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Abstract
Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates
(BECs). Much work has been done on one- and two-component BECs with time- or space-
modulated nonlinearities, while there is little work on spinor BECs with space–time-
modulated nonlinearities. In the present paper we investigate localized nonlinear waves
and dynamical stability in spinor Bose–Einstein condensates with nonlinearities
dependent on time and space. We solve the three coupled Gross–Pitaevskii equations
by similarity transformation and obtain two families of exact matter wave solutions in
terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the
spinor matter wave describe the dynamics of vector breathing solitons, moving breathing
solitons, quasi-breathing solitons and resonant solitons. The results show that one-order
vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving
breathing solitons ψ±1 are all stable, but the moving breathing soliton ψ0 is unstable.
We also present the experimental parameters to realize these phenomena in future
experiments.

Keywords: spinor Bose–Einstein condensates, time–space modulation, localized nonlinear
waves, dynamical stability
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1. Introduction

For a decade experimental realization of Bose–Einstein
condensates (BECs) at ultra-low temperatures has attracted
much interest from atomic physicists [1, 2]. In recent
years, one of the most important developments in BECs
has been the study of spinor condensates. The idea of
spinor condensates was proposed by Ho and Ohmi [3, 4].
Stamper-Kurn et al created spinor condensates experi-
mentally [5], providing a new way to observe phenomena
that are not present in single-component BECs. These

include the formation of spin domains and spin textures
[6, 7]. In contrast to single- and two-component BECs, the
spin-F condensates described by macroscopic wave
functions with 2F+1 components have some new char-
acteristics, including the vector character of the order
parameter and the changed role of spin relaxation colli-
sions. Very many studies have been done and it is now a
hot research topic. For example, in 2014, Kanna investi-
gated the dynamics of bright matter wave solitons in spin-1
Bose–Einstein condensates with time-modulated non-
linearities and obtained soliton solutions of an integrable
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autonomous three coupled GP equation (GPE) [8]. Liu
derived exact static as well as moving solitonic solutions to
the one-dimensional spin–orbit-coupled F=1 BECs [9].
In 2015, Seo researched the half-quantum vortices
(HQVs) in the easy-plane polar phase of antiferromagnetic
spinor BECs and performed a collision experiment with
two HQV pairs [10, 11]. In 2016, Oshima studied the spin
Hall effect in a spinor dipolar BECs and discussed a pos-
sible experimental situation [12]. Ollikainen studied the
density profiles, phase profiles and angular momentum in
the spin-1 system [13]. Recently, the internal structure and
stability of vortices in a dipolar spinor BEC and vortex-
bright solitons in a spin–orbit-coupled spin-1 condensate
have been studied [14, 15]. However, there has so far been
little work on spinor BECs with time–space-modulated
nonlinearity.

Matter waves, as the natural outcomes of mean-field
descriptions, have been observed experimentally and inves-
tigated theoretically [16–18]. For example, matter wave
solitons could be used for applications in optical lattices,
atomic lasers, atomic interferometry and coherent atom
transport. Moreover, matter wave solitons are also helpful for
the realization of quantum information processing and com-
putation [19, 20]. So it would be interesting to develop a new
technique for constructing particular solitons. One possible
technique is to alter the interatomic interactions by means of
Feshbach resonance [21, 22]. Temporal nonlinearity mod-
ulation can create bright solitons, induce collapse, and so on
[23–25]. Spatial nonlinearity modulation can support persis-
tent Bloch oscillations and may break the stability limit
imposed by the Vakhitov–Kolokolov criterion [26, 27]. This
led to a good proposal for manipulation of nonlinear excita-
tions and matter waves by controlling the time-dependent or
space-dependent scattering strength. In the past decades,
several types of Feshbach resonance, for example magnetic
Feshbach resonance [28, 29], optical Feshbach resonance
[30, 31], confinement-induced resonance [32, 33] and orbital
Feshbach resonance [34, 35], have been successively devel-
oped and have proved to be extremely useful tools for tai-
loring the interaction.

In the conventional case, the interaction is changed
independently of time and space [21, 22, 28–35]. However,
some kinds of interactions with simple spatial [36, 37]
or time modulation [38–41] have also been theoretically
suggested and experimentally realized. For example,
submicron spatial control of the scattering length has
been experimentally realized in a ytterbium BEC by a
pulsed optical standing wave near an optical Feshbach
resonance [36], which proves that high-resolution control
of atomic interactions is possible. Square-waveform time
modulation of the scattering length has also been theore-
tically proposed [38] and experimentally realized [39] in
rubidium condensates using a carefully controlled magnetic
field pulse. In addition, there is also a relevant break-
through towards the realization of interaction with both

time and space modulation in [42], where high speed
and spatially resolved control of interaction has been
achieved in a stable BEC of cesium atoms by optical
control of Feshbach resonances. All these developments
indicate that it may be possible to implement interactions
with both time and space modulation in the future, and
provide support for research into time–space-modulated
nonlinearity.

In this paper we consider spinor BECs with space- and
time-dependent nonlinearities, which can be described by
the three-component GPE. Unlike with one- and two-
component BECs, we can use an optically induced Fes-
hbach resonance [43] or a confinement-induced resonance
[44] to tune the nonlinearities in spinor BECs. Two
families of localized nonlinear matter waves are given
based on the Mathieu equation and Jacobi elliptic function,
which take the form of vector solitons. We investigate in
detail vector breathing solitons, moving breathing solitons,
quasi-breathing solitons and resonant solitons. The dyna-
mical stability of vector solitons is studied by means of
numerical simulations and the global stability of the dif-
ferent types of vector solitons is analyzed. The results show
that one-order vector breathing solitons, quasi-breathing
solitons, resonant solitons and the moving breathing soli-
tons ψ±1 are all stable but the moving breathing soliton ψ0

is unstable.

2. Localized nonlinear matter wave solutions

Here we focus on BECs of alkali atoms (23Na) in the F=1
hyperfine state [6], confined in the trapping potential

w w= + +^( ( ))V x y zext
m

x2
2 2 2 2 2 with m the mass of

atoms and ωx and ω⊥ the confining frequencies in axial and
radial directions. Under the mean-field approximation, the
dynamics of the spinor condensates can be described by a
three-component GPE in three dimensions. When the
longitudinal trap frequency ωx is much less than the
transverse one ω⊥, the three-dimensional GPE can
be reduced to a one-dimensional equation, which can be
realized experimentally with the apparatus described
in [45].

In the absence of an external magnetic field, the three
internal states mF=1, 0,−1, with mF the magnetic quantum
number, are generated, in which an mF=1 and an mF=−1
atom can collide and produce two mF=0 atoms, and
vice versa. The spin-1 BECs can be described by the vectorial
wave function y y yY = -( ) ( ( ) ( ) ( ))x t x t x t x t, , , , , , T

1 0 1

with the components corresponding to the three values of
the vertical spin projection mF=1, 0,−1. When the temp-
erature is lower than the critical temperature, the wave
functions are governed by a set of three coupled
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dimensionless GPEs [3, 46]:
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Here,  = ¶
¶

,
x

2
2

2 = wV x

2

2 2

is a one-dimensional trapping

potential and w = w
ŵ

x is the trap’s aspect ratio. EjäR is the

dimensionless Zeeman energy of spin components mF=−1,
0, 1 and y y y+ + -∣ ∣ ∣ ∣ ∣ ∣1

2
0

2
1

2 is the total condensate
density. The strength of the interaction is given by

 = =p p+ -( ) ( )g g,n
a a

m s
a a

m

4 2

3

4

3

2
0 2

2
2 0 , where ÿ is the reduced

Planck constant and a0 and a2 are the s-wave scattering
lengths of the scattering channel of total hyperfine spin-0 and
spin-2, respectively [47]. The length and time are measured in

units of 

^mw
and ^

-w 1, respectively. Here we provide the

experimental parameters for producing a spinor condensate
composed of 23Na [48, 49] with the total number
N=3×106. The external trapping potential is given by

= wV x

2

2 2

with ω=2π×230 Hz. The scattering lengths are
a0=50aB and a2=55aB with Bohr radius aB=0.529 Å. In
our case, the trapping potential is taken as = w e w+( ( ¯ ))V cos t x

2
0
2 2

(òä(−1, 1), w w Î R,0 ) modulated by time t, and the

scattering lengths are taken as l= - - l d+
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t x t3
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2 (cn and cs are constants) depending
on time and space, which can be realized by controlling the
induced Feshbach resonances optically induced or confine-
ment-induced resonances in the real BEC experiments.

In the following we seek the exact localized solutions of (1)
for y =¥ ∣ ∣lim 0x 1,0 . To do this, the similarity transformations
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where bij (i=1, 2, 3 and j=1, 2, 3, 4) are constants. To obtain
explicit solutions, we choose ω2 in the form

w w w= + ( ) ( )cos t 52
0
2

and take p l d= +( ( ) ( ))X erf t x t1

2
, where =( )erf s

ò t
p

t-e d
s2

0

2
is called an error function and òä(−1, 1) and

w w Î R,0 . The trapping potential plays a critical role in
adjusting the amplitude, phase and propagation velocity, while
the localization of the predicted soliton solutions does not depend
on it. The localized solutions exist even when
the trapping potential is very small with the trapping fre-
quency ω∼0.

Now under the condition E1+E−1=E0, solving the
PDEs (4) gives
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where = -( )c j 1, 0, 1, 2, 3j are arbitrary constants and A,

B and C are constants satisfying - =
x x x x-

AB C2 1

t t1 2 2 1
with

(ξ1, ξ2) being two linear independent solutions of the Mathieu
equation [50, 51]

x w x+ = ( )0. 8tt
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Solving the ODEs (3), we obtain two families of exact
solutions
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,μ1 and μ2 are arbitrary constants

and cn and sd=sn/dn are Jacobi elliptic functions. The solu-
tions (9) and (10) exist for any ratio of the density–density and
spin-exchange interactions with gn=ags, where a is an arbitrary
constant. In the following, we discuss the case with interaction
parameters satisfying gn=−gs as an example. When imposing
the bounded condition y =¥  ( )∣ ∣lim x 0x 1,0 , we have m =1
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Based on (6) and(7)–(10), we work out two families of
exact solutions of the dimensionless GPE (1)
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where δ(t),α±1(x, t) are given in (7), and U( j),R( j),
W( j)( j=1, 2) are given in (9)–(10). The significance of each
quantity is as follows: γ(x, t)=λ(t) x(λ(t) x+2δ(t)) is the
coordinate for observing the soliton’s envelope; α1(x, t) is the

coordinate for observing the soliton’s carrier waves; l
d

( )
( )

t e
t 2

2

is the amplitude of the solitons. It is easy to see that
y =¥  ( )∣ ∣lim x 0x 1,0 by direct computation, so these two

families of solutions are localized nonlinear wave solutions.

3. Dynamics of the localized nonlinear matter wave

We now discuss how the spatiotemporal-dependent non-
linearities gn and gs control the dynamics of the localized
matter waves given by (11). In the special case, the
expressions of gn and gs can be simplified. In the case of
parameters = =

w
A B 1 and c2=c3=0 the nonlinearities

become = =
w w

- -w w
g e g eandn

c
s

cn x s x

34

3 2
2

34

3 2
2 , which are space-

localized Gaussian nonlinearities. In the case of parameters
= =

w
A B 1 and = =c c2 3

1

2
, the nonlinearities become

= =
w w

- -w w w w+ +( ) ( )
g e g eandn

c
s

cn
x cos t

s
x cos t

34

3 2

2
34

3 2

2 , which are

time-periodic localized nonlinearities as shown in figure 1. In

Figure 1. Parts (a) and (b) show examples of spatiotemporal-dependent nonlinearities gn and gs with ω=0.4, respectively. (c) Nonlinearities
gn (red) and gs (blue) for t=1 and ω=0.4, respectively. It can be seen that gn and gs are space-localized and time-periodic.
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real BEC experiments they can be generated by the optically
induced Feshbach resonances or confinement-induced
resonances.

The management of spatiotemporal nonlinearities can
generate solitons with novel properties. According to different
choices of w and ò, different types of behaviors can be clas-
sified as:

(a) breathing solitons, when ò=0,
(b) quasi-periodic solitons, when  ¹ 0 and the two linear

independent solutions ξ1 and ξ2 belong to the stability
domain of (8),

(c) resonant solitons, when  ¹ 0 and ξ1 and ξ2 are in the
instability domain of (8).

In this section we will consider the dynamics of localized
nonlinear matter waves and propose how to control them by
the external trapping potential and space–time inhomoge-
neous s-wave scattering lengths in future experiments. In the
following, we take a 23Na condensate containing 3×106

atoms and the parameters are taken as c−1=1, c0=0.5,
c1=1, b12=0.5, A=5 and B=2.

3.1. Breathing solitons

Here, we take  = 0. In this case, the trapping potential =V
w x

2
0
2 2

and the interactions = - = -
l

l d- +
- ( )

( ( ) ( ))g g en s
b

c t
t x t

4
12

1
2

2

are all space- and time-dependent, and can be realized by
controlling the optically induced Feshbach resonance or a
confinement-induced resonance in real BEC experiments. The

corresponding localized nonlinear wave can be obtained from
(11). These solutions show different features according to the
choice of the parameter δ(t). The ratio of the confining fre-
quency ω=0.4. In figure 2, we show the evolution of density
profiles for the one-order wave functions y( )

1
1 and y-

( )
1,0

2 with

the above parameters. The density profiles for y( )
1
2 and y-

( )
1,0

1

are the same as for y( )
1
1 and y-

( )
1,0

2 . It can be observed that the
density wave packets are localized in space and oscillate per-
iodically in time, and are called breathing solitons. Here l ( )t
and 1/λ(t) are the amplitude and width of the matter wave,
respectively. Figures 2(a) to (c) describe the density profiles
of the one-order wave functions y y-

( ) ( ),1
1

1
2 and y( )

0
2 ,

respectively. Figure 2(d) shows the total density distribution
y y y+ +-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )

1
1 2

1
2 2

0
2 2 for the spinor BECs. Figure 2(e)

illustrates the amplitude l ( )t and width 1/λ(t) of the wave
functions. It is observed that the amplitude and width of the
localized nonlinear waves vary periodically with increasing
time. In all the figures in this paper the units of space length
and time are 1.38 μm and 0.7 ms.

When d ¹( )t 0 and δ(t) is given by (7). In this situation,
the tapping potential is still time-independent, but the inter-
actions gn and gs given by (6) and (7) become more complex,
so the amplitude of the nonlinear matter wave becomes

l
d

( )
( )

t e
t 2

2 and the center of mass of the solitons moves
time periodically with non-zero velocity. So the nonlinear
matter waves are called moving breathing. For convenience,
we assume the ratio of the confining frequencies ω is
time-independent to illustrate the dynamics of a moving

Figure 2. Dynamics of the breathing solitons in a spin-1 BEC with spatiotemporally modulated nonlinearities. Parts (a) to (d) exhibit
the evolution of the density distribution y y y-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( ), ,1

1 2
1

2 2
0
2 2 and the total density distribution y y y+ +-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )

1
1 2

1
2 2

0
2 2, respectively.

Part (e) illustrates the amplitude (red) and width (blue) of the wave functions. The ratio of the confining frequency is taken as
ω=0.4.
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breathing soliton. Here we still take ω=0.4 and ε=0.
Figures 3(a)–(c) describe the time evolution of the density
profiles of one-order wave functions y y-

( ) ( ),1
1

1
2 and y( )

0
2 ,

respectively. Figure 3(d) illustrates the total density distribu-
tion y y y+ +-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )

1
1 2

1
2 2

0
2 2 for the spinor BECs. It can be

observed the nonlinear matter waves are space-localized and
move periodically with respect to time. Figure 3(e) describes
the amplitude of the breathing solitons (red) and moving
breathing solitons (blue). It can be seen that the amplitudes of
the nonlinear waves vary periodically versus t, and the
amplitudes of the moving breathing solitons are higher than
those of the breathing solitons.

3.2. Quasi-breathing solitons

Now we consider the case of  ¹ 0. In order to give an example
of quasi-breathing solitons we take w w= =0.4, 20 and
ò=0.1 in (5), i.e. the ratio of the confining frequency
w = + ( )t0.16 0.1 cos 0.2 is a time-dependent function,
which ensures that two linear independent solutions ξ1 and ξ2 of
the Mathieu equation (5) belong to its stability region. So (5) has
two incommensurable frequencies. In this way, the localized
matter wave given by the solutions (11) exhibits quasi-periodic
behaviors and interactions are still space- and time-dependent.
Figure 4 shows an example of such quasi-periodic behavior.
The first to the fourth columns describe the time evolution of
the density and contour profiles of the one-order wave functions
y y y-

( ) ( ) ( ), ,1
1

1
2

0
2 and the total density distribution y +∣ ∣( )

1
1 2

y y+-∣ ∣ ∣ ∣( ) ( )
1

2 2
0
2 2, respectively. Figure 4(e) describes the ampl-

itude (red) and the width (blue) of the quasi-breathing solitons. It
can be observed the nonlinear matter waves are space-localized

and quasi-periodic with respect to time and it can also be found
that the amplitude and width of the nonlinear waves are quasi-
periodic versus t.

3.3. Resonant solitons

Here, we still consider the case  ¹ 0, i.e. the ratio of the
confining frequency ω is time-dependent. In this case, we
choose w w= =0.44, 320 and ò=0.003 in the Mathieu
equation (5), which ensures that two linear independent
solutions ξ1 and ξ2 of (5) belong to its instability region. Thus,
the localized matter waves given by the solutions (11) show
that the behaviors and interactions of the resonant solitons are
still space- and time-dependent. Figure 5 shows the evolution
of the density and contour profiles for the resonant solitons.
The first to fourth columns in figure 5 demonstrate the
evolution of the density and contour profiles of the one-
order wave functions y y y-

( ) ( ) ( ), ,1
1

1
2

0
2 , and y +∣ ∣( )

1
1 2

y y+-∣ ∣ ∣ ∣( ) ( )
1

2 2
0
2 2, respectively. It can be observed the non-

linear matter waves are space-localized and time resonant.
Figure 5(e) shows the amplitude and width versus time for the
resonant solitons. It can be observed that the amplitude of the
resonant solitons is low and their width is large at the
beginning. After a while the amplitudes become higher but
the widths become smaller. This phenomenon appears gra-
dually as time passes. So this nonlinear matter wave
demonstrates resonant soliton behavior. This resonant beha-
vior arises from the cooperation of the spatiotemporal inho-
mogeneous interactions and the trapping potential.

Figure 3. Dynamics of the moving breathing solitons in a spin-1 BEC with spatiotemporally modulated nonlinearities. Parts (a) to (d) show
the time evolution of the density distributions y y y-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( ), ,1

1 2
1

2 2
0
2 2 and y y y+ +-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )

1
1 2

1
2 2

0
2 2, respectively. Parts (e) shows the

amplitude of the breathing solitons (red) and the moving breathing solitons (blue). The ratio of the confining frequency is still taken as
ω=0.4 and the other parameters are taken as c2=c3=1/3.
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4. Stability analysis

Now we study the dynamical stability of the localized non-
linear wave solutions (11) by performing some numerical
simulations. Here we run the numerical simulations using the
split-step Fourier transformation. The domain is composed of
N=512 grid points and the step size of time integration is
τ=0.0001. We take y = -( ) ( )x j, 0 1, 0, 1j as the initial
values and the simulations last up to t=200. The simulation
results show that:

(a) when δ=0, the exact localized nonlinear wave solutions
(11) are dynamically stable for j=1 and n=0, that is to
say the one-order breathing soliton, quasi-breathing
soliton and resonant soliton are all stable,

(b) when d ¹ 0, the moving solitons y( )
1
1 and y( )

0
1 are

dynamically stable, while y-
( )

1
1 is unstable.

Figure 6 shows the time evolution of the one-order breathing
solitons y( )

1
1 , y( )

0
1 and y-

( )
1

1 for δ=0 and ε=0 when the non-

linearities are taken as n= - = - - n( ) ( ) ( ) ( )g x t g x t t e, ,n s
1

8

x
t

1
2

2

and n = + +( ) ( ) ( ) ( )( )t sin t cos t sin t cos t5 2 152

5

2 2

5

2 2

5

2

5
,

respectively. It can be observed that the one-order breathing
solitons y( )

1
1 , y( )

0
1 and y-

( )
1

1 are dynamically stable.
Figure 7 shows the evolution of the one-order moving

breathing solitons y( )
1
1 , y( )

0
1 and y-

( )
1

1 with δ=1 , ε=0 and

n= - = - - n( )( ) ( ) ( ) ( )g x t g x t t e, ,n s
1

8
1 x

t
1
2

2

. It can be seen that

the moving breathing solitons y( )
1
1 and y( )

0
1 are dynamically

stable, while y-
( )

1
1 is unstable.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 4. Dynamics of the quasi-breathing solitons in a spin-1 BEC with spatiotemporally modulated nonlinearities. Parts (a1) and (a2) show
the evolution of the density and contour distribution y∣ ∣( )

1
1 2, respectively. Parts (b1) and (b2) show the evolution of the density and contour

distribution y-∣ ∣( )
1

2 2, respectively. Parts (c1) and (c2) display the evolution of the density and contour distribution y∣ ∣( )
0
2 2, respectively. Parts

(d1) and (d2) illustrate the evolution of the density and contour distribution y y y+ +-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )
1
1 2

1
2 2

0
2 2, respectively. Part (e) illustrates the

amplitude (red) and the width (blue). The ratio of the confining frequency is taken as w = + ( )cos t0.16 0.1 0.2 .
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Figure 5. Dynamics of the resonant breathing solitons in a spin-1 BEC with spatiotemporally modulated nonlinearities. Parts (a1) and (a2)
explain the evolution of the density and contour y∣ ∣1

2, respectively. Parts (b1) and (b2) exhibit the evolution of the density and contour y-∣ ∣1 2,
respectively. Parts (c1) and (c2) show the evolution of the density and contour y∣ ∣0

2, respectively. Parts (d1) and (d2) demonstrate the
evolution of the density and contour y y y+ +-∣ ∣ ∣ ∣ ∣ ∣( ) ( ) ( )

1
1 2

1
2 2

0
2 2, respectively. Parts (e) illustrates the amplitude of the breathing solitons (red)

and the moving breathing solitons (blue). Here the ratio of the confining frequency w = + cos t0.19 0.003 32 .

Figure 6. Evolution of the one-order breathing solitons for δ=0, ε=0 and the nonlinearity n= - = - - n( ) ( ) ( ) ( )g x t g x t t e, ,n s
1
8

x
t

1
2

2

. The other

parameters are the same as used in figure 2.
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5. Conclusion and discussion

In this paper we have focused on the dynamics of spin-1
BECs with spatiotemporally dependent nonlinearities. Here,
we take the sodium atom 23Na (N=3×106) as an example
to show how to create various soliton phenomena under the
condition that the Zeeman energy Ej satisfies E1+
E−1=E0. Breathing solitons can be observed when the

interactions n= - = - - n( ) ( ) ( ) ( )g x t g x t t e, ,n s
1

8

x
t

1
2

2

are spatio-
temporal nonlinearities and moving breathing solitons can
be observed when the spatiotemporally modulated non-

linearities are n= - = - - n( )( ) ( ) ( ) ( )g x t g x t t e, ,n s
1

8
1 x

t
1
2

2

with
confining frequencies in the transverse and axial directions
of ωx=20π Hz and ω⊥=50π Hz, respectively. When the
confining frequencies in the transverse direction are the

functions of t, quasi-breathing and resonant solitons may be
observed. For example, when the nonlinearities are spatio-
temporally modulated functions in the form of

l= - = - l d+( ) ( ) ( ( ))( ( ) ( ))g x t g x t e t, , 8n s
t x t 2

with the con-
fining frequencies w p= +( )cos t16 3 0.2 Hzx and ω⊥=
100π Hz, a quasi-breathing soliton can appear. A resonant
soliton can appear with the confining frequencies
w p= +( )cos t19 0.03 32 Hzx and ω⊥=100π Hz. Based
on the analytical expressions, we also discuss the impact of
radial confinement on the soliton behaviors. It can be found
that radial confinement ω⊥ can affect the period and ampl-
itude of the solitons. We take breather solitons as an
example to illustrate the impact of this in figure 8. Here, we
take w p w p= =^ ^50 Hz, 37 Hz and w p=^ 30 Hz
separately. Figure 8 shows that the periods become smaller
and the amplitude becomes larger with the decrease of radial

Figure 7. Evolution of the one-order moving breathing solitons with δ=1, ε=0 and the nonlinearity n= - = - - n( )( ) ( ) ( ) ( )g x t g x t t e, ,n s
1
8

1 x
t

1
2

2

.

The other parameters are the same as used in figure 3.

Figure 8. Impact of radial confinement on breathing solitons. The first to the third rows represent the time evolution of the density distributions
y y-∣ ∣ ∣ ∣( ) ( ),1

1 2
1

2 2 and y∣ ∣( )
0
2 2, respectively. The first column reveals the time evolution of the density distribution when ω⊥=50π Hz. The second

column shows the time evolution of the density distribution when ω⊥=37π Hz. The third column shows the time evolution of the density
distribution when ω⊥=30π Hz.
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confinement ω⊥. It should be pointed out that the present
results are based the effective one-dimensional model in
equations (1). As the equations include not only ωx but also
ω⊥ this allows some insight into the effect of radial trapping.
It would be useful to make a rigorous investigation on a truly
three-dimensional model in the future.

In summary, we have worked out the localized nonlinear
matter wave solutions of the three-component GPEs with
time- and space-dependent nonlinearities for F=1 spinor
BECs. These solutions are derived in terms of Jacobi elliptic
functions and the Mathieu equation by similarity transfor-
mation. Further, we illustrate that the localization of the
nonlinear matter wave takes the form of vector breathing
solitons, moving breathing solitons, quasi-breathing solitons
and resonant solitons. The dynamical stability of all types of
vector solitons is analyzed by numerical stimulation. The
results show that the one-order breathing solitons, quasi-
breathing solitons, resonant soliton and moving breathing
solitons apart from the matter wave ψ0 are all stable. We hope
that these dynamic behaviors of the spin-1 BECs with spa-
tiotemporal nonlinearities can be realized in future experi-
ments and help us to understand these phenomena further.
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