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We consider a two-component Bose–Einstein condensate, which consists of both dipolar and scalar 
bosonic atoms, in a confinement that is composed of a harmonic oscillator and an underlying optical 
lattice set rotation. When the dipoles are polarized along the symmetry axis of the harmonic potential, 
the ground-state density distributions of such a system are investigated as a function of the relative 
strength between the dipolar and contact interactions, and of the rotation frequency. Our results show 
that the number of vortices and its related vortex structures of such a system depend strongly on such 
system parameters. The special two-component system considered here opens up alternate ways for 
exploring the rich physics of dipolar quantum gases.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Topological defects, such as the well-known quantized vortices 
and domain walls [1–6], appear in cross-disciplinary sub-fields of 
physics, and have attracted much interest of physicists. As a long-
lived excitation, quantized vortex plays a very important role in 
understanding the topology of the order parameter and superflu-
idity.

Since the experimental realization of Bose–Einstein condensate 
(BEC) in dilute gases of alkali metals and hydrogen, it has became 
apparent that the isotropic s-wave interaction between the con-
densed atoms governs most of the observed phenomena [7–12]. 
However, recent experimental observations of BEC of 52Cr (6μB ) 
[13–16], 168Er (7μB ) [17,18], and 164Dy (10μB ) [19] with μB being 
the Bohr magneton have shown that not only the static but also 
the dynamical properties depend strongly on the relative strength 
between dipole–dipole interaction (DDI) and contact interactions 
[20–24]. In addition, by using the Feshbach resonance, one can 
study the properties of a dipolar BEC with variable isotropic con-
tact interaction [25–27]. Due to the unprecedented level of ex-
perimental control of the system’s parameters, ultracold quantum 
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gases provide us a completely new platform for exploring such 
topological excitations.

Very recently, the vortex structures and their interaction in a 
binary dipolar gas, wherein only one component possesses mag-
netic dipole moment, have drawn considerable attention [28–33]. 
Typically, in a most recent paper [28], Shirley et al. investigated 
the half-quantum vortex molecules of such a binary dipolar gas 
confined in a harmonic confinement; the anisotropic and long-
range vortex in two-dimensional dipolar Bose gases was studied by 
Mulkerin et al. [29]. Furthermore, Zhang and his co-authors have 
studied the ground-state and rotational properties of such a sys-
tem confined in concentrically coupled annular traps, and found 
that various ground-state phases and the related vortex structures 
can be obtained via a proper choice of the dipolar interaction and 
rotational frequency [30].

In real BEC experiments, ultracold atoms are always trapped by 
different external potentials. As far as we known, most of previous 
studies on a two-component dipolar condensate, which consists of 
both dipolar and scalar atoms, have been restricted to a free space 
or harmonic potential [34–36]. To our knowledge, there has been 
little work on the ground state densities of such a system confined 
in spin-dependent optical lattices [37], which is what we attempt 
to do in this work. In this paper, we carry out a detailed numer-
ical analysis of the combined effects of DDI and rotation on the 
ground-state and rotational properties of such a two-component 
system confined in spin-dependent optical lattices. Our results 
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show that the number of vortices and its related vortex structures 
of the system depend strongly on such system parameters.

The rest of this work is organized as follows. We formulate 
the theoretical model describing a two-component dipolar BEC in 
Sec. 2, in which we also briefly introduce the numerical method. 
In Sec. 3, we investigate the ground state properties of the system 
as a function of the relative strength between the dipolar and con-
tact interactions, and of the rotation frequency. Finally, in Sec. 4, 
the main results of the paper are summarized.

2. The theoretical model and numerical method

We begin with a two-component bosonic cold atom gas in a 
confinement that is composed of a harmonic oscillator and an 
underlying optical lattice set rotation. For simplicity, we assume 
that the harmonic trapping frequencies satisfy ωz � ω⊥ , then the 
condensates are pressed into a pancake. Within the framework of 
mean-field theory, the static and dynamical properties of such a 
system are governed by the so-called Gross–Pitaevskii (GP) equa-
tion, which can be written as [38,39],

ih̄
∂ψi

∂t
=

(
− h̄2∇2

2mi
+ V HOi +

∑
j=1,2

gi j|ψ j|2 − �i Lz

+
∑
j=1,2

C ij
dd

∫
Udd(r)|ψ j(r

′, t)|2dr′
)

ψi, (1)

where ψi is the wave function of the ith component (i = 1, 2), and 
mi is the atomic mass. Lz = −ih̄(x∂y − y∂x) is the z component of 
the angular momentum, and �i is the effective rotation frequency 
of component i. The intra- and inter-component coupling con-
stants are given by gii = 2

√
2πaiih̄

2/mlz and gi j = √
2πa12h̄2/mRlz , 

with lz = √
h̄/mωz and mR = m1m2/(m1 + m2) being the axial 

harmonic oscillator length and the reduced mass, respectively. As 
discussed before, to further highlight the effects of DDI on a two-
component system consists of both dipolar and scalar bosonic 
atoms, component 2 is considered to be “non-dipolar”, leading to 
C22

dd = C12
dd = C21

dd = 0 and C11
dd = μ0μ

2/4π (C11
dd = d2/4πε0) for 

magnetic dipoles (electric dipoles), where μ0 and μ being the 
magnetic permeability of vacuum and the magnetic dipole mo-
ment, respectively. Finally, we assume that the dipoles are polar-
ized along the symmetry axis of the harmonic potential, and define 
a dimensionless quantity, εdd = μ0μ

2m/12π h̄2as with as being the 
three-dimensional s-wave scattering length, to character the rela-
tive strength between the dipolar and contact interactions. For the 
long-range and anisotropic DDI, Udd can be written as,

Udd(r − r′) = 1 − 3 cos2 θ

|r − r′|3 , (2)

where θ is the angle between the polarization direction and the 
inter-atom vector r − r′ . In this work, the integral over the dipolar 
potential is evaluated in Fourier (momentum) space by a convo-
lution identity requiring the Fourier transformation of the dipo-
lar potential and the condensate density. By using the convolu-
tion theorem, the Fourier transform of the dipole potential, Udd =
(4π/3)(3k2

z /k2 − 1), and integrating over the z direction, we arrive 
at the effective dipolar potential,

	 = C11
dd

∫
Udd(r − r′)|ψ1(r

′, t)|2dr′

= 4
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πCdd

3
√

2az
×

∫
d�kr

(2π)2
ei�kr ·rñ(�kr)h2D(

kraz√
2

), (3)

where ñ is the Fourier transform of n(r) = |ψ1(r)|2, and h2D(k) =
2 −3

√
πkek2

erfc(k), with erfc(x) the complementary error function 
[28,30,40].
The external considered in this work is a combination of har-
monic potential and spin-dependent optical lattices, which can be 
written as

V HOi(x, y) = V H + V OLi, (4)

where V H = 1
2 m[ω⊥(x2 + y2)], V OL1(x, y) = I0 sin2(kx) and

V OL2(x, y) = I0 cos2(kx). k is the wave vector of the laser light used 
for the optical lattice potentials, and I0 is the potential depth of 
the lattices [37,41,42].

To obtain the real ground-state, we start from proper initial 
wave-functions and use the imaginary-time propagation approach. 
The lowest-energy states in different parameter space are obtained 
until the fluctuation in the norm of the wave function becomes 
smaller than 10−6 [43,44]. Here we want to note that for com-
ponent 2, the effective contact interactions between atoms can be 
controlled by modifying atomic collisions (achieved by magneti-
cally tuning the Feshbach resonances), or the atom number N; 
while for dipolar component 1, the most important quantity is 
the relative strength between the dipolar and contact interactions. 
Without loss of generality, in the following numerical simulations, 
we consider the special case with N1 = N2 = N , �1 = �2 = �, and 
g11 = g22 = g21 = g12 = g > 0, and work in dimensional units by 
scaling with the trap energy h̄ωz and lz where appropriate.

3. Numerical results and discussion

In what follows we will carry out a detailed numerical analysis 
of the combined effects of the DDI and rotation on the ground-
state density distributions of the system. To highlight their effects, 
we further fix the contact interaction g = 100, the potential depth 
of the lattices I0 = 50, and the period of the optical potential 
T = π/3. Fig. 1 shows the typical density profiles of a rotating 
two-component dipolar BEC in spin-dependent optical lattices, for 
rotation frequency � = 0.6, and for a relatively small value of 
εdd = 0.3. As expected, in the presence of the spin-dependent opti-
cal lattices, the density distributions of the two components show 
phase separation, where the peak of each component corresponds 
to the minima of respective optical lattice. Consequently, it leads to 
the formation of alternately arranged stripes, as shown in Fig. 1(d) 
for the density difference of these two components [37,45,46].

More insights can be obtained if we look at the phase distri-
butions of the two components, which are not shown here [the 
corresponding vortices are marked by crosses (×)]. Remarkably, we 
observe that the vortices of each component are aligned in lines, 
and the system develops to an alternately arranged straight vortex 
sheet. Due to the system considered here is a two-component one, 
the positions of vortices of one component are vortex-free regions 
for the other one, thus the vortices observed here are called “core-
less vortices”. Here we notice that although these vortex structures 
have been discussed long time ago for helium systems and recently 
for cold atom gases, the effects of DDI on the two-component sys-
tem considered here have not been studied as thoroughly.

On the other hand, we notice that a two-component system 
allows the existence of half-quantized vortices (winding number 
one half of a singly quantized vortex in scalar BECs). That is, when 
one travels around a vortex, the phase of one component rotates 
by 2π with the phase of the other component kept constant, and 
in this case, the mass current is rotated by π and the spin current by 
π or −π [47]. Thus we cautiously refer to these vortices and its 
related vortex structures as half-quantized vortices and half-vortex 
sheets, respectively.

Another interesting observation is that the number of vortices 
of the central vortex sheet is different between these two compo-
nents. More specifically, there are 2 (3) visible vortices for dipolar 
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Fig. 1. (Color online.) Typical density profiles of a rotating two-component dipolar 
Bose–Einstein condensate in an optical lattice, for contact interactions g = 100, and 
for the rotation frequency � = 0.6. Here the relative strength between the dipolar 
and contact interactions of component 1 is fixed to εdd = 0.3, (c) and (d) correspond 
to the total density and density difference of these two components, respectively. 
The locations of the vortices are marked by crosses (×).

Fig. 2. (Color online.) Typical density profiles of a rotating two-component dipolar 
Bose–Einstein condensate in an optical lattice, for contact interactions g = 100, and 
for the rotation frequency � = 0.6. Here the relative strength between the dipolar 
and contact interactions of component 1 is fixed to εdd = 0.8, (c) and (d) correspond 
to the total density and density difference of these two components, respectively. 
The locations of the vortices are marked by crosses (×).

(non-dipolar) component, as shown in Figs. 1(a) and (b). This phe-
nomenon also appears in the following discussions, and in what 
follows we will give a more detailed physical explanation.

Increasing the strength of εdd to 0.8, it is found that the num-
ber of vortices increases with the increase of εdd . Typical density 
profiles of such a situation is shown in Fig. 2 for a larger value of 
εdd = 0.8. As shown in this figure, it is easy to see that the num-
ber of vortex sheet of the dipolar component increases from 8 for 
εdd = 0.3 to 10 for εdd = 0.8. In this case, to meet the require-
ment that the sheets should accommodate all the vortices (includ-
Fig. 3. (Color online.) Typical density profiles of a rotating two-component dipolar 
Bose–Einstein condensate in an optical lattice, for contact interactions g = 100, and 
for a higher rotation frequency � = 0.9. Here the relative strength between the 
dipolar and contact interactions of component 1 is fixed to εdd = 0.3, (c) and (d) 
correspond to the total density and density difference of these two components, 
respectively. The locations of the vortices are marked by crosses (×).

ing the new nucleated one), 2 newly-formed vortex sheet appear 
to accommodate the new nucleated vortices [31]. From the above 
analysis, it is not difficult to speculate that with further increase of 
εdd , more and more vortices will appear, and the effectively repul-
sive contact interaction for dipolar component is further increased, 
leading to further expansion of the dipolar cloud.

All the above observed vortex structures can be understood by 
the simple physics that vortices always appear in the low-density 
regions to lower the total energy of the system. On the other hand, 
due to the dipoles are polarized along the symmetry axis of the 
harmonic potential, the DDI in this special case is purely repulsive 
and isotropic. The dipolar atoms which have kinetic energies high 
enough that they can overcome the trapping potential and occupy 
the outside regime. Consequently, the inclusion of DDI introduces 
another “switch”, which can be used not only to obtain the desired 
ground-state phase, but also to control the number of vortices and 
its related vortex structures, even for a non-dipolar condensate.

It is also instructive to study the effects of rotation on the 
ground-state vortex structure of the system. Fig. 3 exhibits the typ-
ical density profiles of the system for fixed g = 100 and εdd = 0.3, 
but for a higher rotation frequency � = 0.9. As before, the system 
again develops to the coreless–vortex structure, and the number 
of vortices increases with the increase of the rotation frequency. 
In addition, due to the large centrifugal force associated with the 
rotation, the dipolar component has a more larger expansion area.

To estimate the experimental feasibility of the proposed vortex 
structures, we notice that this special two-component system can 
be realized by selecting two states in the ground hyperfine man-
ifolds of atomic Cr, Er, or Dy, where components 1 and 2 consist 
of states with spin projections m J = − J and m J = 0. With regard 
to the interaction parameters, typically, 52Cr with magnetic dipole 
moment d = 6μB and s-wave scattering length a ≈ 100a0 (here 
a0 is the Bohr radius), the relative strength between the DDI and 
contact interaction εdd = 0.036 [48]. However, in realistic physical 
systems, the contact interactions g can be controlled by modify-
ing the atomic collisions, which are experimentally feasible due 
to the flexible and precise control of the scattering length achiev-
able by tuning the Feshbach resonance, making the DDI dominant. 
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In addition, the potential depth of the lattices I0 can be precisely 
controlled by optics means, which scales with the laser’s intensity 
[49]. Consequently, the parameters used in this study are within 
current experimental capacity.

Before the conclusion, we would like to emphasize that while 
the numerical results presented above are restricted to some par-
ticular parameter values, we also have conducted extensive numer-
ical simulations over a range of different parameter sets, and found 
that the parameter sets selected here illustrate well the possible 
vortex structures. In addition, while this work is limited to mag-
netic DDI, the numerical method we present here is general for 
all dipolar quantum gases and may be employed in calculating the 
effects of electric DDI as well. Due to the anisotropic nature of 
the DDI, further work can be extended to a more general situation 
where the orientation of the dipoles can also be regarded as an-
other “degree of freeedom” and more interesting phenomena, such 
as fractionalized skyrmion and topological spin texture, can occur.

4. Conclusions

To conclude, we have investigated the ground-state vortex 
structures of a rotating two-component dipolar BEC, which con-
sists of both dipolar and scalar bosonic atoms, in spin-dependent 
optical lattices. At the mean-field level, the ground state densities 
of the system are studied as a function of the relative strength 
between the dipolar and contact interactions, and of the rotation 
frequency. From the preceding results, it is clear that the DDI and 
rotation, worked as effective “switches”, can be used not only to 
obtain the desired ground-state phase, but also to control the num-
ber of vortices and its related vortex structures. The results not 
only help us better understand the effects of DDI and rotation on 
the ground-state vortex structures, but also offer us an effective 
way to manipulate this coupled dipolar BEC in future experiments. 
Finally, such a type of vortex structure is within the reach of cur-
rent experiments with ultracold atoms.
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