
conflicts and achieve high-speed pipeline structure. The simulation results show that our decoder architecture
has good performance at signal-to-noise ratios (SNRs) as low as−0.6 dB.We have implemented our decoder
architecture on a Virtex-7 XC7VX690T field programmable gate array (FPGA) device. The implementation
results show that the FPGA-based LDPC decoder can achieve throughputs of 108.64 Mb/s and 70.32 Mb/s
at SNR of 1.0 dB when the code length is 262,144 and 349,952, respectively. The decoder can find useful
applications in those scenarios that require very low SNRs and high throughputs, such as the information
reconciliation of continuous-variable quantum key distribution.

INDEX TERMS Low-density parity check (LDPC) decoder, field programmable gate array (FPGA),
ultra-long codes, layered sum-product decoding, side information.

I. INTRODUCTION
Low-density parity check (LDPC) codes, a class of for-
ward error correction codes proposed by Gallager [1], have
attracted extensive attentions over the past few decades. They
have been shown to facilitate information rates very close
to the Shannon limit, which has motivated the inclusion of
LDPC codes in many modern communications standards,
such as wireless communications, digital video broadcasting,

The associate editor coordinating the review of this manuscript and

approving it for publication was Rui Wang .

as well as data storage systems. In practical applications,
dedicated hardware are often employed to improve the data
throughput, such as field programmable gate arrays (FPGAs)
[2], [3], graphics processing units (GPUs) [4]–[6], CMOS
integrated circuits [7]–[10], and so on.

FPGAs are a class of large-scale programmable integrated
devices and particularly well suited to facilitate rapid proto-
typing. The designer can configure the degree of parallelism
flexibly to control over the trade-off between the algorithm
throughput and hardware resource requirements. Owing to
their high processing speed, parallelism, re-programmability,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 47687

https://orcid.org/0000-0002-2351-6603
https://orcid.org/0000-0003-0228-7693
https://orcid.org/0000-0002-2974-0972

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

and low power consumption, a great deal of research effort
has been invested into FPGA-based LDPC decoders over the
past few decades [2]. The decoders can be characterized by
some key features: decoding performance, decoding through-
put, the consumption of hardware resources, implementation
complexity, and flexibility.

Decoding performance of LDPC codes mainly depends
on the decoding algorithm, code length, and constructions
of check matrices, and so on. In [11], researchers used the
sum-product algorithm (SPA) to implement the FPGA-based
LDPC decoder and effectively maintained the decoding per-
formance. The survey presented in [2] shows that most exist-
ing decoders used the min-sum algorithm (MSA). Although
the MSA is easier to implement in hardware, it will cause
degradation of the decoding performance. On the other
hand, long code length is beneficial to improve decoding
performance. In [12], [13], FPGA-based LDPC decoders
with long code length of 65,000 and 32,643 were designed.
An LDPC decoder presented in [8] can implement a code
length of 96,000 based on the CMOS process.

Fourmajor parameters affect decoding throughput: the par-
allelism parameter, the number of bits in the codeword, code
rate, and the number of iterations [14]. Parallel processing is
an effective method to improve the decoder throughput. Fully
parallel decoders can achieve very high decoding throughput.
However, this is achieved at the cost of excessive hardware
resource consumption [15] and therefore only applicable to
the decoders for small mapping matrices [16], due to the
limited logical resources provided by the state of the art
hardware. In comparison, partial parallel decoders are a rec-
ommended strategy to obtain a good trade-off between com-
putational complexity and decoding throughput [17]–[20].

The consumption of hardware resources mainly includes
look-up tables (LUTs), memory, flip-flops (FFs), and DSP
slices. It is a challenge for designers to achieve a good
trade-off between the throughput and resource consumption.
Some memory system optimization schemes have been pro-
posed to reduce the memory requirement [19], [21].

The implementation complexity depends on two major
factors: the complexity of computations at each processing
node, and the complexity of interconnection. In [22], a novel
technique is presented to simplify the check node operation.
Ref. [23] presents a low routing complexity LDPC decoder
design by reducing the required interconnections in the criti-
cal path of the routing network.

Note that previous FPGA-based decoders cannot meet the
needs of some special applications, such as the information
reconciliation of continuous-variable quantum key distribu-
tion (CV QKD) systems [24], [25]. In a CV QKD system,
the sender and receiver obtain a set of correlated Gaussian
symbols after the quantum signal is modulated, transmitted
and detected. After quantizing the Gaussian signal into bit
strings, the initial bit error rate is larger than traditional
telecommunication signal, owing to the system runs in a
Gaussian channel with a very low signal-to-noise ratio (SNR).
Therefore, this special scenario requires error correction

codes with good decoding performance at low SNR. In practi-
cal applications, it also requires high throughput to match the
secret key generation rate. Further, the minimum SNR that
can be successfully decoded is also crucial.

Combining LDPC codes with the good decoding perfor-
mance and FPGA devices with powerful parallel processing,
we first proposed an FPGA-based LDPC decoder based on
the side information (SI) [26] layered sum-product scheme
to meet the needs of the CV QKD systems. Another key
point we utilized to improve the decoding performance is
to increase the code length above 200,000. However, this
puts forward high demands on the hardware resource con-
sumption. To improve the throughput, the partially parallel
and pipeline structure was applied to the LDPC decoder. The
pipeline technique only requires a small number of clock
cycles and no empty clocks are needed to insert between
layers and nodes, thus has high clock efficiency. To prevent
read&write conflicts in pipeline structure, a modified parity
check matrix construction method is proposed. We employ
two methods to reduce the hardware resource consump-
tion and implementation complexity, one is the uniformly
quantified fixed-point number format for log-likelihood
ratios (LLRs) and node messages, the other is piecewise
approximation of the complicated function 9(x).
We evaluated the decoding on a Xilinx VC709 evalua-

tion board, which is populated with a Virtex-7 XC7VX690T
FPGA. The implementation results show that the decoder
can achieve throughputs of 108.64 Mb/s and 70.32 Mb/s at
SNR = 1.0 dB when the code length is 262,144 and 349,952,
respectively. The minimum SNR for successfully decoding
can reach −0.6 dB when the code length is 349,952.

The rest of this paper is organized as follows. In Section II,
we present the required building blocks of LDPC codes,
including decoding algorithms and matrix construction meth-
ods, etc. Then, Section III presents the overall FPGA-based
LDPC decoder architecture in detail. The implementation
results of our decoder is presented in Section IV. Finally,
we give a summary in Section V.

II. OVERVIEW OF LDPC CODES
In general, LDPC codes need three basic procedures from
design to application. First, we need to search for the opti-
mal degree distribution according to the parameters of the
channel and decoding algorithm; then, construct parity check
matrices (PCMs) according to the degree distribution; finally,
implement encoding and decoding. The latter two procedures
have a great effect on FPGA-based decoders.

A. CONSTRUCTIONS OF PCMs
The goal of constructing a PCM is to determine the connec-
tion between variable nodes and check nodes, which is called
an ‘‘edge’’. PCMs can be represented by a factor graph or
a matrix, as shown in Fig. 1 and (1), these two representa-
tions are equivalent. Some techniques have been proposed for
placing edges. Randomly-designed codes potentially achieve
better decoding performance, owing to the maximized degree

47688 VOLUME 9, 2021

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

FIGURE 1. A factor graph for the LDPC code.

of freedom they afford. The Progressive-Edge-Growth (PEG)
algorithm [27] is also an important technique of constructing
PCMs. It places an edge in the location that is identified as
maximizing the length of cycle, before continuing the algo-
rithm with the selection of different variable nodes. In this
way, a factor graph having no short cycles can be created and
yielding a strong decoding performance [2].

A class of structured LDPC codes, namely quasi-cyclic
LDPC (QC-LDPC) codes, can reduce the implementation
complexity when implemented in FPGAs. QC-LDPC codes
also facilitate efficient high-speed decoding due to the reg-
ularity of their PCMs [11]. The PCMs of QC-LDPC codes
are defined by a base matrix Hb, where each non-zero ele-
ments represent a square submatrix of dimensions q × q.
Each submatrix has a different offset factor and all offset
factors construct an offset matrix. Fig. 2 presents a PCM of a
QC-LDPC code, whose base matrix and offset matrix is given
by (1) and (2), respectively (q = 3).

Hb =

1 0 0 1 0 0
0 1 0 1 1 0
1 0 1 0 0 1

 (1)

Q =

0 − − 1 − −

− 1 − 2 0 −

2 − 0 − − 1

 (2)

FIGURE 2. An expanded PCM with QC construction.

We use the random construction or PEG algorithm to con-
struct a base matrix, then employ the QC method to expand
the PCM. According to the characteristics of FPGA data
reading and writing, a constraint condition is added when
constructing the base matrix, that is, the interval between two
adjacent non-zero elements in the base matrix must be large

enough. Because the row processor and the column processor
work jointly, the rows which have intersection (there are
non-zero elements at the same column) cannot be processed
simultaneously. Besides, because the processing results will
be calculated in several clock cycles later, the intersected
rows should be processed successively with several clock
cycles’ spacing. Therefore, the degree of parallelism is lim-
ited. To increase the parallel degree, the code should be
specially constructed to break this limit. According to the
constraint condition above, the base matrix should not be too
small, otherwise, it will cause the matrix construction to fail.

B. DECODING ALGORITHMS
LDPC decoding algorithms mainly include two classes of
algorithms for the messages passing, hard-decision and soft-
decision. In the former case, such as the bit-flipping algorithm
[28], binary hard decisions aremade on the data received from
the transmission channel, then the binary sequence obtained
by the hard-decision is passed to the iterative process. This
class of algorithms has a lower implementation complexity
with the cost of poorer decoding performance. In the case of
soft-decision based algorithms, such as the MSA [29], [30]
and the SPA [31], the input data of a decoder is the channel
probabilities represented in the logarithmic ratio which is also
known as the log-likelihood ratio (LLR).

In general, the SPA algorithm has the best error rate per-
formance. Although it has been least preferred for hardware
realization due to its computational complexity. To obtain the
best decoding performance, which is crucial for information
reconciliation of CV QKD, we adopt the SPA in our scheme.

C. MESSAGE PASSING SCHEDULES
LDPC codes can be effectively iteratively decoded using the
message-passing schedules. All nodes are processed in an
order determined by the LDPC decoder’s schedule, it has a
significant effect upon the LDPC decoder’s decoding capa-
bility and other characteristics. The schedule of the LDPC
decoding process determines the order variable nodes and
check nodes are processed, as well as whether multiple nodes
are processed in parallel. The three most common schedules
[2] are flooding schedule, layered belief propagation (LBP)
schedule, and informed dynamic schedule.

LBP schedule [32] operating in an iterative manner pro-
cesses the nodes more sequentially within each iteration
and activates only one or a specific subset of nodes at
a time. It only needs one structure of node processing
units (NPUs) when implemented based on FPGA. However,
the flood schedule requires two types of NPUs, namely
variable node processing units (VNPUs) and check node
processing units (CNPUs). LBP has the advantage that the
information obtained during an iteration is available to aid the
remainder of the iteration. It tends to converge to the correct
codeword using fewer iterations [8], [33], [34], resulting in a
higher decoding throughput. Furthermore, the LBP schedule
only needs to store the message passed by the check node
to the variable node and the storage of the message passed

VOLUME 9, 2021 47689

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

by the variable node to the check node are not required. This
reduce half of the required storage space for ultra-long code
length. The parallelism of the LBP schedule is sufficient in
partial parallel schemes, although it does not have the same
high-level of parallelism as the flooding schedule. Consid-
ering the above factors, the LBP schedule is adopted in our
proposed scheme.

D. SIDE INFORMATION (SI) DECODING
According to the Slepian-Wolf theorem [35], when the com-
pressed outputs of two correlated sources are jointly decom-
pressed at a decoder, the lossless compression that does not
communicate their outputs to each other can be as efficient
as if they communicated their outputs. In [26], Liveris et al.
showed the side information (SI) decoding scheme in which
LDPC codes be used to compress the two correlated binary
sources. In the SI scheme, the transmitter (Alice) and the
receiver (Bob) possess two sets of correlated binary random
sequences X and Y . Bob first encodes the random number
sequence Y and generates a syndrome. Then he sends the
syndrome S to Alice. Alice uses her original random number
sequence X as side information and decodes the received
syndrome to recover Bob’s random number sequence. The
efficient scheme can be used to information reconciliation of
QKD.

E. SI-LSP ALGORITHM
In summary, the SI-LBP algorithm is employed to implement
the FPGA-based LDPC decoder suitable for information rec-
onciliation of CV QKD. Its main steps are summarized as
follows:
Step (a) Initialization: Each variable node is assigned an a

posteriori LLR:

LLR0i = ln
Pi (0)
Pi (1)

. (3)

Step (b) Nodes Update: For each row, the node processing
formula is:

Mji = LLRl−1i − E l−1ji (4)

E lji =
(
1− sj

)
×

∏
i∈N (j)/i′

sgn
(
Mji
)

×9

9
(
Mji
)
−

∑
i∈N (j)/i′

9
(
Mji
) (5)

LLRli = Mji + E lji (6)

where l is the number of iterations, and the 9 function is
defined as:

9 (x) = − log
[
tanh
|x|
2

]
, (7)

Step (c)Decision: Quantize X = [x1, x2, · · · , xn] such that
xn = 1 if LLR(qi) ≥ 0, otherwise xn = 0. If HXT

= S halt,
withX as the decoder output results; otherwise go to Step (b).

III. FPGA ARCHITECTURE
In this section, we detail the proposed FPGA-based LDPC
decoder architecture on a Xilinx FPGA device based on the
SI-LBP algorithm. More specifically, the architecture repre-
sents a framework for a decoder capable of decoding any
QC-LDPC codes. Therefore, the discussion in this section
will be presented in a generalized form, where the expan-
sion factor q and the degree of parallelism p are variable
parameters.

FIGURE 3. Logic structure of the proposed FPGA-based LDPC decoder.

Fig. 3 shows the overall architecture of the proposed
FPGA-based LDPC decoder. The partially-parallel and
pipeline architectures will be describe in Section III-A. The
decoder consists of four types of memories: PCM_MEM ,
LLR_MEM , Mes_MEM , and Syn_MEM . Data storage and
read&write will be discussed in Section III-C. The calcu-
lation of the decoder is divided into four steps: LLR_ini,
NPUs, Decision, and Gen_Bit , which will be presented in
Sections III-D, III-E, and III-G, respectively. In this section,
we also discuss some other contents about the proposed archi-
tecture, such as fixed-point implementation, test platform
based on C language, and decoding throughput.

A. PARTIALLY-PARALLEL AND PIPELINE ARCHITECTURES
Serial decoders are implemented in hardware by only a single
NPU, thereby require a small number of hardware resources.
The NPU must be used multiple times per decoding iteration
in a time-multiplexed manner, where internal memories are
utilized to temporarily store the extrinsic LLRs for each row
and column calculated by the NPU over the course of the
iterative decoding process. Accordingly, serial decoders can
naturally offer full run-time flexibility simply by changing
the stored memory address values. However, due to large
number of operations required for each decoding iteration,
serial decoders suffer from very low decoding throughput,
which typically does not meet the requirements of modern
communication standards [36]. In the fully parallel strategy,
the entire factor graph is implemented in hardware and all
variable nodes and check nodes are updated concurrently.
Fully parallel decoders are usually implemented to achieve
high-throughput decoding of a certain LDPC code at the cost
of high area consumption [15].

47690 VOLUME 9, 2021

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

FIGURE 4. The memory structure.

Partially-parallel architectures strike a compromise
between the serial and fully-parallel architectures by imple-
menting p parallel NPUs. Each decoding iteration is then
split into several stages, wherein p NPUs are processed
simultaneously. This facilitates higher processing through-
puts than those with serial architectures while avoiding the
excessive hardware resource requirements of fully-parallel
architectures. The increased degree of parallelism means that
the distribution of values into BRAMs must be chosen care-
fully. Several works [11], [18]–[20] have addressed partially
parallel decoding architectures for LDPC decoders to obtain
a good trade-off between hardware complexity and decoding
speed.

The pipeline structure can minimize the number of clock
cycles required in the overall decoding process. To reduce
the number of clock cycles per processing step, the pipeline
structure needs to be applied in both the calculation process
and memory access. Our proposed pipeline scheme will be
discussed in detail in Sections III-E. In our scheme, par-
tially parallel and pipeline structures are used to improve
throughput. To implement a good trade-off between hardware
complexity and throughput, the parallel parameter p is set
equal to the quasi-cyclic expansion factor q, that is, p = q.

B. FIXED-POINT IMPLEMENTATION
The fixed-point number scheme is a method of represent-
ing numbers in binary format in hardware. In the scheme,
a number can be represented by (1, I ,F), where 1 bit for the
sign, I bits represent the integer part, and F bits represent
the fraction part. Compared to single or double floating-point
numbers, fixed-point numbers need fewer bits to represent
a number. The word width w = 1 + I + F of messages
directly reduces the memory size. The larger the fixed-point

number word width, the more accurate the number repre-
sented, and the better the decoding performance. However,
larger bit width means that more FPGA’s on-chip storage
resources will be taken up. To find the best trade-off between
the storage resources consumption and the decoding per-
formance, accurate simulations were performed using a test
platform based on C language. We simulated different types
of fixed-point schemes and find (1, 5, 13) is the best choice.
We choose the same fixed-point number format for both the
LLR and node messages to effectively reduce the implemen-
tation complexity.

C. THE MEMORY STRUCTURE AND DATAPATH
As shown in Fig. 3, the FPGA-based partially-parallel
decoder consists of four types of memories: PCM_MEM ,
LLR_MEM , Mes_MEM , and Syn_MEM . They all use the
FPGA’s on-chip Block RAMs (BRAMs) to store temporary
data needed in the decoding algorithm, and facilitate the data
read&write through changing addresses only.

The PCM_MEM is used to store the PCM and only need
to instantiate a BRAM. In order to save the storage space,
only the column number of non-zero elements in the base
matrix and the corresponding quasi-cyclic expansion factor
are stored.

The LLR_MEM andMes_MEM are used to store the initial
LLRs and the node messages from variable nodes and check
nodes. The overall memory of an LDPC decoder is predom-
inantly determined by the size of those memories storing the
LLRs and node messages. In order to be able to read out all
the data required for parallel processing at the same time, both
types of memory need to instantiate p BRAMs to store them
separately. Fig. 4 presents the concrete method that LLR and
nodemessages stored. The left side represents the positions of

VOLUME 9, 2021 47691

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

FIGURE 5. Datapath.

the data corresponding to Fig. 2, andwe have numbered them.
The right side shows where the numbered data are stored in
BRAMs.

The Syn_MEM is used to store syndromes, and its bit
width is consistent with the degree of parallelism. Due to
the syndrome are required in both the iterative and decision
process, the BRAM must be configured as a true dual port
RAM. The data in each storage space corresponds to the
syndrome required by p layers, so it only needs to be read
one by one.

Fig. 5 shows the data read and write structure in the
iteration process. For QC-LDPC codes, the address genera-
tor of PCM BRAM can be realized with a simple counter,
which simplifies the hardware design. Parallel BRAMs are
controlled simultaneously by an address lookup table. The
reading and writing of LLRs resorts to the addresses of the
positions of the non-zero elements in the PCM H . The mes-
sages inMes_MEM are read one by one and then rearranged
according to the quasi-cyclic expansion factor, finally, they
enter the NPUs for message processing. After the updating
of the messages in NPUs, they are rearranged in the original
order and written into the original address space. Messages
updating in NPUs require a constant clock cycle delay in the
pipeline structure, thereby avoiding read and write conflicts.

D. INITIALIZATION OF LLRs
As shown in (3), considering the small amount of calcula-
tion in the initialization of LLRs step, we use the existing
floating-point number IP cores to reduce implementation
complexity. As shown in Fig. 6, the scheme just needs five
IP cores, including a floating-point number divider, a loga-
rithmic operator, 2 convertors from 32-bits floating-point to
fixed-point numbers, and a convertor from floating-point to
fixed-point numbers. The proposed scheme has high calcu-
lation accuracy and can meet the throughput requirements.
Besides, the amount of calculation in this step is relatively

FIGURE 6. Logic structure of the initialization of LLRs. float_div is a
floating-point number divider IP core, and log is a logarithmic operator IP
core. The module fix2float is an IP core that convert the fixed-point
number to 32-bits float-point numbers, and the module float2fix is the
inverse transformation of fix2float .

small, and it is sufficient to use pipeline and serial structures.
After the LLR is generated, it needs to be written into the
corresponding BRAMs.

E. NODE PROCESSING UNITS (NPUs)
After obtaining LLRs in the initialization step, the iterative
decoding step starts. The step requires multiple iterations,
massive data storage, and has high complexity. To improve
throughput, it is necessary to make full use of the parallel
operations characteristics of FPGA, but this will raise another
problem: the higher the degree of parallelism, the more data
will be read, written and buffered during the iterative pro-
cess step. We adopts two ways to solve this issue: (a) using
the fixed-point number representation; (b) using the LBP
schedule.

The calculations that NPUs perform are shown in
(4)-(6). The timing sequence chart is plotted in Fig. 7. The
pipeline structure is embodied in four sub-processes and the
iteration process. There is no clock delay between layers or
nodes. In each iteration, all rows of each block are updated
serially in Nbm clock cycles. Processing of a node message
can be divided into five stages: (a) NPUs execute (4) after
reading LLR_read and EV2C_read from multiple BRAMs
simultaneously to obtain MC2V_tep; (b) the MC2V_tep is
reordered into MC2V according to the offset of the cyclic
permutationmatrix; (c) NPUs execute (5). In this stage, NPUs
need to calculate the 9(x) function and accumulation, etc.,

47692 VOLUME 9, 2021

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

FIGURE 7. The timing sequence chart of the iteration procedure.

and finally obtain EV2C_tep; (d) the EV2C_tep is reordered
into EV2C_write, which is written to original BRAMs; (e)
NPUs execute (6) to obtain LLR_write, which is written
to original BRAMs. In these process, LLR and EV2C is
read from their respective BRAMs and rewritten after node
messages are updated. The clock delay depends on the 9(x)
function, accumulation operation, and other inherent delays.
To avoid memory access conflicts, it is necessary to add a
new constraint when constructing PCMs. The application of
pipeline structure makes the method is also applicable to the
processing of irregular LDPC codes.

F. THE APPROXIMATION OF FUNCTION 9(x)
During the node update process, the extrinsic soft messages
are sent to hardware units, which perform the nonlinear
function 9(x) defined as (7). The calculation of the function
based on FPGAs is a computationally complex task and will
consume a lot of hardware resources. Notice that 9(x) is an
even symmetric function and its outputs are positive numbers.

In order to reduce the implementation complexity and
remain the calculation accuracy as much as possible,
we present a new non-uniform piecewise approximation
scheme [11] using the second-order function y = ax2 +
bx + c, which can achieve almost identical decoding per-
formance as the standard SPA. To this end, determination
of parameters a, b, and c for each segmentation are critical.
Larger number of segments results in better decoding per-
formance, but more LUTs will be consumed. We simulated
different types of schemes to find the best trade-off between
the resource consumption and decoding performance. Fig. 8
shows the comparison of an example between 9(x) function
and non-uniform piecewise approximation with 4 segments.
Notice that the difference between the value of the original
function and its approximation is negligible.

Fig. 9 shows the logic structure of the function9(x) imple-
mented by using on-chip DSP slices with 25× 18 multiplier

FIGURE 8. Comparison between the function 9(x) and non-uniform
piecewise approximation of second-order function.

FIGURE 9. Logic structure of 9(x). mult0, mult1, and mult2 are
multipliers, add is an adder, and sub is a subtractor. The five IP cores are
all built using DSP slices to perform fixed-point arithmetic. The circle in
the figure indicates the adjustment of the bit width.

and adder/subtracter. The calculation process only lasts for
5 clock cycles by using the specific calculation sequence,
as shown in Fig. 7. In our scheme, the fixed-point numbers
for the input and output are both in (1,5,13) format. During
the calculation process, it is necessary to perform interception
and supplement on fixed-point numbers.

VOLUME 9, 2021 47693

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

G. DECISION AND BIT SEQUENCE GENERATION
The module Decision in Fig. 3 is used to determine whether
the decoding succeeds after each iteration. The specific
implementation method is to read the sign bits of the LLRs
and then perform logical NOT and XOR operation with the
corresponding elements of PCM successively. The obtained
bit sequence is compared with the syndrome. If they are com-
pletely consistent, the decoding is judged to be successful,
otherwise the decoding fails and return to NPUs. In order to
reduce the unessential calculations, the comparison is per-
formed at the same time as the calculation process. Once
the inconsistency is found, the decision step is terminated
immediately. Besides, the module Decision is also judged
whether the predefined maximum number of iterations has
been reached. If it is reached, the decoding determined to be
failed.

The module Gen_Bit in Fig. 3 is used to generate the bit
sequence X when the decoding is successful. The module
reads the LLRs from LLR_MEM in parallel. If a sign bit of
LLR is 0, we have xi = 1, otherwise xi = 0.

H. TEST PLATFORM BASED ON C LANGUAGE
To facilitate the decoder design, a simulation test platform
was built based on C language, in which various calculation
units completely simulating the FPGA hardware environment
are established. There calculation units are included in the test
platform: (a) decoding performance of PCMs; (b) the optimal
fixed point number format; (c) the number of segments and
the accuracy of the coefficients for non-uniform piecewise
approximation of function 9(x).

IV. IMPLEMENTATION RESULTS
In this section, we will present the performance of our
FPGA-based LDPC decoder following the above architec-
ture. The performance of a decoder can be characterized by
four important parameters: bit error rate (BER), the aver-
age number of iterations, throughput, and the consump-
tion of hardware resources. For the FPGA-based ultra-long
LDPC decoder, the key factor restricting the performance
is the on-chip storage resource on an FPGA. To evalu-
ate our proposed scheme, the FPGA-based LDPC decoder
is implemented on a Xilinx VC709 evaluation board,
which is populated with a Virtex-7 XC7VX690T FPGA
with 433,200 LUTs, 866,400 FFs, 3,600 DSP slices, and
52,920 Kb BRAMs.

A. THROUGHPUT
The high throughput is the key advantage of LDPC decoders
implemented by an FPGA device. Its decoding throughput
can be calculated by

T =
f · L

Nbm · Niter + D
, (8)

where f is the clock frequency of FPGAs, L is code lengths,
Nbm is the number of nodes in a base matrix, Niter is the
average number of decoding iterations required to achieve a

correct decoding processing, andD is the clock delay of node
processing.

In order to more clearly reflect the effect of parallel param-
eters on throughput, we can change (8) as

T ≈
f · q

(1− R) · Nave · Niter
, (9)

where R is the code rate of the LDPC codes, Nave is the
average number of nodes in each row of a basic matrix.
To derive (9), we have neglectedD because it is much smaller
than Nbm · Niter .
From (9), we notice that R and Nave are the intrinsic prop-

erties of a PCM, the throughput is attributed to three factors:
(a) high clock frequency, (b) large parallelism parameter q
in partially parallel decoders, and (c) low average number
of iterations Niter . The key advantage of FPGA is that it
can improve the parallelism parameter of decoders, however,
the average number of iterations cannot be reduced by FPGA.
Notice that the decoding throughput is not related to the code
length.

B. DECODING PERFORMANCE
In the following, we investigate to verify the performance
of the two PCMs with the sizes of 149, 504 × 262, 144
and 309, 760 × 349, 952 using the SI-LBP algorithm where
additive white Gaussian noise (AWGN) channel and binary
phase-shift keying (BPSK) modulation are assumed. Two
different PCMs with code rates of 0.430 and 0.115 have been
used in the information reconciliation of CV QKD systems at
different SNRs [25]. In Table 1, we show node degree distri-
butions of the two irregular PCMs obtained by the discretized
density evolution for SPA algorithm. Using the good degree
distributions, high performance PCMs can be constructed.

TABLE 1. Optimal variable degree distributions for two different code
rates.

Fig. 10 plots the BERs versus the SNRs for the SPA and
the offset MSA. From BERs and the minimum SNR for suc-
cessfully decoding, it can be seen that decoding performance
achieved by the SPA is better than the offset MSA. We also
compared the performance of SPA in two different cases:
(1, 5, 13) fixed-point number and floating-point number. The
difference of BERs between the two formats is extremely
small (less than 10−4) under the same number of iterations.
Furthermore, Fig. 11 depicted the relationship between SNRs
and the average number of iterations. Notice that the average

47694 VOLUME 9, 2021

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

TABLE 2. Performance of the proposed decoder and its comparison with previous work.

number of iterations decreaseswith increasing SNR. The sim-
ulation results show that fixed-point number schemes hardly
affect the average number of iterations. Therefore, the effect
of fixed-point number schemes on the throughput can be
ignored, as shown in (8) and (9).

Table 2 presents the detailed parameters of our
FPGA-based LDPC decoder. The decoder occupies about
11.9% of the LUTs, 4.1% of the FFs, 28.4% of the DSP slices,
and 59.9% of the BRAMs available on the FPGA device.
When implementing the decoder based on FPGA, we use
fixed-point numbers format to implement message process-
ing to reduce the decoding complexity and the consumption
of storage resources. In our work, the consumption of LUTs
and FFs shown in Table 2 corresponds to the case where
the parallel parameter is 64 and the fixed-point numbers
format is (1, 5, 13). The decoder occupies 31,680 Kb BRAMs
that are used to PCM_MEM , LLR_MEM , Mes_MEM , and
Syn_MEM , of which Mes_MEM takes up the largest storage
space. In general, the larger the width of fixed-point num-
bers, the more storage resources must be consumed. But,
the storage resources will remain constant with the change
of the parallel parameter. DSP slices are used to implement
the second-order function in the9(x) function approximation
for 64 NPUs, and for each NPU, 16 DSPs are required. Larger
parallel parameters will consume more DSP slices. Note that
the same consumptions of LUTs, FFs, and DSP slices are
observed for the two different PCMs with the same parallel
parameter. We provided the minimum BRAMs required for
two different PCMs in Table 2. To improve the flexibility of

the decoder, larger BRAMs can be used to adapt to different
PCMs. The achieved results based on FPGAs show that the
minimum SNRs for successfully decoding of the two PCMs
can reach 0.6 dB and −0.6 dB, respectively. The decoding
performance can reach to such low SNRs is due to the
ultra-long code length and low code rate. The throughputs
presented in Table 1 are evaluated using (9) with the number
of iterationsNiter corresponding to SNR = 1.0 dB. In a word,
the proposed decoder can well meet the needs of the CVQKD
system in terms of decoding capability, hardware resource
consumption, and throughput.

In Table 2, we compare our decoder with three previ-
ous works [11], [16], [20]. Obviously, the advantage of our
decoder is that it has the minimum SNR that can be suc-
cessfully decoded. The bit width of the fixed-point numbers
is obviously larger than other works. The reason is that the
code length is much longer, which leads to a larger number of
calculations and higher requirement for calculation accuracy
in our work. Compared with the work of Wang and Cui [11],
the decoding algorithms of the two works are similar. More
LUTs and FFs are consumed in our scheme because the par-
allel parameter and the bit width of fixed-point numbers are
larger. In general, the larger parallel parameter or the bit width
of the fixed-point numbers, the more LUTs and FFs must be
consumed. In the work of Lu et al. [20], a higher throughput
is achieved using the RCM-LBP decoding algorithm. Note
that this work employs more LUTs and FFs when the parallel
parameter is 11, the PCM is much smaller than ours and the
clock frequency is higher. Of course, it is very meaningful

VOLUME 9, 2021 47695

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

FIGURE 10. Comparison of the BER between the offset MSA and the SPA.
Two PCMs with size of 149,504 × 262,144 and 309,760 × 349,952 are
investigated, the corresponding number of iterations are 5 and 15,
respectively.

FIGURE 11. The simulation results of average number of iterations for
LDPC codes versus the SNR.

that the decoder can realize rate adaptive communications,
and we also consider to achieve the feature in the future.
Very recently, Liu et al. [16] implemented the LDPC decoder
using MSA in an FPGA. It can be seen that the decoding
performance is lower than ours. Compared with the previous
works, the decoding throughput of this work is not high
enough, but it has been able to meet the needs of the state
of the art in information reconciliation of CV QKD. The
decoding throughput depends on several parameters such as
parallelism parameter, code length, the number of iterations,
and clock frequency. The ultra-long code length is the main
reason for our low throughput, because it increases greatly the
number of nodes that need to be processed is larger than the
previous works. In the future, we can improve the decoding
throughput further by increasing the clock frequency.

V. CONCLUSION
In this paper, we have designed and implemented an
FPGA-based LDPC decoder using the SI-LBP algorithm

that can achieve a better trade-off between the decoding
performance and implementation complexity. We developed
partially parallel decoder architectures and optimized the
pipeline structure to increase the decoding throughput by
reducing the clock cycles of the LDPC decoder. A uniform
quantization scheme is used to save the consumption of stor-
age resources and reduce implementation complexity. Fur-
thermore, a non-uniform piecewise approximation scheme
using the second-order function for the function 9(x) is
adopted to reduce the implementation complexity greatly.
We have demonstrated the advantages of the proposed LDPC
decoder architecture with an FPGA implementation. The
implementation results on the Xilinx VC709 evaluation board
shown that the proposed LDPC decoder with ultra-long code
length has good decoding performance and throughput at
SNRs as low as -0.6 dB. When SNR = 1.0 dB, the through-
puts reach 108.64 Mb/s and 70.32 Mb/s at code lengths
of 262,144 and 349,952, respectively. The decoder with supe-
rior performance can be readily applied to the information
reconciliation in CV QKD, and can also find potential appli-
cation in the other communication domain.

REFERENCES
[1] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory,

vol. 8, no. 1, pp. 21–28, Jan. 1962.
[2] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,

‘‘A survey of FPGA-based LDPC decoders,’’ IEEE Commun. Surveys
Tuts., vol. 18, no. 2, pp. 1098–1122, 2nd Quart., 2016.

[3] P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo,
‘‘A flexible FPGA-based quasi-cyclic LDPC decoder,’’ IEEE Access,
vol. 5, pp. 20965–20984, Jul. 2017.

[4] J. Andrade, G. Falcao, V. Silva, and L. Sousa, ‘‘A survey on programmable
LDPC decoders,’’ IEEE Access, vol. 4, pp. 6704–6718, Jul. 2016.

[5] S. Keskin and T. Kocak, ‘‘GPU-based gigabit LDPC decoder,’’ IEEE
Commun. Lett., vol. 21, no. 8, pp. 1703–1706, Aug. 2017.

[6] J. Yuan and J. Sha, ‘‘4.7-Gb/s LDPC decoder on GPU,’’ IEEE Commun.
Lett., vol. 22, no. 3, pp. 478–481, Mar. 2018.

[7] K. Zhang, X. Huang, and Z. Wang, ‘‘High-throughput layered decoder
implementation for quasi-cyclic LDPC codes,’’ IEEE J. Sel. Areas Com-
mun., vol. 27, no. 6, pp. 985–994, Aug. 2009.

[8] M. Zhao, X. Zhang, L. Zhao, and C. Lee, ‘‘Design of a high-throughput
QC-LDPC decoder with TDMP scheduling,’’ IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 62, no. 1, pp. 56–60, Jan. 2015.

[9] Y. M. Lin, H.-T. Li, M.-H. Chung, and A.-Y. Wu, ‘‘Byte-reconfigurable
LDPC codec design with application to high-performance ECC of NAND
flash memory systems,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62,
no. 7, pp. 1794–1804, Jul. 2015.

[10] H.-C. Lee, M.-R. Li, J.-K. Hu, P.-C. Chou, and Y.-L. Ueng, ‘‘Optimization
techniques for the efficient implementation of high-rate layered QC-LDPC
decoders,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 2,
pp. 457–470, Feb. 2017.

[11] Z. Wang and Z. Cui, ‘‘Low-complexity high-speed decoder design for
quasi-cyclic LDPC codes,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 15, no. 1, pp. 104–114, Jan. 2007.

[12] C. Beuschel and H.-J. Pfleiderer, ‘‘FPGA implementation of a flexible
decoder for long LDPC codes,’’ in Proc. Int. Conf. Field Program. Logic
Appl., Heidelberg, Germany, Sep. 2008, pp. 185–190.

[13] A. J. Wong, S. Hemati, and W. J. Gross, ‘‘A modular architecture for
structured long block-length LDPC decoders,’’ J. Signal Process. Syst.,
vol. 90, no. 1, pp. 29–38, Jan. 2018.

[14] M. Karkooti, P. Radosavljevic, and J. R. Cavallaro, ‘‘Configurable LDPC
decoder architectures for regular and irregular codes,’’ J. Signal Process.
Syst., vol. 53, nos. 1–2, pp. 73–88, Nov. 2008.

[15] S. Sharifi Tehrani, S. Mannor, and W. J. Gross, ‘‘Fully parallel stochas-
tic LDPC decoders,’’ IEEE Trans. Signal Process., vol. 56, no. 11,
pp. 5692–5703, Nov. 2008.

47696 VOLUME 9, 2021

S.-S. Yang et al.: FPGA-Based LDPC Decoder With Ultra-Long Codes for CV QKD

[16] Y. Liu, W. Tang, and D. G. M. Mitchell, ‘‘Efficient implementation of a
threshold modified min-sum algorithm for LDPC decoders,’’ IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 67, no. 9, pp. 1599–1603, Sep. 2020.

[17] K. Shimizu, T. Ishikawa, N. Togawa, T. Ikenaga, and S. Goto, ‘‘Partially-
parallel LDPC decoder based on high-efficiency message-passing algo-
rithm,’’ in Proc. Int. Conf. Comput. Design, San Jose, CA, USA, 2005,
pp. 503–510.

[18] F. Verdier and D. Declercq, ‘‘A low-cost parallel scalable FPGA architec-
ture for regular and irregular LDPC decoding,’’ IEEE Trans. Commun.,
vol. 54, no. 7, pp. 1215–1223, Jul. 2006.

[19] Y. Dai, N. Chen, and Z. Yan, ‘‘Memory efficient decoder architectures
for quasi-cyclic LDPC codes,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 55, no. 9, pp. 2898–2911, Oct. 2008.

[20] F. Lu, Y. Dong, and C. W. Chen, ‘‘Layered decoding algorithm and two-
level quasi-cyclic matrix construction for rate compatible modulation,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 8, pp. 3213–3226,
Aug. 2019.

[21] X. Chen, J. Kang, S. Lin, and V. Akella, ‘‘Memory system optimization
for FPGA-based implementation of quasi-cyclic LDPC codes decoders,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 1, pp. 98–111,
Jan. 2011.

[22] V. A. Chandrasetty and S. M. Aziz, ‘‘Analysis of performance and imple-
mentation complexity of simplified algorithms for decoding low-density
parity-check codes,’’ in Proc. IEEE Globecom Workshops, Miami, FL,
USA, Dec. 2010, pp. 430–435.

[23] H. Lopez, H.-W. Chan, K.-L. Chiu, P.-Y. Tsai, and S.-J.-J. Jou,
‘‘A 75-Gb/s/mm2 and energy-efficient LDPC decoder based on a reduced
complexity second minimum approximation min-sum algorithm,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 4, pp. 926–939,
Apr. 2020.

[24] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, ‘‘Practical challenges in
quantum key distribution,’’ npj Quantum Inf., vol. 2, no. 1, Nov. 2016,
Art. no. 16025.

[25] Z. Bai, S. Yang, and Y. Li, ‘‘High-efficiency reconciliation for continuous
variable quantum key distribution,’’ Jpn. J. Appl. Phys., vol. 56, no. 4,
Apr. 2017, Art. no. 044401.

[26] A. D. Liveris, Z. Xiong, and C. N. Georghiades, ‘‘Compression of binary
sources with side information at the decoder using LDPC codes,’’ IEEE
Commun. Lett., vol. 6, no. 10, pp. 440–442, Oct. 2002.

[27] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, ‘‘Regular and irregular pro-
gressive edge-growth tanner graphs,’’ IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[28] V. A. Chandrasetty and S. M. Aziz, ‘‘FPGA implementation of a LDPC
decoder using a reduced complexity message passing algorithm,’’ J. Netw.,
vol. 6, no. 1, pp. 36–45, Jan. 2011.

[29] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, ‘‘Reduced complexity
iterative decoding of low-density parity check codes based on belief prop-
agation,’’ IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May 1999.

[30] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
‘‘Reduced-complexity decoding of LDPC codes,’’ IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[31] D. J. C. MacKay, ‘‘Good error-correcting codes based on very sparse
matrices,’’ IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[32] D. E. Hocevar, ‘‘A reduced complexity decoder architecture via layered
decoding of LDPC codes,’’ in Proc. IEEE Workshop onSignal Process.
Syst. (SIPS), Austin, TX, USA, 2004, pp. 107–112.

[33] H. Ding, S. Yang, W. Luo, and M. Dong, ‘‘Design and implementation for
high speed LDPC decoder with layered decoding,’’ in Proc. WRI Int. Conf.
Commun. Mobile Comput., Leipzig, Germany, Jan. 2009, pp. 156–160.

[34] O. Boncalo, G. Kolumban-Antal, A. Amaricai, V. Savin, and D. Declercq,
‘‘Layered LDPC decoders with efficient memory access scheduling and
mapping and built-in support for pipeline hazards mitigation,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 66, no. 4, pp. 1643–1656, Apr. 2019.

[35] D. Slepian and J. Wolf, ‘‘Noiseless coding of correlated information
sources,’’ IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[36] S. Bates, Z. Chen, L. Gunthorpe, A. E. Pusane, K. S. Zigangirov, and
D. J. Costello, ‘‘A low-cost serial decoder architecture for low-density
parity-check convolutional codes,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 55, no. 7, pp. 1967–1976, Aug. 2008.

SHEN-SHEN YANG received the B.S. and Ph.D.
degrees from Shanxi University, Taiyuan, China,
in 2014 and 2020, respectively. He is currently
working with Shanxi Normal University. His
research interests include field-programmable
gate arrays, error correction coding, and post-
processing procedure of continuous-variable
quantum key distribution.

JIAN-QIANG LIU is currently pursuing the Ph.D.
degree in optics with Shanxi University, Taiyuan,
China. His research interests include field pro-
grammable gate arrays and optical design and con-
trol system of continuous-variable quantum key
distribution.

ZHEN-GUO LU is currently pursuing the Ph.D.
degree in optics with Shanxi University, Taiyuan,
China. His research interests include field pro-
grammable gate arrays and quantum random num-
ber generation.

ZENG-LIANG BAI received the Ph.D. degree in
optics from Shanxi University, Taiyuan, China,
in 2017. He has been with Shanxi University of
Finance and Economics, since 2017. His research
interests include error correction coding and
post-processing procedure of continuous-variable
quantum key distribution.

XU-YANG WANG received the Ph.D. degree in
optics from Shanxi University, Taiyuan, China,
in 2013. He is currently an Associate Profes-
sor with Shanxi University. His research inter-
ests include integrated photonics and quantum
communications.

YONG-MIN LI received the Ph.D. degree in optics
from Shanxi University, Taiyuan, China, in 2003.
Since 2003, he has been a Postdoctoral Fellow
with the University of Tokyo, and a Visiting Fel-
low with Australian National University. He is
currently a Professor with Shanxi University. His
research interests include quantum communica-
tions and quantum optics.

VOLUME 9, 2021 47697

