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Dipolar Bosonic atoms confined in external potentials open up new avenues for quantum-state
manipulation and will contribute to the design and exploration of novel functional materials. Here we
investigate the ground-state and rotational properties of a rotating two-component dipolar Bose-Einstein
condensate, which consists of both dipolar bosonic atoms with magnetic dipole moments aligned vertically
to the condensate and one without dipole moments, confined in concentrically coupled annular traps. For
the nonrotational case, it is found that the tunable dipolar interaction can be used to control the location of
each component between the inner and outer rings, and to induce the desired ground-state phase. Under
finite rotation, it is shown that there exists a critical value of rotational frequency for the nondipolar case,
above which vortex state can form at the trap center, and the related vortex structures depend strongly on the
rotational frequency. For the dipolar case, it is found that various ground-state phases and the related vortex
structures, such as polygonal vortex clusters and vortex necklaces, can be obtained via a proper choice of the
dipolar interaction and rotational frequency. Finally, we also study and discuss the formation process of
such vortex structures.

E
arly studies of Bose-Einstein condensate (BEC) in dilute quantum gases demonstrate that contact inter-
action between atoms is the origin of most phenomena that have been observed in BEC1. Typically, this
contact interaction is determined by the contact potential, which is characterized by the s-wave scattering

length. However, a subsequent and recent achievement of dipolar BEC, especially for the realization of large
magnetic moment(m $ 6mB with mB being the Bohr magneton) atomic species, such as 52Cr (6mB)2–5, 168Er (7mB)6,7,
and 164Dy (10mB)8,9, paves the way towards a new fascinating research area, namely, that of degenerate dipolar
gases.

The dipole-dipole interaction (DDI), is, contrary to the isotropic contact interaction present in condensates of
alkali-metal atoms, long ranged, anisotropic, and it can be both attractive and repulsive. Therefore, it is predicted
to induce novel ground-state properties and various interesting phenomena, making such system an ideal
candidate for exploring a variety of nonlinear phenomena10–15. Meanwhile, attribute to the Feshbach resonance
one can study the properties of a dipolar BEC for variable short-range contact interactions16–19. Recently, a spin-
orbit-coupled dipolar BEC is also proposed by using Raman processes20, exhibiting novel features. Furthermore,
progress towards the production of degenerate polar molecules with large electric dipole moments promises an
exciting future in this research field21,22.

To date, there have been a number of theoretical studies on the ground state and elementary excitations of the
dipolar gases in various external potentials, such as the harmonic trap23–25, optical lattice26–28, double-well29,
toroidal trap30–32, ring-shaped trap and so on33–36. In these settings, the experimental and theoretical studies have
shown that the static and dynamical properties of such systems are highly dependent upon the trap geometry.
However, as far as we know, there has been little work on the dipolar gases in concentrically coupled annular
traps.

To further explore the novel features caused by the DDI in this special trapping potential, in this report, we
study the ground-state and rotational properties of a two-component dipolar condensate trapped in such a type of
trap, taking into regard the contact interactions and DDI, together with the rotational frequency. This setting is
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modeled by the well-known coupled Gross-Pitaevskii (GP) equation
with an additional nonlocal term accounting for the dipolar inter-
action. The ground-state structures and associated quantum phase
transition, and rotational properties are investigated as a function of
the ratio of dipolar to intra-component contact interactions and of
the rotational frequency. We demonstrate that both the types of
phase separation and the critical rotational frequency for the vortex
formation are strongly influenced by the strength of the DDI. Due to
the competition between the dipolar interaction and rotation, diverse
exotic phases, such as polygonal vortex clusters and vortex necklaces
are also observed.

Results
Model and the coupled Gross-Pitaevskii equations for the system.
We consider a two-component dipolar BEC described by the macro-
scopic wave functions y1(r, t) and y2(r, t). The system contains
atoms with magnetic dipole moments (labeled as component 1)
and nonmagnetic atoms (labeled as component 2). In the mean-
field framework, the ground state and dynamics of such a system
can be well described by the following nonlocal coupled GP
equations,
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where mn and Vn are the atomic mass and external potential for
component n 5 1 or 2, L̂z L̂z~{i�h xLy{yLx
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is the z com-

ponent of the orbital angular momentum operator. The coefficients
Uii~4paii�h

2�mi, and U12~U21~2pa12�h
2�mR with mR 5 m1m2/

(m1 1 m2) being the reduced mass, denote the intra- and inter-
component interaction, which are also related the s-wave scattering
lengths aii between atoms in the same component and a12 between
atoms in different component, respectively. For simplicity, in this
report we assume that the two components have the same mass m1

5 m2 5 m and the same number of atom N1 5 N2. Furthermore, we
consider aij . 0, i.e., repulsive short-range contact interactions, and set
U11 5 U22 5 U (a11 5 a22 5 a). The external potential in the
following shape is assumed to be equal to these two components,
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where vz is the trapping frequency of the external potential along the z
axis, and in the x-y plane the trap can be written as37,38,
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where two (overlapping) parabolas in V(r) with frequencies v0 and v1

are centered at the positions with rH 5 R0 and rH 5 R1, respectively,
thus R0 and R1 indicate the two minima of such an external potential,
and v0 and v1 are the harmonic trapping frequencies for these two
different parabolas. The quasi-two-dimensional (2D) condensate is
obtained by adding a very tight trapping potential along the z-axis
(typically, vz/v 5 l is chosen to be equal to 100 in this report and the
wavefunction in the axial direction is in the Gaussian ground state),
which completely freezes out the degrees of freedom of the gases along
this direction, and hence gn1=�hvz and Vdd=�hvz . We note that the
quantum-tunneling-related effects in vertically and concentrically
coupled double-ring traps were studied in37,39–41, and the concentric
ring structures were extensively studied in topics of electronics in
quantum rings and in semiconductor heterostructures42.

In order to ensure that the outer ring is more tight and the product
of the ‘‘width’’ of each annulus times the radius of each annulus to be
comparable to each other, we set v1 . v0. It is noteworthy that the
system will show similar behavior for different values choices of R0,
R1, v0, and v1, as long as v1 . v0. Thus, without loss of generality, we

special to the case with R0 5 2a0 and R1 5 4a0 with a0~ �h= mvð Þ½ �1=2

being the oscillator length, v 5 v0/4, and v1/v0 5 5/4. Finally, after
integrating over the profile along z axis, the corresponding effec-

tively 2D contact-like interaction becomes gij~Uij
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being the oscillator length in the z direction, which can

be attributed to the compression along the z axis.
The last term of the first equation of Eq. (1) describes the effect

of the nonlocal DDI, and has the form Vdd~
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where for magnetic dipoles Cdd 5 m0m
2/(4p) (for electric dipoles we have

Cdd 5 d2/4pe0 with d being the electric dipole moment) with m0 and m
being the magnetic permeability of vacuum and the magnetic dipole
moment of the atom, respectively. h is the angle between the polariza-
tion axis and the vector r between the positions of the two dipoles (that
is, cos h 5 n ? r/jrj). As an initial effort to understand the rich physics of
such a system, in this report we try to simplify the situation by con-
sidering a special case where the effective dipoles are polarized along the
rotation axis, which is also the symmetrical axis of the trap43,44.

It is noteworthy that the tunable parameter, a 5 (3 cos2 Q 2 1)/2,
can be changed continuously from 21/2 to 1, by means of rotating
orienting field. In this case, the dipoles are rapidly rotated around the
polarized axis z, forming a tunable angle Q. Here we note that the
rotation frequency must be much smaller compared with the Larmor
frequency vLarmor, but much larger than the trapping frequencies;
hence, the dipoles can adiabatically follow45. This tunability provid-
ing the possibility to change the dipolar interaction from repulsive to
attractive, and was used to investigate the two-dimensional bright
soliton in dipolar BECs43. It also becomes crucial in the control of the
types of phase separation of two-component dipolar BEC in con-
centrically coupled annular traps, as discussed below. Figure 1 shows
schematically the physical system under consideration.

For dipolar condensate with also contact interactions, it is useful to
introduce a dimensionless parameter to characterize the relative
strength of the dipolar and s-wave interaction,

edd:add=as~
m0m2m

12p�h2as
, ð5Þ

where as is the s-wave scattering length for contact interaction of
component 1, hence the ‘‘dipole length’’ add can be defined as
add~Cddm

�
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Cdd

.
gazð Þ. Here we want to note that for

edd , 1, the short-range part of the interparticle interaction dom-
inates and DDI provides only corrections. This case corresponds to a
stable BEC and was studies in earlier experiments with 52Cr BEC (edd

< 0.16), in which the correction due to magnetic DDI between 52Cr
atoms was measured to be of the order of 0.1. Also, this value has been
further increased to edd^1 by using a Feshbach resonance to reduce
as

4. Very recently, there has been the exciting achievement of the
condensation of hereto-nuclear molecules in their ground rovibra-
tional state, which can have large electric dipole moments, leading to
very strong electric dipole interactions46.

Ground state and phase transition for nonrotational case. As is
well known, by varying the contact interactions, a two-component
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BEC containing only repulsive contact interactions and loaded in a
concentric double annular trap shows a series of ground-state phases,
such as azimuthal and radial phase separation, together with the
familiar phase coexistence. In what follows we first perform a series
of numerical experiments to study the effects of dipolar interaction on
the ground-state structures and the associated phase transition for the
nonrotational condensate. Without loss of generality, we select three
typical sets of parameters for the contact interactions: (i) g 5 5, g12 5

55, (ii) g 5 15, g12 5 55 and (iii) g 5 60, g12 5 55 to reveal the effects
of modifying the strength of the dipolar interaction37,38.

Figure 2 shows the typical ground-state density profiles of a non-
rotating two-component dipolar condensate for fixed contact inter-
actions g 5 5 and g12 5 55, but for varied dipolar interactions. In the
absence of DDI, the small value of the intra-component interaction
cannot compensate for the stronger confinement of the outer ring;
hence the two components occupy mainly the inner ring and the
system is close to being quasi-one-dimensional and shows azimuthal
phase separation, as shown in Fig. 2(a). On decreasing edd to 20.3, we
find a phase transition between azimuthal phase separation and
radial phase separation. That is, the component 1 still stays in the
inner ring due to the net attractive dipolar interaction, while com-
ponent 2 is pushed out toward the outer ring due to the effectively
repulsive interaction between these two components. Typical density
profiles for the two components are shown in Fig. 2(b). However, if
edd is positive, the situation is the opposite. As shown in Fig. 2(c) for
edd 5 0.2, we find that component 1 occupies mainly the outer ring,
while the inner ring for the other component. Actually, the explana-
tion of the above phenomenon lies in the well-known fact that the
interactions are known to be the predominant factors which can
affect the ground-state density profile of a two-component condens-
ate. The DDI, which is purely repulsive in this situation, drastically
increases or decreases the effectively contact-like interactions. Here
we want to note that the result still holds for larger value of edd.

Increasing the intra-component interaction g to 15, the coupled
system is initially in radial phase separation, as shown in Fig. 3(a).
Interestingly, in this case if we decreases edd to 21.23, we find an
exchange of the location of each component, as shown in Fig. 3(b).
On further decreasing the value of DDI, such as edd 5 21.46, the
dipolar component is further compressed into a small droplet due to
the strongly dipolar interaction. As a result, the rotational symmetry
is broken, as shown in Fig. 3(c). For the positive value of DDI, we
cannot observe a similar structural change even for larger positive edd

compared with the former case. This can be understood by the fact
that the outer ring potential can always trap component 1 although
its repulsive interaction is increasing.

Figure 4 shows the situation for fixed contact interactions g 5 60,
g12 5 55, but for varied dipolar interactions. In this case, the system
is initially in phase coexistence. A decrease of the DDI leads to the
accumulation of dipolar atoms in the inner ring, which is similar with
the radial phase separation case. Typical examples are shown in
Figs. 4(b) and 4(c) for edd 5 20.34, 20.87, respectively. However,
if we change edd from negative to positive, the system still stays in
phase coexistence with no phase transition occuring, as shown in
Fig. 4(d) for edd 5 0.8. Due to the repulsive nature of the DDI, part of
the nondipolar atoms are repelled to the outer ring, as compared with
Fig. 4(a).

Given the results given above, we thus conclude that the tunable
dipolar interaction can be used to control the types of phase separa-
tion, and can also lead to spontaneous rotational symmetry breaking.
This behavior is in a sense reminiscent of the symmetry breaking and
self-trapping of a dipolar BEC confined in a double-well potential29, if
the inner or outer rings is regarded as the left or right well of the
double-well potential. Finally, we have checked other values of DDI,
and the results are qualitatively similar to the above phenomenon.
Thus, the results presented above are representative of the possible
ground state phases and the related phase transitions.

Figure 1 | Schematic illustration of the physical system under consideration. Here component 1 (yellow) has a dipole moment, while component 2

(purple) hasn’t. The dipole moment is polarized by a rotating external field B, forming an angle Q with the z axis. The angle between the effective

polarization axis and the vector between the positions of the two dipoles is set as h 5 p/2. All the atoms move on the x-y plane with an angular frequencyV,

which is along the z axis.
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Rotational properties. Another important issue that has always
attracted much interest in the field of quantum gases is the super-
fluid character of the condensate. The presence of quantized vortices
is a clear signature of superfluidity30. At first sight, the rotational pro-
perties of a multi-component gas may look like a trivial generalization
of the case of a single component. However, as long as the different
components interact and exchange angular momentum, the extra
degrees of freedom associated with the motion of each component
is not at all a trivial effect. It is found that vortex lattices in single
rotating atomic BEC with dipole interaction can display the trian-
gular, square, stripe, and bubble phases47,48. In a two-component
system, the vortex states of square, triangular, double core and ser-
pentine lattices are showed according to the intercomponent coupling
constant and the geometry of trap49,50. In what follows we first
consider the nondipolar case with varied rotational frequency for
fixed contact interactions, and then move to the dipolar one.

Vortex structure for nondipolar condensate. Figure 5 shows the
typical ground-state density and phase distributions of a two-
component nondipolar condensate for fixed contact interactions, but
for varied rotational frequencies. Since g11 5 g22 5 g is assumed, the
two-component Bose gas behaves like a one-component one. As a
result, only one component is shown in this figure. In our simula-
tions, we find that there exists a critical value of Vc, above which
vortex state can first forms at the trap center. For the parameters
used here, we find Vc < 0.55, as shown in Fig. 5(b) [Fig. 5(a) is
plotted for comparison]. From this figure, we can observe that when
the rotational frequency approach the critical value, four vortices
appear at the trap center, forming a necklace structure. Moreover,
we also have examined other contact interaction parameters, and

find that the value of the critical rotational frequency decreases
with the increasing of the strength of contact interactions. Finally,
for the vortices located at the center of the trapping potential, we call
them ‘‘hidden’’ vortices, which were previously studied in a rotating
double-well potential51,52. Due to the central barrier, the amplitude of
the density of the wavefunction at this region is almost negligible,
thus these hidden vortices can not be directly seen from the density
distribution. We note that with a little increase of the rotational
frequency, no changes made to such vortex structure.

If we increase the rotational frequency V to 0.68, vortices begin
accumulate at the low-density region between the inner and outer rings,
and also form a necklace structure. As is well -known, it is energetically
favorable for the vortices to site in the low-density regions. Hence we
first observe the formation of vortices at such region. Typical density
and phase distributions of such case is shown in Fig. 5(c). By further
increasing the strength of the rotational frequency, as shown in Fig. 5(d)
for V 5 0.7, it is interesting to find that eight visible vortices are formed
at the outer ring and four vortices are located at the region between two
rings. It is necessary to point out the following: (i) the previous four
hidden vortices located at the center of the trapping potential gradually
penetrate the central barrier and arrange themselves in a ring between
the inner and outer rings; (ii) the previous four vortices located between
the inner and outer rings also penetrate the potential and eventually
arrange themselves in a ring with the other four new nucleated vortices
at the outer ring. These phenomena can be understood by the fact that
the increases of rotational frequency enhances the centrifugal force, and
more and more atoms are repelled to the outer ring. Its also be verified
by our real-time propagation of the wavefunction.

For even higher rotational frequencies, such as V 5 0.8, 0.9 shown
in Figs. 5(e) and 5(f), more and more visible vortices are nucleated at
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the region between both rings, and form a necklace structure. More
specifically, there are 12 and 16 visible vortices for Figs. 5(e) and 5(f),
respectively. Moreover, there is a high-order hidden vortices located
at the trap center in Fig. 5(e). From the above analysis, it is not
difficult to speculate that such vortices will gradually penetrate the
barriers and evolve into the visible one with increases of the rota-
tional frequency [see Fig. 5(f)].

Vortex structure for dipolar condensate. Next we consider the
effects of DDI on the rotational properties of the dipolar condensate.
In this case, due to the presence of DDI, the two components no longer
show the same behavior. To highlight the effects of DDI and rotation,
the vortex structures are explored through tuning the strength of DDI
and the rotational frequency of the system. Our numerical results show
that the density distributions and vortex structure of the system are
strongly dependent on the strengths of both DDI and the rotating
frequency.

Interestingly, we observe that vortices and its related vortex clus-
ters can be induced by the repulsive DDI even the rotational fre-
quency is below the critical one for the nondipolar case [see Fig. 6(a)
for V 5 0.54 and edd 5 1.2]. Meanwhile, the ground-state phase of
the system changes from phase coexistence to radial phase separa-
tion, as shown in the last column of Fig. 6(a) for the density difference
of these two components. Furthermore, we observe the formation of
interlaced honeycomb vortex structure for each component, which
can also be understood by the similar argument discussed for the
nondipolar case: increasing of the strength of DDI leads to the
increases of the repulsive intra-component interaction, but to the
decreases of the critical rotational frequency.

Fig. 6(b) shows the similar phase transition and the octagonal
vortex cluster structure for such a system, but for a higher rotational
frequency V 5 0.66 with edd 5 0.9. Compared with the former case,

we observe same phase transition (from phase coexistence to radial
phase separation), but different vortex cluster (interlaced octagonal
vortex cluster in present case), which can be attributed to the higher
rotational frequency. Here we want to emphasize that in these two
cases, the nucleated vortices form a regular polygonal structure, no
matter interlaced honeycomb or octagonal vortex clusters. In addi-
tion, we also have examined the vortex structures for other DDI
parameters in these two cases, and found the similar vortex structure.

Figs. 6(c)–6(d) plot the density and phase distributions for a more
higher fixed rotational frequency V 5 0.7. It is found that for a
fixed rotational frequency, the system exhibits different ground-state
phases for different strengths of DDI. Typical examples are shown in
Fig. 6(c) for edd 5 0.3 and Fig. 6(d) for edd 5 0.8, where the system is
in azimuthal and radial phase separation, respectively. The different
ground-state phases are also reflected in the density difference of
such two components, which is shown in the last column of each
plot. Moreover, the nucleated vortices form other interesting vortex
structures, such as interlaced vortex necklace. Furthermore, by com-
paring Figs. 6(c) and 6(d), we further find the number of vortices
increases with the strength of DDI.

Given the above analysis, we conclude that the DDI can be used
not only to control the phase separation, but also to induce various
polygonal vortex clusters and vortex necklaces. Finally, we note that
it becomes increasingly difficult to find the lowest-energy stable
structure when we further increase the rotational frequency. We plan
to study this problem in greater detail in a future work.

Discussion
We now show that 52Cr (164Dy or 168Er) is a candidate for observing
the described effects in experiment. In this case, dipolar component 1
and nondipolar component 2 consist of states with spin projections
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Figure 5 | Typical vortex structures of a two-component nondipolar BEC. Here the upper plots [(a1)-(f1)] show the densities of either one component

of the system (the marked dots denote the locations of the vortices), and the lower plots [(a2)-(f2)] indicate the corresponding phases. The aspect ratio of

the potential l 5 100, and the contact interactions are fixed as g 5 100, g12 5 150. The rotational frequencies are set as (a)V5 0.54, (b)V5 0.55, (c)V5

0.68, (d) V 5 0.7, (e) V 5 0.8 and (f) V 5 0.9, respectively. Note that, without dipolar interaction, these two components act like one component

condensate, hence we only plot one component, either 1 or 2. The field of view is 6.4 3 6.4 in units of a0.
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mJ 5 2J and mJ 5 0, respectively. The typical particle number is

about 103–105, and the unit length a0~ �h= mvð Þ½ �1=2
~1mm, which is

the typical unit of length in BEC experiments. Thus, the typical radii
of these two rings are R0 5 2 and R1 5 4 mm, respectively, the typical
distance between the two rings is 2 mm, and the typical atom density
is about 1.2 3 1012. The next step is to tune the two-body interactions
between atoms, including the usual contact interactions and the DDI.
For the nondipolar case, in realistic physical systems, the interactions
between atoms can be controlled by modifying atomic collisions,
which are experimentally feasible due to the flexible and precise
control of the scattering lengths achievable by magnetically tuning
the Feshbach resonances. For the dipolar component 1, tuning the
dipolar interaction must be combined with a reduction of the contact
interaction via the optical Feshbach resonances43,53 [see ref. 53 for
detailed parameter values]. Within current experimental techniques,
the static, in situ sizes for a trapped condensate can be experimentally
realized. However, as far as we know, it may be difficult to observe the
locations of vortices in situ due to its small sizes, but it would become
easier to observe in time-of-flight free expansion. Most recently, the
signs of solitonic vortices were observed by Donadello et al. by using
a method of twisted densities54. Moreover, the vortex gyroscope
imaging method was used by Powis to simultaneously detect the
locations and signs of multiple quantized vortices in a BEC55.

In summary, within the frame of mean-field theory, we have inves-
tigated the ground-state and rotational properties of a rotating two-
component dipolar BEC confined in concentrically coupled annular
traps. We identify the states where the two components coexist, or
separate, either radially or azimuthally, as a function of the ratio of

dipolar to intra-component contact interactions, and of the rota-
tional frequency. Our results show that the tunable dipolar inter-
action can be used to control the location of each component, and
to induce desirable phase transition among these three different
ground-state phases. We also discuss the vortex structure of such a
two-component system for nondipolar and dipolar cases, and find
various interesting vortex structures, such as interlaced honeycomb
and octagonal vortex clusters, as well as vortex necklaces. These
results show that the DDI has considerable effects on the ground
state and vortex structures of condensate of the alkali metal atoms
even in concentrically coupled annular traps. Such tunable dipolar
interaction provides a powerful tool for exploring the rich physics of
dipolar degenerate quantum gases.

A natural extension of this report is to try to generalize the ideas
presented herein to the case where the dipoles are aligned along some
arbitrary and tunable direction, and to the spinor condensate. More
specifically, in the former case, the anisotropic nature of the dipolar
interaction can cause novel properties, and more complicated pat-
tern can be formed. For the latter case, the interplay between the
dipolar and the spin-exchange interactions can induces a rich variety
of quantum phases that exhibit spontaneous magnetic ordering in
the form of intricate spin textures.

Methods
Contrary to the usually employed GP equation with short-range contact interactions,
the evaluation of the integral term in the first equation of Eq. (1) deserves special
attention56–58. The integral over the dipolar potential is evaluated in Fourier
(momentum) space by a convolution identity requiring the Fourier transformation of
the dipolar potential and the condensate density. More specifically, the Fourier

ψ ψ θ θ ψ ψψ ψ

Figure 6 | Typical vortex structures of a two-component dipolar BEC. The aspect ratio of the potential l 5 100, and the contact interactions are fixed as g

5 100, g12 5 150. The rotational frequencies and dipolar interactions are set as (a) V 5 0.54, edd 5 1.2, (b) V 5 0.66, edd 5 0.9, (c) V 5 0.7, edd 5 0.3

and (d) V 5 0.7, edd 5 0.8, respectively. In the density distribution, the marked dots and circles denote the locations of the vortices for dipolar and

nondipolar components, respectively. Note that the fourth and fifth columns are the phases of dipolar and nondipolar condensates, respectively, and the

sixth one is the density difference of such two condensates. The field of view is 6.4 3 6.4 in units of a0.
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transformation of the dipolar potential is evaluated analytically, and the remaining
Fourier transformation are evaluated numerically by using a fast Fourier trans-
formation algorithm. Employing the convolution theorem, the Fourier transform of
the dipole potential, Vdd~ 4p=3ð Þ 3k2

z

�
k2{1

� �
, and integrating over the z direction,

we arrive at the effective nonlocal GP equation for dipolar component 1:

i�h
Ly1

Lt
~ {

�h2+2

2m1
zV1zg y1j j2zg12 y2j j2{VLz

�

z
4
ffiffiffi
p
p

aCdd

3
ffiffiffi
2
p

az
|

ð
d~kr

2pð Þ2
ei~kr

:r~n ~kr


 �
h2D

krazffiffiffi
2
p

� �#
y1,

ð6Þ

where ~n is the Fourier transform of n(r) 5 jy1(r)j2, and h2D kð Þ~2{3
ffiffiffi
p
p

kek2
erf c kð Þ,

with erfc(x) the complementary error function. The energy per density functional in
the rotating frame has the standard GP form but with a new term, Edip, which is the
interaction energy due to the magnetic DDI,

E y1,y2½ �~EkinzEintzEtrapzErotzEdip

~

ð
�h2

2m
+y1j j2z +y2j j2
� �

dr\z

ð
U12 y1j j2 y2j j2dr\

z

ð
U
2

y1j j4z y2j j4
� �

dr\z

ð
Vtrap y1j j2z y2j j2

� �
dr\

{V

ð
y�1Lzy1zy�2Lzy2

� �
dr\z

ð
1
2

Vdd y1j j2dr\:

ð7Þ

The ground-state solutions can be obtained from the minimization of the total energy
(7). In our numerical calculations, we adopt the split-step method within an ima-
ginary-time propagation (t R it) approach. The minimization procedure continues
until the fluctuation in the norm of the wave function becomes smaller than 1027. We
also have checked our numerical results with different initial wave functions,
including the ground state of the system trapped in a stationary harmonic potential
and a randomly generated one. The real ground-state solutions are obtained by
comparing the computed energies. Finally, it is convenient to introduce the scales
characterizing the trapping potential: the length, time, and wave function are scaled as

x~a0~x, y~a0~y, r\~a0~r\ , R1~a0 ~R1, R0~a0 ~R0, t~
~t
v

and yi~

ffiffiffiffi
N
p

a0

~yi , respect-

ively, with a0~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mv

p
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