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Active Learning Approach to Optimization of Experimental Control

Yadong Wu(吴亚东)1, Zengming Meng(孟增明)2, Kai Wen(文凯)2, Chengdong Mi(米成栋)2,
Jing Zhang(张靖)2*, and Hui Zhai(翟荟)1*

1Institute for Advanced Study, Tsinghua University, Beijing 100084, China
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics,

Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

(Received 28 July 2020; accepted 24 August 2020; published online 29 September 2020)

We present a general machine learning based scheme to optimize experimental control. The method utilizes the
neural network to learn the relation between the control parameters and the control goal, with which the optimal
control parameters can be obtained. The main challenge of this approach is that the labeled data obtained
from experiments are not abundant. The central idea of our scheme is to use the active learning to overcome
this difficulty. As a demonstration example, we apply our method to control evaporative cooling experiments
in cold atoms. We have first tested our method with simulated data and then applied our method to real
experiments. It is demonstrated that our method can successfully reach the best performance within hundreds of
experimental runs. Our method does not require knowledge of the experimental system as a prior and is universal
for experimental control in different systems.
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Machine learning can find broad applications in
physics research. One of the major advantages of
machine learning algorithms is their excellent perfor-
mance for optimization. On the other hand, opti-
mization is one of the most common tasks in physical
experiments, as experimentalists always need to ad-
just control parameters to reach the best performance.
Therefore, the advantage of the machine learning al-
gorithms fits perfectly the demand of experiments in
physical sciences. In recent years, there are grow-
ing interests in applying various kinds of machine
learning based algorithms for optimizing experimen-
tal controls.[1−25]

Here we focus on a class of experimental control
problems as described in the following. First of all,
the entire control process can be quantified. All the
control parameters, say, denoted by 𝛼 = {𝛼1, . . . , 𝛼𝑛},
can be quantitatively determined. Once these con-
trol parameters are fixed, the performance ℱ is also
quantitatively determined and measuring ℱ is repeat-
able. Secondly, the goal of the experimental control is
unique, which is to optimize the performance ℱ . In
other words, one needs to reach either the maximum
or the minimum of ℱ . Thirdly, if the experimental
process is not complicated and is well understood the-
oretically, the function relation between the control
parameters 𝛼 and the control output ℱ can be cal-
culated theoretically, and the theoretical simulation
can be used to guide the experimental optimization.
However, for many cases as we consider here, because

of various complicated facts in reality, it is difficult
to reliably determine the function theoretically, and
in some cases, it is hard even to determine its gen-
eral functional form. Therefore, for each given 𝛼, we
can only determine the performance by performing ex-
perimental measurements. Finally, the experimental
measurements require resources. In many cases, it is
possible to carry out hundreds of experimental runs
but it is impossible to obtain large datasets including
hundreds of thousands of data.

Since there exists a deterministic function relation
between 𝛼 and ℱ , it is conceivable that we can em-
pirically determine this function by fitting the data.
Hence, the neural network (NN) shows its advantage
here. Because of the great expressibility of the NN,
a sufficiently deep NN can express a general function
without assuming its explicit form as a prior. There-
fore, a natural idea is to fit the functional mapping
between 𝛼 and ℱ with an NN. Then, with this NN,
we can find out the extreme of this function that gives
rise to the optimal control parameter. However, there
is a main obstacle to this approach. In order to learn a
multi-dimensional function, usually one needs a lot of
data. The number of data that can be obtained from
experiments limits the use of the NN based approach.
In other words, it is a major challenge of applying
NN based algorithms to optimize experimental con-
trol that the total numbers of labeled data are not
abundant.

However, on the second thought, one realizes that
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we actually do not need to fit the entire function in
order to determine its extreme. In fact, we only need
to know the function in the neighborhood of its ex-
treme. Therefore, we only need to measure data in
this neighborhood regime and the NN also only needs
to fit the data accurately in this regime, with which
we are able to determine the optimal parameters. This
can certainly significantly reduce the demand of data.
However, it comes to a “paradox”. On the one hand,
to reach our goal with the minimal number of data,
we should try to sample the data points nearby the
extreme. On the other hand, since our goal is to find
out the extreme, we do not know where the extreme
regime locates before we reach our goal.

In this work, we develop an active learning
approach to solve this paradox. Active learn-
ing is a stratagem that guides sampling data
iteratively.[26,27] In recent years, active learning
has found more and more applications in physical
science,[2−4,7,8,14,20−25,28−43] especially in computa-
tion problem for material science and chemistry.[35−43]

In the following, we will first describe our general ac-
tive learning scheme for controlling experiments, and
then as an example, we apply our method to optimize
evaporative cooling experiments in cold atomic gases.

1. Training a NN to fit data

2. Use this NN to predict F on
M numbers of a

3. Select out m1 numbers of a
with best oresiction F

0. Measure actual F for m0

number of a
L0={(ai,F i), (i=1SSSm0)}

Adding L1 to
training set

4. Measure actual F for m1

number of a
L1={(ai,F i), (i=1SSSm1)}

Fig. 1. Active learning protocol for optimizing exper-
imental control. Here NN represents a “neural network”.
𝑀 is a large number such as a few hundred thousands or a
few millions, and both 𝑚0 and 𝑚1 are small numbers such
as a few tens. The circle with arrow indicates iteration of
steps 1–4 until it converges.

General Scheme. We present our general scheme
in Fig. 1. The basic idea is to first train an NN with
a small number of randomly sampled labelled data
and then use this NN to guess where the possible ex-
treme regime locates. This estimation guides further
query of actual data, with which one refines the fitting
nearby the extreme. This process continues iteratively
until the prediction of the NN and the actual measure-
ments converge in the neighborhood of the extreme.
More concretely, the entire process contains the fol-
lowing five steps:

(0) Initially, we randomly generate a 𝑚0 number
of different control parameters 𝛼, and experimentally
measure the performance ℱ for each control. Here

𝑚0 is a small number usually taken as a few tens.
This generates an initial dataset ℒ0 = {(𝛼𝑗 ,ℱ 𝑗), 𝑗 =
1, . . . ,𝑚0}. Especially, we shall pay attention to a
sub-set ℒ̄0 ⊂ ℒ0, which contains the �̄�0 (�̄�0 < 𝑚0)
number of cases with the best performance.

(1) We design an NN and train it with the ini-
tial dataset ℒ0. Since the number of data is small,
the training results can depend on the initialization.
Therefore, we run different initializations and choose
one with the smallest loss. Especially, we should pay
special attention to the loss on the sub-set ℒ̄0 when
we choose an NN structure and an initialization.

(2) We use the trained NN to make predictions on
a very large dataset with 𝑀 different control parame-
ters 𝛼. Here 𝑀 is a large number, say, a few hundred
thousands or a few millions. When sampling these pa-
rameters, we simultaneously take two different kinds
of probability distributions. Part of the parameters
are sampled with a probability obeying the Gaussian
distribution around the parameters in ℒ̄0, and part of
the parameters are sampled with a probability obey-
ing the uniform random distribution in the entire pa-
rameter space. The latter is important to ensure that
we will not miss other possible extremes that are not
covered in the initial dataset. The ratio between two
different ways of sampling can be adjusted as the pro-
cess continues. The weight on the former can increase
in the later stage when the results gradually converge.

(3) We select out the 𝑚1 number of control param-
eters among all 𝑀 control parameters explored by the
NN in step 2, and these 𝑚1 numbers of control pa-
rameters have the best performance ℱ predicted by
the NN. Here, again 𝑚1 is a small number of a few
tens. However, we should keep in mind that since the
NN is trained with a small dataset ℒ0, the predication
of this NN may not be accurate.

(4) We experimentally measure the actual perfor-
mance of these 𝑚1 numbers of control parameters pro-
posed by the NN in step 3, and the measurements re-
turn the actual performance ℱ . To quantify whether
the NN converges in the neighborhood of the extreme,
we compare the actual value with the prediction of NN
for a few best ones. If not converged, we will add this
𝑚1 number of dataset ℒ1 = {(𝛼𝑗 ,ℱ 𝑗), 𝑗 = 1, . . . ,𝑚1}
into the training set ℒ0 and train the NN again.

It forms a circle from step 1 to step 4, and each
of such circles is known as an Epoch. We continue
the circle until the prediction of NN and the actual
measurements agree with each other. Note that here
we do not require the agreement in the entire param-
eter regime, and only require the agreement in the
regime around the extreme. Suppose we can reach
convergence in a few tens of epochs and the number
of epochs is denoted by 𝒮. The total number of data
required is 𝑚0 +𝑚1×𝒮, which is of the order of a few
hundreds. In this way, we can reach the optimal ex-
perimental control with a few hundreds of runs. Here
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we remark that in this algorithm, the NN needs to
sample a huge number of possible control parameters
at step 3 of each epoch, which causes computational
resources of the NN. That is to say, this algorithm
makes a trade-off between experimental resources and
computational resources.

Here we should also remark that this algorithm is
reminiscent of how human reaches an optimal control.
Suppose a new student Bob has no prior knowledge of
the experiment that he will work on and unfortunately
he also has no help from others. What Bob can do is
to first randomly try some controls. With this random
tries, he builds up some intuitions in his mind. This
intuition is an analogy of the first NN trained by the
initial dataset. This intuition tells him which regime
is probably more favorable for reaching optimal con-
trol and which regime may be unfavorable. Next, he
will try more experiments in the favorable regime and
fewer experiments in the unfavorable regime. These
further tries correct his intuition and make it more
and more accurate. When Bob has a good intuition
about his experiment, it means that the prediction of
his brain agrees very well with the actual measure-
ment, at least in the regime with good performance.

Example: Evaporative Cooling. As a demonstra-
tion example, we apply our method to optimize evap-
orative cooling for cold atoms. Evaporative cooling is
a universal scheme to reach quantum degeneracy for
cold Bose and Fermi atomic gases.[44−55] Cold atoms
are confined in a trap created by either magnetic fields
or laser fields. The basic idea is to reduce the trap
depth as a function of time, such that atoms with
the kinetic energy higher than the trap depth will es-
cape from the trap. Therefore, the averaged kinetic
energy of the remaining atoms will be reduced such
that the temperature will be lowered after the system
rethermalizes. Nevertheless, we should notice that the
evaporative cooling pays the price of loss atoms in or-
der for decreasing temperature. When the number of
atoms is reduced, the characteristic temperature scale
for quantum degeneracy also decreases. This charac-
teristic temperature scale is the Bose–Einstein con-
densation temperature 𝑇c for bosons and the Fermi
temperature 𝑇F for fermions. To characterize quan-
tum degeneracy, what really matters is how small the
ratio 𝑇/𝑇c or 𝑇/𝑇F at which one can achieve with the
evaporative cooling.

Suppose we start with a fixed initial trap depth
𝐾0 and an initial atoms number, what one can con-
trol during the evaporative cooling process is how the
trap depth 𝐾 changes as a function of time 𝑡. We
parameterize the 𝐾(𝑡) trajectory as follows:

𝐾(𝑡) = 𝐾0

{︁
1 +

𝑙∑︁
𝑖=1

[︁
𝑎𝑖

(︁ 𝑡

𝑡f

)︁𝑖

+ 𝑏𝑖

(︁ 𝑡

𝑡f

)︁1/(𝑖+1)]︁}︁
, (1)

with 𝑡 ⊂ [0, 𝑡f ]. Here the control parameter 𝛼 =
{𝑎𝑖, 𝑏𝑖, (𝑖 = 1, . . . , 𝑙), 𝑡f}. The evaporative cooling is

therefore a typical optimization problem as described
above. We need to find the best control parameter
𝛼, and the control goal is to reach the lowest 𝑇/𝑇c

or 𝑇/𝑇F. In the following, we will apply the active
learning scheme described above to optimize the evap-
orative cooling process. We note that there have al-
ready been several works using machine learning based
methods to optimize evaporative cooling,[22−25] but
their methods are different from ours. Some of these
works used Bayesian optimization, in which learning
and querying were also carried out iteratively. How-
ever, in the Bayesian optimization, the sampling is
guided by the joint Gaussian probability of the con-
trol parameters and control goal after training, while
in our method, the sampling is guided by the possible
extreme predicted by the neural network.

Simulated Data. Since the evaporative cooling pro-
cess is a complicated non-equilibrium dynamics of an
interacting many-body system, it is difficult to accu-
rately simulate this process theoretically. However,
there have been efforts taken to understanding the
evaporative cooling process, for instance, based on
the quantum kinetic equations.[55−57] Here, to test
our method, we first use the theoretical simulation
of the evaporative cooling of two-component fermions
introduced in Ref. [56] and compute the final 𝑇/𝑇F for
each given evaporation curve of Eq. (1). Hence, we use
𝑇/𝑇F as ℱ , and the goal is to find the smallest 𝑇/𝑇F.
We follow the general scheme discussed above, except
that the experimental measurements are replaced by
numerical simulation. Here we choose 𝑚0 = 𝑚1 = 10.
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Fig. 2. The lowest 𝑇/𝑇F as a function of training epoch
𝒮. The horizontal axis is the number of epochs. The red
point is the lowest 𝑇/𝑇F in all 𝑚1 control trajectories pro-
posed at each epoch, and the blue point is the average of
the lowest five 𝑇/𝑇F. The error bar indicates the variance
of this average. Here we use the simulated results with
theory provided by Ref. [56] to determine temperature.

As we show in Fig. 2, we plot 𝑇/𝑇F as the low-
est temperature, or averaged over the lowest five tem-
peratures, among the actual values of all 𝑚1 control
trajectories proposed by the NN at each epoch. One
can see that the temperature 𝑇/𝑇F decreases and the
variance among the five lowest temperatures is also
suppressed as the training epoch increases. Eventu-
ally it achieves the lowest temperature 𝑇/𝑇F ∼ 0.03.
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In Fig. 3, we compare our best trajectory with the
one found in Ref. [56]. Holland et al.[56] proposed a
classical method to optimize the trajectory that max-
imizes the kinetic energy removed per atom from the
system at each small time interval. Figure 3 shows
that although at the end of the evaporation, both two
methods yield similar 𝑇/𝑇F and atom number, these
two trajectories are quite different, and the evapora-
tion time for the trajectory obtained by our method is
only about half of the trajectory obtained in Ref. [56].
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Fig. 3. The trap depth 𝐾/𝐸F (a), the temperature 𝑇/𝑇F

(b), the total atom number 𝑁 (c), and the chemical po-
tential 𝜇/𝐸F (d) as a function of evaporative cooling time.
The blue lines are the optimal control found in Ref. [56]
and the red lines are the optimal control found by the
active learning scheme.

Experimental Data. With the success in the test
with simulated data, we now apply our method to real
experiment. In this case, we consider evaporative cool-
ing of 87Rb Bose gas, and the experimental apparatus
was described in Refs. [58–60]. Though one can mea-
sure temperature in cold atomic gases, it is more direct
to measure the phase space density. More precisely,
since the density of cold atomic gases is measured by
absorption imaging of laser after the time of flight, a
dimensionless quantity called the optical density (OD)
is used for quantifying the phase space density.[61,62]
Larger OD means higher phase space density, and the
higher the OD, the lower the 𝑇/𝑇c. Hence, we take
the OD as ℱ and the control goal is to maximize the
OD after a sufficiently long time of flight. Here we
take 𝑚0 = 𝑚1 = 20.

The results are shown in Fig. 4. Figure 4(a) shows
the highest OD, or the average over the highest five
OD, among all 20 trajectories proposed by the NN
at each epoch. Similar to Fig. 2, one can see that
the OD increases and the variance is suppressed as
the training epoch increases. In Fig. 4(b) we com-
pare the prediction by the NN ODNN with the ac-
tual measured results ODexpt for the best five tra-
jectories in each epoch. Here 𝛿OD is defined as∑︀5

𝑖=1 |ODNN
𝑖 − ODexpt

𝑖 |/ODexpt
𝑖 . Figure 4(b) shows

𝛿OD approaches zero as training epoch continues. In
Fig. 5, we show the three trajectories with the highest
measured OD at different epochs. One can see that
initially these trajectories are quite different, and they
gradually converge in the later stage. These two fig-

ures show that the NN successful finds the extreme
around ∼15 epochs and the NN converges in the neigh-
borhood of the extreme. The total cost of experimen-
tal measures is about 360.
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Fig. 4. (a) The dimensionless optical density (OD) of a
Bose condensate. (b) The relative difference 𝛿OD between
the prediction of the NN and the actual experimental mea-
surements. Both are plotted as a function of the training
epoch. The red points in (a) are the best OD for all 𝑚1

control trajectories proposed by the NN at each epoch,
and the blue points are averaged results of the five highest
ones. The points in (b) are also averaged over the five
trajectories with the best performance. Error bars indi-
cate the variance for taking the average. Here the actual
results are obtained by experimental measurements. The
OD is measured after time of flight for 53ms.
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Fig. 5. The three trajectories with the highest opti-
cal density at different epochs, as marked by arrows in
Fig. 4(b).

In summary, we have presented a general NN based
scheme to optimize the experimental control, and the
emphasis of this scheme is that we use the active
learning to reduce the query of experimental measure-
ments to the minimum. Our scheme is quite universal
that can be applied to experiments in different ar-
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eas, for instance, growing samples in material science
and preparing quantum states or quantum gates in
quantum science. More importantly, our method does
not require any knowledge of the physical system as
a prior, and therefore, it can be used for controlling
new experiments in the future.
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