
Suppression of phonon tunneling losses by microfiber strings for high-Q
membrane microresonators

Zongyang Li,1,2 Qiang Zhang,1,2 Xiang You,1,2 Yongmin Li,1,2,a) and Kunchi Peng1,2

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,
Shanxi University, Taiyuan 030006, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

(Received 17 August 2016; accepted 27 October 2016; published online 8 November 2016)

We propose to utilize a microfiber string to isolate the tunneling of acoustic waves between a

membrane frame and its holder. The displacement response of the membrane frame with and

without the vibration isolation is characterized using an optical interferometer. A displacement

power suppression of 40 dB is achieved around the fundamental mode frequency of the membrane.

We demonstrate that the Q factor of a SiN membrane microresonator with our vibration isolation

method can reach 1:78� 106 in room temperature. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967496]

The highly stressed silicon nitride membranes with

extraordinarily low optical absorption and mechanical dissi-

pation properties have emerged as one of the most promising

platforms in quantum optomechanics.1–4 Recently, the

mechanical modes of stoichiometric silicon nitride (Si3N4)

membranes have been cooled to near the quantum ground

state in the resolved sideband cooling regime.5–9 So far the

Si3N4 membranes when operated in the so-called membrane-

in-the-middle approach,3 have been employed for a number

of impressed demonstrations of optomechanical experiments,

such as the generation of optical nonclassical state,10,11 nar-

rowing the filter-cavity bandwidth in gravitational-wave

detectors,12 and conversion between microwave and optical

light.13,14 However, it should be noticed that the above men-

tioned experiments and other proposed protocols15–17 all

require that the membrane resonators own a high mechanical

Q factor.

The mechanical Q factor, which represents the dissipa-

tion of a resonator, can be divided into internal loss and

external loss. The former one describes the energy loss inside

the resonator which is dominated by the bending loss, while

the latter one represents the energy loss outside of the reso-

nator caused by the coupling between the resonator and its

support structure, which is also called clamping loss, recoil

losses, or tunneling loss.2,18–28 Previous studies show that

the Q factor of a resonator can reach the upper bound which

is dominated by the internal loss of the resonator if its exter-

nal loss is well isolated. Although by elaborative design of

the size, thickness, shape, and tensile stress of a membrane

resonator, the bending loss can be reduced and the Q factor

can reach more than 107 in room temperature,29,30 the clamp-

ing loss is still the most important limit factor for the effec-

tive mechanical Q that one can obtain in practice. At present,

several approaches have been proposed to suppress the

tunneling loss such as nodal suspension,28 phononic crys-

tal,23–25 and low frequency mechanical resonators.26,27,31,32

The phononic crystal technique is suitable for the vibration

isolation of relatively high frequency resonators since the

size of its unit cell would be very large if a band gap cen-

tered at low frequency is required. The low frequency

mechanical resonator approach which relies on the low pass

filtering of mechanical vibration can be used in low fre-

quency band isolation. For instance, suspending mirrors with

silica fibers31,32 in the Gravitational wave detection system.

In this work, we present a simple and effective approach

to suppress the acoustic waves between a membrane resona-

tor and its surroundings with microstrings which consists of

two tensioned microfibers. The isolation mechanism of the

acoustic waves is attributed to both the mass-on-spring

modes of the membrane frame plus the microstrings and the

vibration modes of the microfibers. We characterize the

mechanical response of the microfiber strings shielded mem-

brane frame utilizing an optical interferometer. Up to 40 dB

of vibration isolation from an external mechanical drive is

achieved around the fundamental mode frequency of the

membrane.

The sketch of our device is shown in Fig. 1(a) which

consists of an aluminum holder, a SiN membrane deposited

on a silicon chip, and a pair of tensioned microfiber strings.

The diameter of the microfiber strings is on the order of sev-

eral tens of micrometers which is sufficient to grasp the chip

stably. With internal tension of several million Pascal, the

microfiber strings are fixed onto the aluminum holder, and

the membrane chip is then glued onto the fiber strings. In

this way, the silicon chip plus the microfibers act as a low

frequency resonator. Meanwhile, the microfiber sections

between the membrane chip and the aluminum holder

approximately form four doubly clamped microstrings.

In the low frequency range, the fiber string can be

treated as a light spring and the silicon chip moves as a rigid

body. In this case, the mechanical displacement response of

the chip can be written as x2
0=ðx2

0 � x2 � iC0xÞ, where x0

and C0 are the resonant frequency and mechanical decay rate

of the mass-on-spring mode, x is the frequency of vibration.

In the high frequency range, the resonant vibration of the

fiber strings cannot be neglected, and the system should not

be regarded as a single resonator but a coupled one. The
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mechanical response of the silicon chip can be written as

mx2
j =½Mðx2

j � x2 � iCjxÞ, where xj and Cj are the resonant

frequency and mechanical decay rate of the jth mode of the

fiber string, m and M denote the mass of the fiber string and

silicon chip, respectively. The theoretical vibration suppres-

sion of the device is shown in Fig. 1(b). Although the low

frequency resonator can isolate the high frequency acoustic

waves greatly. For instance, more than 60 dB isolation can

be obtained given the low-frequency resonant frequency of

17 kHz and analysis frequency of above 400 kHz. The reso-

nant vibration of the fiber strings themselves can degrade the

isolation effect in the frequency range around their resonant

frequencies and need to be considered. In order to tune the

resonant frequencies of the microfiber strings to be away

from the membrane modes and achieve a narrow resonance

peak (high Q), the fiber diameter, length, and the tension

should be carefully designed.

The eigenfrequencies of the square geometry high-

stress membrane resonators can be written as fmn

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðm2 þ n2Þ=ð4ql2

p
Þ, where r � 0:9 GPa is the tensile

stress, q ¼ 2:7 g=cm3 is the density of silicon nitride, ðm; nÞ
are mode indices representing the number of antinodes, and

l ¼ 500 lm is the side length of the square membrane. The

frequencies of the (1, 1) and (2, 2) membrane modes can be

calculated to be around 800 kHz and 1.6 MHz using above

relation.

There are three types of vibration modes for a clamped

fiber string, transverse mode (TM), longitudinal mode (LM),

and radial breathing mode (RBM), as shown in Fig. 2. Since

the vibration directions of LM and membrane mode are

mutually perpendicular. The only type of vibration we need

to pay attention to is the TM vibration (Fig. 2(b)). For a dou-

bly clamped circular string under zero tension, the resonant

frequency of the TM is given by33

f0;n ¼
i2n

2pL2

ffiffiffiffiffiffi
YI

qA

s
; (1)

where Y ¼ 73 GPa and q ¼ 2:3 g=cm3 are the Young modu-

lus and density (silica), respectively, I ¼ pd3=64, and

A ¼ pd2=4 are the moment of inertia and the cross sectional

area of rounded strings, respectively, d is the diameter, L is

the length, and in is the characteristic number for the nth

mode, which are given by i1 ¼ 4:73004, i2 ¼ 7:85320,

i3 ¼ 10:99561, and in � ðnþ 1Þp=2 for n � 3. When stress

is applied to a string, the resonant frequency is increased

according to the following equation:34,35

fn rð Þ ¼ f0;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:97

1

nþ 1ð Þ2
rAL2

YI

s
(2)

A thinner fiber string can lead to a better suppression of

the vibration. On the other hand, according to Eq. (1), a thin-

ner fiber string means that its resonant frequencies are lower,

which results in dense resonant peaks of the fiber strings. To

ensure wide spacing of the resonant peaks as well as good

isolation of the vibration, the resonant frequencies should be

improved without increasing the decay rate of the strings. To

this end, we tense the fiber strings by hanging weight from

the end of the strings during the assembling. This is due to

the fact that the tension can increase the resonant frequency

and tensile energy stored in the string, while keeping its

energy decay intact.36

The resonant frequencies of the first four modes of a sil-

ica microfiber (1-mm length and 30-lm diameter) as a func-

tion of the applied load weights are shown in Fig. 3. It can

be seen clearly that the resonant frequencies increase with

the load weight applied to the strings. A 0.245 N weight

which can generate 346.6 MPa tension inside the fiber string,

is chosen in order to create the appropriate bandgap we need.

In this case, the resonant frequencies of the first four modes

FIG. 2. Vibration modes of a doubly clamped fiber string. (a) transverse

mode, (b) longitudinal mode, (c) radial breathing mode.

FIG. 3. Resonant frequencies of different vibration modes for a silica micro-

fiber versus the applied load weight. Bandgap ranges are shown in grey and

yellow.

FIG. 1. (a) The microfiber strings shielded membrane resonator device which

consists of an aluminum holder (gray), a SiN membrane chip (brown), and a

pair of microfiber strings (dark blue). (b) Transfer function of the shielded

device. The blue and red dashed lines denote the mass-on-spring mode of the

silicon chip plus the microfibers and the microstrings mode, respectively.

The black line is the overall transfer function considering both modes.
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are 275.3 kHz, 587.6 kHz, 1024.2 kHz, and 2368.9 kHz,

respectively, which are well separated from the frequencies

of the (1, 1) and (2, 2) membrane modes (800 kHz and

1.6 MHz).

The microfiber was fabricated through pulling 125-lm

diameter single mode fibers to a diameter of 30 lm. The

required stress inside the string was achieved by hanging

weight from the end of the strings during the assembling. A

three-dimension adjusting stage with a precision of 0.01 mm

was exploited to put the silicon chip onto the fiber strings.

The overall symmetry of the alignment is on the order of

5%. Start from the microfiber strings, we built a device as

shown in Fig. 1(a) with a piezoelectric transducer fixed on

the aluminum holder. Another membrane chip is also glued

on the aluminum holder as a benchmark of the external

mechanical drive. The mechanical response of the device is

measured using an optical interferometer, i.e., a balanced-

homodyne detector is used to probe the displacement spectra

of the chip with and without the vibration isolation. To this

end, a weak single frequency laser at 1064 nm is incident on

the sample, and the reflected light is mixed with an intense

local oscillator beam at a 50:50 beamsplitter. The relative

phase between the signal light and the local oscillator is sta-

bilized to p=2 to ensure the phase quadrature of the signal

light that is measured. In order to avoid the influence of

vibrations from the background environments, the sample is

mounted on a stainless steel plate which is further installed

on an anti-vibration rubber sheet. The output of a network

analyzer is connected to the piezoelectric transducer to actu-

ate the sample and the measured signal from the homodyne

detector, which is in turn fed into the network analyzer.

Fig. 4 plots the measured mechanical response of the

device. The observed resonant peaks of the membrane chip

are attributed to the resonant response of the silicon substrate

modes and the fiber strings. The resonant frequencies of the

first three modes of the fiber strings (273.8 kHz, 576 kHz,

and 1025 kHz) are marked with vertical dashed lines. An

average of 30 dB vibration suppression can be observed from

200 kHz to 1.9 MHz, and it can reach up to 40 dB in the fre-

quency band from 200 kHz to1 MHz.

Finally, the mechanical Q of the SiN membrane for

(1, 1) and (2, 2) modes is characterized using a mechanical

ringdown technique. The Q factor is defined as Qm ¼ 2pf s,

where f is the center frequency of mechanical modes and s is

the ringdown time of mechanical energy. A typical result is

shown in Fig. 5, the measured Q value can reach 1:78� 106

for the fundamental mode and 1:56� 106 for the (2, 2) mode

at room temperature and a vacuum pressure of 8� 10�6

mbar. Fig. 5(b) plots the displacement power spectra of the

(2, 2) mode which is measured with a spectrum analyzer and

the absence of external driving power. The observed line-

width of C ¼ 1 Hz is limited by the resolution bandwidth

(1 Hz) of the spectrum analyzer. Inserting the value of

linewidth C into Qm ¼ f=C, the Q value is derived to be

1:52� 106. The quality factor from the direct spectrum mea-

surement is in good agreement with the result of the ring-

down detection.

In conclusion, we have provided a simple and cost-

effective approach method to suppress efficiently the trans-

mission of acoustic waves with microfiber strings. In this

way, the phonon tunneling loss of the SiN membrane modes

to the environment is effectively eliminated. The Q factors

of both (1, 1) and (2, 2) modes are enhanced to be more than

one and half a million in room temperature. The method we

proposed enables the realization of high quality factor mem-

brane resonators based on off-the-shelf membrane device. In

future work, to avoid the use of glue, one can try to weld the

fiber string onto the membrane frame with a laser welding,

FIG. 4. (a) The mechanical response spectra. (I) Noise floor of the balanced

homodyne detector; (II) Displacement power spectra of the membrane

frame; (III) Displacement power spectra of the aluminum holder.

FIG. 5. (a) The quality factors of the fundamental mode and (2, 2) mode for

a microfiber string isolated SiN membrane device using ringdown measure-

ments. The data are fitted by exponential decay and the vibration energy

ringdown time is 372.2 ms and 162.8 ms, respectively. (b) Power spectrum

of the (2, 2) mode. The 1 Hz linewidth observed is subjected to the resolu-

tion bandwidth of the spectrum analyzer (1 Hz).
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or fabricate the strings monolithically with the membrane

frame using etching. It is noted that37 by designing phononic

crystal inside the membrane, both internal and external loss

have been reduced significantly and the mechanical Q > 108

can be observed at room temperature.
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