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Abstract: Quantum network plays a vitally important role in the practical application of
quantum information, which requires the deterministic entanglement distribution among multiple
remote users. Here, we propose a feasible scheme to deterministically distribute quadripartite
entanglement by continuous-variable (CV) polarization states. The quantum server prepares
the quadripartite CV polarization entanglement and distributes them to four remote users via
optical fiber. In this way, the measurement of CV polarization entanglement is local oscillation
free, which makes the long distance entanglement distribution in commercial optical fiber
communication networks possible. Furthermore, both the Greenberger-Horne-Zeilinger-like
(GHZ-like) and cluster-like polarization entangled states can be distributed among four users by
controlling the beam splitter network in quantum server, which are confirmed by the extended
criteria for polarization entanglement of multipartite optical modes. The protocol provides
the direct reference for experimental implementation and can be directly extended to quantum
network with more users, which is essential for a metropolitan quantum network.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum entanglement is the central concept of quantum mechanics, and exhibits the unpredictable
prospect in quantum communication [1,2], quantum computation [3] and quantum metrology
[4–6]. Light has the advantages of the fast transmission speed and weak interaction with the
environment, which is the ideal carrier for quantum information [7–10]. The use of the optical
quantum entanglement at the telecommunication wavelength offers the possibility to implement the
quantum communication protocols, such as quantum key distribution [11], quantum teleportation
[12,13] and quantum secret sharing [14]. The distribution of optical entangled states over a long
distance is not only of interest in the understanding of physical mechanism such as decoherence,
and but also of crucial importance in the application of a quantum network [8,15–17]. So far,
great progress has been demonstrated in discrete variable entanglement distribution via the fiber
and free-space quantum channels [18,19], continuous-variable (CV) quantum information paves
an alternative approach, and information is encoded in the position or momentum quadrature of
optical modes due to the advantages of deterministic generation, manipulation and measurement
[20,21]. Thus the deterministic distribution of bipartite entanglement over 20 km has been
experimentally realized [22]. With the development of quantum information, quantum network,
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which can implement quantum information tasks among multiple remote users, is demanding for
practical applications [23–27].

Quantum network consists of quantum server and quantum users. The CV quantum information
has the advantages of high efficiency generation, manipulation and detection [28,29]. Several
generation theories of multipartite quadrature entanglement have been proposed [30,31]. However,
the distribution of quadrature entanglement is difficult, because the complicated measurement of
quadrature requires a strong local optical field. In addition, the quantum optical field that can
directly interact with quantum node is required for quantum network. The bipartite polarization
entanglement at the fiber transmission window has been generated by coupling the polarization
squeezed light field generated by the optical fiber Sagnac effect, which is suitable for quantum
communication [32,33]. With the development of quantum network, the deterministic distribution
of multipartite entanglement is demanded, and the distribution of multipartite CV polarization
state can overcome these problems in metropolitan quantum networks consisting of commercial
fiber channels. Differentiating the multipartite quadrature entanglement, there is another kind of
quantum correlation of Stokes parameters on Poincare sphere among multipartite CV polarization
entangled optical modes, which corresponds to the Stokes parameters on Bloch sphere of atoms,
and thus enable to directly interact with atomic nodes [34]. Besides, the measurement of
multipartite CV polarization entanglement of optical modes is local oscillation free, which
can overcome the phase fluctuation in fibers and thus is suitable for long distance transmission
[35–38].

In the work of Ref. [30], the research is only focused on the generation principle of GHZ-like
and cluster-like quadripartite quadrature entanglement. In this work, however, we propose
an experimentally feasible scheme to deterministically distribute multipartite entanglement by
means of CV polarization states instead of quadrature states. Our scheme is implemented by
transferring the quadripartite quadrature entanglement to CV polarization entanglement, and
then distributing them through the commercial optical fiber channels, which overcomes the phase
fluctuation during the fiber transmission for long-distance quantum distribution. Based on the
quadripartite inseparability criteria of Stokes operators for GHZ-like and cluster-like states, the
two kinds of distributed entanglement are verified. Moreover, the long distance distributions of
two different kinds of GHZ-like and cluster-like CV polarization entanglement can be realized
by controlling the special beam splitter status, which can be applied in controlled quantum
teleportation network [39], the quantum secret sharing network [14], and one-way quantum
computation [40]. Furthermore, the scheme of the CV polarization entanglement distribution
is scalable. Since the CV quadrature entanglements with much more optical modes have been
prepared experimentally [3,41], the presented scheme can be directly extended to distribute CV
polarization entangled states with more optical modes. Thus, our scheme provides the direct
reference for experiment implementation and is the valuable and scalable quantum resource for
practical applications.

2. Generation and distribution of CV GHZ-like and cluster-like quadripartite en-
tanglement

Figure 1 provides a schematic for the generation and distribution of quadripartite entangled states.
In quantum server, four quadrature squeezed states of light are generated from two NOPAs and
transformed into the spatially separated polarization entangled states of optical fields. GHZ-like
and cluster-like states can be obtained by controlling the interference phase of the beam splitter,
respectively.

The quadrature amplitude and phase operators of the optical field can be expressed by the
annihilation operator â and creation operator â† as: X̂i =

1
2 (â

† + â), Ŷi = − 1
2 i(â† − â). When the

light field is coherent state or vacuum state, the quantum fluctuation variance are V(X̂) = V(Ŷ) = 1
4

. The NOPA consists of a type II crystal and an optical cavity. When the NOPA1 and NOPA2
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Fig. 1. The schematic of CV GHZ-like and cluster-like quadripartite polarization entangled
optical fields using two NOPAs and beam splitter network. BS1−3: beam splitter. PBS:
polarization beam splitter. Yellow squares: NOPAs. Dark yellow curve: communication
optical fiber. The entangled state light field is distributed to four users.

run in the parameter de-amplification state, two quadrature phase squeezed state of optical
fields (â1, â4) and two quadrature amplitude squeezed state of optical fields (â2, â3) can be
generated. Beams â1−4 interfere on the beam splitter system. For quadrature entanglement,
θ(i=1,2,3) represents the relative phase between injected optical modes on BSi (i=1,2,3). The
phase difference θ1 between â2 and â3 on the BS1 is controlled to ( 1

2 + k)π ( k is an integer ), the
phase difference θ2(3) on the BS2(3) are all controlled to 2kπ to generate a quadripartite GHZ-like
quadrature entangled state. However, if the phase difference θ3 between â4 and â6 on the BS3 is
controlled to ( 1

2 + k)π, a cluster-like quadripartite quadrature entangled state can be produced.
The output fields â5 and â6 can be expressed as:

â5 =
1
√

2

(︂
â2 + â3eiθ1

)︂
â6 =

1
√

2

(︂
â2 − â3eiθ1

)︂ (1)

A GHZ-like or cluster-like quadripartite quadrature entangled states would be obtained by the
above method.

b̂1 =
1
√

2

(︂
â1 + â5eiθ2

)︂
b̂2 =

1
√

2

(︂
â1 − â5eiθ2

)︂
b̂3 =

1
√

2

(︂
â6 + â4eiθ3

)︂
b̂4 =

1
√

2

(︂
â6 − â4eiθ3

)︂
(2)
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In quantum mechanics, Stokes operators Ŝ0, Ŝ1, Ŝ2, Ŝ3 are usually used to describe the
polarization state of light, Ŝ0 represents the beam intensity, whereas Ŝ1, Ŝ2, Ŝ3 characterize
its polarization and form a Cartesian axes system, which can be easily mapped to the spin
operators of the atomic media. The Stokes operators can be expressed by means of the creation
operator â†H(V) and annihilation operator âH(V) of horizontal and vertical polarization mode:
Ŝ0 = â†H âH + â†V âV , Ŝ1 = â†H âH − â†V âV , Ŝ2 = â†H âVeiϕ + â†V âHe−iϕ , Ŝ3 = iâ†V âHe−iϕ − iâ†H âVeiϕ .
In the definition of Stokes operators, φ is used to express the relative phase between the H and V
polarization modes.

From the commutation relation of generation and annihilation operators: [âk, âj] = δk,j(k, j ∈
{H, V}), the quantum fluctuations of the Stoke operator can be written as [37]:

V0 = V1 = a2
Vδ

2X̂V + a2
Hδ

2X̂H ,

V2(φ) = V3(φ +
π

2
) = cos2 φ(a2

Vδ
2X̂H + a2

Hδ
2X̂V ) + sin2 φ(a2

Vδ
2ŶH + a2

Hδ
2ŶV ),

(3)

where X̂V(H), ŶV(H) is the quadrature amplitudes (phases) fluctuation of V(H) polarized light.
Their mean values and variances satisfy the following Heisenberg uncertainty relationships:
V1V2 ≥ |⟨Ŝ3⟩|, V2V3 ≥ |⟨Ŝ1⟩|, V1V3 ≥ |⟨Ŝ2⟩|.

According to the definition of Stokes operator, the polarization entangled states d̂ could
be obtained by coupling horizontally (vertically) polarized quadrature entangled states b̂ with
vertically (horizontally) polarized strongly coherent light field ĉ on a polarization beam splitter
(PBS). The power of coherent light is much larger than quadrature entangled states of light
(αc ≫ αb), and the phase difference φ between the vertical and horizontal direction is π

2 , so a
polarization entangled state light field can be obtained.

3. Distribution of CV GHZ-like and cluster-like quadripartite polarization entan-
glement

The resulting polarization entangled states are transmitted in the fibers. The relationship between
transmission efficiency and transmission distance is: t = 10−

ζ l
10 , where t is the transmission

efficiency of optical fiber, ζ is the transmission loss, and l is the transmission distance. A typical
transmission losses of 0.2 dB/km at 1550 nm in optical fiber is employed in our scheme to quantify
the two kinds of polarization entangled states transmission distance. When the polarization
entangled state light field propagates in the optical fiber, the Stokes operators quantum fluctuation
variances of quadripartite polarization entangled states can be expressed as:

δ2
(︂
Ŝ2di

)︂
=
α2

C
4

[︂
t
(︂
ηξ2ξ3e2r2 + ηξ2ξ3e−2r3 + 2ηξ1e−2r1 − 2ηξ2ξ3 − 2ηξ1

)︂
+ 4

]︂
δ2

(︂
Ŝ2dj

)︂
=
α2

c
4

[︂
t
(︂
ηξ2ξ3e2r2 + ηξ2ξ3e−2r3 + 2ηξ4e∓2r4 − 2ηξ2ξ3 − 2ηξ4

)︂
+ 4

]︂
δ2

(︂
Ŝ3di

)︂
=
α2

c
4

[︂
t
(︂
ηξ2ξ3e−2r2 + ηξ2ξ3e2r3 + 2ηξ1e2r1 − 2ηξ2ξ3 − 2ηξ1

)︂
+ 4

]︂
δ2

(︂
Ŝ3dj

)︂
=
α2

c
4

[︂
t
(︂
ηξ2ξ3e−2r2 + ηξ2ξ3e2r3 + 2ηξ4e±2r4 − 2ηξ2ξ3 − 2ηξ4

)︂
+ 4

]︂
(4)

here, r1−4 are the squeezing factors for â1−4, which depends on the strength and duration of
the parametric interaction in NOPA, the transmission losses in optical device are unavoidable,
and ξ2 represents the optical transmission efficiency in quantum server of from NOPA1(2) to
BS1, while ξ3 is that for from BS1 to BS2(3), ξ1(4) means that for from NOPA1(2) to BS2(3),
respectively. And η is the detection efficiency. For symbols ± and ∓ represent the GHZ-like
state and cluster-like state, respectively. Where δ2(Ŝ2di(j) ) and δ2(Ŝ3di(j) ) (i, j = 1, 2, 3, 4) are the
variances of Stokes operators of beam d̂1−4.



Research Article Vol. 30, No. 4 / 14 Feb 2022 / Optics Express 6392

The inseparability criterion is a sufficient condition for entanglement. Duan, van Loock and
Furusawa proposed the bipartite and multipartite inseparability criterion for quadrature respec-
tively [31,42], and Lam’s group extend the bipartite quadrature entangled states inseparability
criteria to bipartite polarization entangled states [35]. In 2015, the tripartite inseparability
criterion of Stokes operators for optical beams was deduced [43]. According to the definition and
commutation relation of Stokes operators, we can obtain the GHZ-like quadripartite inseparability
criterion of Stokes operators for optical beams d̂G

1−4, which is characterized by the combination
of correlation variances IG

m (m = 1, 2, 3, 4):

IG
1 ≡

δ2(Ŝ2dG
2
− Ŝ2dG

3
) + δ2(g1Ŝ3dG

1
+ Ŝ3dG

2
+ Ŝ3dG

3
+ g4Ŝ3dG

4
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 1,

IG
2 ≡

δ2(Ŝ2dG
1
− Ŝ2dG

4
) + δ2(Ŝ3dG

1
+ g2Ŝ3dG

2
+ g3Ŝ3dG

3
+ Ŝ3dG

4
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 1,

IG
3 ≡

δ2(Ŝ2dG
1
− Ŝ2dG

2
) + δ2(Ŝ3dG

1
+ Ŝ3dG

2
+ g3Ŝ3dG

3
+ g4Ŝ3dG

4
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 1,

IG
4 ≡

δ2(Ŝ2dG
3
− Ŝ2dG

4
) + δ2(g1Ŝ3dG

1
+ g2Ŝ3dG

2
+ Ŝ3dG

3
+ Ŝ3dG

4
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 1,

(5)

where dG
1−4 represents the four GHZ-like optical modes, and gi (i = 1, 2, 3, 4) is the gain factor. If

any three of the above inequalities are violated simultaneously, the four optical modes are CV
GHZ-like quadripartite polarization entangled states.

In the same way, we can get the quadripartite criterion of the cluster-like state Stocks operators,
which is characterized by the combination of correlation variances IC

m (m = 5, 6, 7):

IC
5 ≡

δ2(Ŝ2dC
1
− Ŝ2dC

2
) + δ2(Ŝ3dC

1
+ Ŝ3dC

2
+ g7Ŝ3dC

3
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 1,

IC
6 ≡

δ2(Ŝ3dC
3
− Ŝ3dC

4
) + δ2(−g6Ŝ2dC

2
+ Ŝ2dC

3
+ Ŝ2dC

4
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 1,

IC
7 ≡

δ2(g5Ŝ3dC
1
+ Ŝ3dC

2
+ 2Ŝ3dC

3
) + δ2(−2Ŝ2dC

2
+ Ŝ2dC

3
+ g8Ŝ2dC

4
)

4
|︁|︁α2

c − α2
a
|︁|︁ ≥ 2,

(6)

where dC
1−4 represents the four cluster-like optical modes, and gi (i = 5, 6, 7, 8) is the gain factor. If

the above inequalities are violated simultaneously, the CV quadripartite cluster-like polarization
entangled states would be verified.

Since NOPAs and the detection systems are working in the same states, we assume that gi = g
(i = 1, 2, 3, 4) and r1−4 = r to simplify the calculation process. Thus, for GHZ-like state, the
combinations of correlation variances I1 = I2, I3 = I4; and I5 = I6 for cluster-like state. The
expressions of the optimal gains (gopt) for I1−4 can be obtained by calculating the minimum
values of the Eq. (5), as:

gG
opt1 =

η(ξ1 + ξ4)e4r + ηe2r(2ξ2ξ3 − ξ1 − ξ4) − 2ηξ2ξ3
ηξ4(ξ1 + ξ4)e4r + e2r(4 − 2ηξ2ξ3 − ηξ1 − ηξ4) + 2ηξ2ξ3

,

gG
opt2 =

(e4r − 1)ηξ2ξ3
2e2r(1 − ηξ2ξ3) + ηξ2ξ3(e4r + 1)

.
(7)

For cluster-like state, the expressions of g6, g7 are basically the same, expect the difference
between ξ1 and ξ4. For simplicity, we make ξ1 = ξ4 = ξ. Similarly for g5 and g8. By calculating
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the minimum value of equations (6), the dependence of the gopt on the squeezing parameters can
be obtained as follows:

gC
opt6(7) =

2ηξ2ξ3(e4r − 1)
4e2r + 2ηξ(1 − e2r) + ηξ2ξ3(e2r − 1)2

,

gC
opt5(8) =

2ηξ(e4r − e2r) − 4ηξ2ξ3 + ηξ2ξ3(e2r + 1)2

4e2r + 2ηξ(e4r − e2r) + ηξ2ξ3(e2r − 1)2
.

(8)

Here, we choose a relatively easy to be obtained experimental value r = 1.27, which means the
squeezing degree of the light is 11 dB, to characterize the dependency relationship between the
correlation variances Im (m = 1 − 7) and distribution distance L. Figure 2 show the dependence
of the combination of correlation variances Im (m = 1 − 7) on the distribution distance L in
optical fiber. The trace (i) corresponding normalized shot noise limited (SNL), while traces (ii),
(iii) and (iv) are for I1−4, I5,6 and I7, respectively. The main factors limiting the distribution
distance are the squeezing parameters r, optical transmission efficiency ξ1−4 in quantum server,
fiber transmission efficiency t, and the detection efficiency η . When both the detection efficiency
η and the transmission efficiencies ξ1−4 are equal to 0.98, the distribution distance of GHZ-like
polarization entangled state can reach 5.17 km, and the maximum distribution distance of
cluster-like state is 4.89 km. If the squeezing parameters r, optical transmission efficiency ξ1−4 in
quantum server, fiber transmission efficiency t, and the detection efficiency η are optimized, the
maximum distribution distance can be improved.

Fig. 2. Normalized curves of the combination of correlation variances Im versus distribution
distance L with the squeezing factor r = 1.27, gi = gopt and η = ξ1−4 = 0.98. Traces (i), (ii),
(iii) and (iv) are for SNL, I1−4, I5,6 and I7, respectively.

Figure 3 shows the dependence of the combination of correlation variances Im (m = 1 − 7) on
the squeezing factor r with different distribution distances L = 0 km, 2 km, 4 km, respectively.
Trace (i) is the corresponding SNL, dash and solid lines with different colour of traces (ii), (iii)
and (iv) in subgraphs (a), (c) are the theoretical fitting curve correspond to the curves of I1−4,7
with g = 1 and g = gopt as η = ξ1−4 = 0.98, respectively. Similarly, the dash lines and solid lines
(ii), (iii) and (iv) in subgraphs (b) are the theoretical fitting curve correspond to I5,6 with g = 2
and g = gopt.

Table 1 shows the dependence of minimum requirement of squeezing parameter r on distribution
distance L. When the value of distribution distance and gain factor are given, the minimum
requirement of squeezing parameter r means when squeezing parameter is larger than this
minimum required value r, the inseparability criteria for CV polarization states can be violated
and the distributions of multipartite entanglements can be realized. Some cases are shown
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Fig. 3. Normalized curves of the combination of correlation variances Im versus squeezing
factor r with different distribution distances when L = 4 km, L = 2 km, L = 0 km. Subgraph
(a) is for GHZ-like States, subgraph (b) and (c) are for cluster-like States. Trace (i) is the
SNL, trace (ii)-(iv) with different colour are the correlation variances I1−7 for different
distribution distances. Dash(solid) line in subgraph (a) and (c) means g = 1(gopt), while in
subgraph (b) means g = 2(gopt).

as follow: when g = 1 and r is larger than 0.217, 0.407, 0.76, respectively, the distribution
distances can be greater than 0 km, 2 km, 4 km for GHZ-like states. When optimized gain factor
is taken, the minimum required squeezing factor r is larger than 0, 0.311 and 0.733, respectively,
which correspond to the distribution distances greater than 0 km, 2 km and 4 km, respectively.
The optimization gain factor can effectively loose the requirement of squeezing factor. For the
cluster-like state with the optimized gain factors, squeezing factor r is larger than 0, 0.383 and
0.885, the inseparability criteria I5 and I6 with the transmission distances greater than 0 km, 2 km
and 4 km can be violated. When squeezing factor of r is larger than 0.157, 0.217 and 0.296, the
inseparability criterion I7 with the transmission distances greater than 0 km, 2 km and 4 km can
be violated. Thus, the minimum requirement of squeezing factor of r is larger than 0.157, 0.383
and 0.885, which guarantee the successful distribution of cluster state.

Table 1. Dependence of Minimum Requirement of Squeezing Parameter r on Distribution Distance
L.

Distribution Distance GHZ-Like Cluster-Like
L (km) I1−4 I5,6 I7

g = 1 g= gopt g= 2 g = gopt g = 1 g = gopt

0 r>0.217 r>0 r>0.373 r>0 r>0.217 r>0.157

2 r>0.407 r>0.311 r>0.566 r>0.383 r>0.266 r>0.217

4 r>0.760 r>0.733 r>0.932 r>0.885 r>0.334 r>0.296

4. Conclusions

In summary, we propose a scheme to deterministically distribute quantum entanglement among
four remote users in a network by polarization states. In a quantum network, a quantum server
prepares CV polarization entangled states, and distributes entanglement to multiple remote
users among whom quantum correlation is shared. Moreover, two kinds of quadripartite CV
polarization entanglement can be distributed by controlling the experimental parameters in the
beam splitter network. Additionally, this scheme can be combined with existing commercial
fiber telecommunication networks directly. The CV quadrature entanglement with much more
submodes has been prepared experimentally [41], the presented method can be directly extended
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to prepare polarization entangled states with more submodes and distribute quantum resources
for more remote users, which could take a step forward in studying potential applications in a
quantum communication network.
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