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Abstract. Supersolid phase is a phase of matter that is characterized by the combination of the off-
diagonal long-range order of superfluid and the diagonal long-range order of solid. Cold atoms with spin–
orbit-coupling, contact interaction and long-range interaction can provide systems for the research of
supersolid phase. Under the effect of spin-dependent potential and spin–orbit-coupling, hard-core ultra-
cold atoms with contact interaction can be shown to construct supersolid phase. The combination of soft-
core long-range interaction and spin–orbit coupling can establish exotic supersolid phase with spontaneous
breakdown of chiral symmetry. The optical Bragg scattering of cold atoms in optical lattices can be used to
detect supersolid phase. The study of supersolid phase will be helpful to the researches of matter phases.

1 Introduction

Supersolid phase is a phase of matter that contains the
coexistence of the off-diagonal long-range order of super-
fluid and the diagonal long-range order of solid [1–10]. To
get this supersolid phase, the breaking of two continuous
symmetries is necessary: continuous translational invari-
ance of crystal and phase invariance of superfluid [1–3].

Since 1969, there is a long history about the search-
ing for supersolid phase [11–16]. Recently, Helium-4 has
been considered to construct the experimental observa-
tion of supersolid phase [5,7–10]. It is suggested that the
existence of supersolid phase can be found in condensates
of both hard-core and soft-core bosons with interaction
of long-range by theoretical analysis [17–22]. Systems of
ultra-cold atoms construct a convenient platform to inves-
tigate many kinds of quantum phenomena, because of the
high controllability of optical lattices. Various phases of
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Bose gases have been observed by the combination among
the external potential, interatomic interaction and spin–
orbit-coupling. The phenomena of supersolids can also be
investigated in the system of ultra-cold atomic gas with
spin–orbit-coupling.

Although there are abundant researches of spin–orbit-
coupling, many of these studies just concentrate on the
system of hard-core, that the interaction between atoms
can be considered as zero-range contact. Besides that, too
much attention has been attracted on the low dimensional
systems, however, on the base of many great studies of
one-dimensional and two-dimensional spin–orbit-coupling,
supersolid phase in high dimensional systems can be inves-
tigated conveniently.

In this article, several circumstances related to induc-
ing and observing supersolid phase are reviewed. Such
as the spin–orbit-coupling in hard-core Bose gas with
spin-dependent periodic potential which can generate the
supersolid phase [1], the soft-core long-range interac-
tion that can establish the chiral supersolid phase [2],
the supersolid phase in three-dimensional Bose gas with
Rashba type spin–orbit-coupling [3] and optical Bragg
scattering in optical lattices to detect supersolid phase [4].
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It is surprising that the combination of soft-core long-
range interaction and spin–orbit-coupling can induce the
chiral supersolid with the spontaneous circulating of
particles. The chirality imposed by spin–orbit-coupling is
considered to generate a finite angular momentum. It is
also revealed that different types of spin–orbit-coupling
such as Dresselhaus type and Rashba type can induce the
opposite chirality of the current of particles.

2 Supersolid induced by spin–orbit-coupling

It is a long history about the search of supersolids; never-
theless, short range interaction on the system of super-
solids in hard core bosons is of considerable in recent
times.

Under the effect of spin-dependent periodic potential,
we focus on two component Bose–Einstein condensates
with spin–orbit-coupling. This spin–orbit-coupling is real-
ized by the field of period pulsed potential, that is clas-
sified as Rashba–Dresselhaus type [23,24]. In general, the
laser beams of counter-propagating cross-polarized type
can be used to produce spin-dependent periodic poten-
tial [25,26]. By the means of Gross–Pitaevskii mean-field
approximation, the Hamiltonian [1] can be represented as:

H =
∫
drΨ†

(
−~2∇2

2m
+ Vso

)
Ψ +

∫
dr
∑
α=↑,↓

VαΨ∗αΨα

+
1
2

∫
dr

∑
α,β=↑,↓

gαβΨ∗α (r) Ψ∗β (r) Ψβ (r) Ψα (r) (1)

where Ψ = [Ψ↑ (r) ,Ψ↓ (r)]> is the normalized order
parameter with complex value, which is normalized by the
number of whole particles expressed as

∫
drΨ†Ψ = N .

aαβ is the s-wave scattering length which character-
izes the interaction strength of the atoms gαβ =
4π~2aαβ/m. The term of spin–orbit-coupling is defined as
Vso = −i~ (κxσx∂x + κyσy∂y), where Pauli matrices are
described as σx,y and the strengths of spin–orbit-coupling
represented as κx,y. In the case of κx = κy which means
isotropic, this type of spin–orbit-coupling is classified as
Rashba type. The periodic potentials depend on spin
expressed as V↑ = V0 sin2 (πx/a) and V↓ = V0 cos2 (πx/a),
which represent the spin-up and spin-down atoms, respec-
tively (Fig. 1).

In the case that the interaction of atoms is fixed, the
transition from the phase of superfluid to the phase of
supersolid is observable, with the increasing strength of
Rashba spin–orbit-coupling written as κ. Specially, when
the strength of spin–orbit-coupling is weak, the ground
states of the alternating spin domains’ system, where the
atoms with spin-up and spin-down fill the stripes are sep-
arated. Although the spin-dependent periodic potential
breaks the translational symmetry towards the direction
of x, the translational symmetry towards the direction of
y is preserved. The y direction’s translational symmetry
will be broken spontaneously if the spin–orbit-coupling is
larger than the critical point. In consequence, we consider
the stabilized new phase as the superfluid phase, with the

Fig. 1. The line density of vortices as a function of the
depth of periodic potential. The line density nv decreases when
the periodic potential depth V0 increases, and falls to zero
when V0 = 35π2~2/ma2 which represents the transition point
between the phase of supersolid and the phase of superfluid.
The insets density change of vortex and the distribution of
atomic momentum are described by the insets. The strength
of Rashba type spin–orbit-coupling is fixed that κ = 4π~/ma.
This figure is taken from reference [1].

periodic density modulation towards y direction. Induced
by spin–orbit-coupling, the strip phase towards the direc-
tion of y can be used to illustrate this new density mod-
ulation. It should be noted that there are some textures
of exotica existing with this so called superfluid phase.
There are differences between the supersolid phase and
the superfluid phase such as the momentum distribution.
In the case of superfluid phase, the atoms condensate at
discrete points of the edge of the Brillouin zones with finite
values of momentum, while in the case of supersolid the
peaks of momentum distribution separated from ky = 0 to
ky = ±δ, where δ ∈ (0,mκ/~) is the separation distance
that depends on the depth of the periodic potential and
the strength of the spin–orbit-coupling.

Besides the y direction modulation of density distribu-
tion, the chains of vortex and anti-vortex in the domains
of spin-up and spin-down construct the vortex lattice that
characterize the supersolid phase. The competition of the
periodic potential and the spin–orbit-coupling stabilizes
these two arrangements of the vortices. In the case of tri-
angular lattice, there are staggered vortices of neighboring
chains. While in the case of rectangular lattice, there are
parallel vortices of neighboring chains.

It should be noted that there is no direct association
between the vortex lattice and the supersolid phase [18],
as shown in the system of supersolid droplet crystals. In
the traditional systems, artificial magnetic fields and rota-
tion are used to creating supersolid vortices, while the
interplay of the interatomic interactions, spin-dependent
periodic potential and spin–orbit-coupling can generate
vortices directly in the present system [19,22].

The alternating propagating of plane wave on the oppo-
site directions of axis y can be used to illustrate the

https://www.epjd.epj.org
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Fig. 2. The diagram of ground-state phase spanned by the
Rashba type spin–orbit-coupling strength written as κ and the
depth of periodic potential written as V0. The phase of super-
fluid (SF), the phase of triangular supersolid (TSS) and the
phase of rectangular supersolid (RSS) can be identified by the
phase diagram. The dimensionless parameter of interaction is
written as g̃ = 6000. This figure is taken from reference [1].

alternating arrangement of the chains of vortex and anti-
vortex. If we know that

∮
C vs · dl = 2π~Nv/m which is

named as Onsager–Feynman quantization condition [27],
the vortex line density can be expressed as nv = ky/π,
where the wave number is described as ky = δ. With the
increasing of the depth of periodic potential V0, the vortex
line density decreases to 0 from mκ/π~, in the precondi-
tion that there is a given strength of spin–orbit-coupling
κ. It is shown in numerical simulations (Fig. 2).

The system of Bose gas with two components can be
regarded as the magnetic system. Then there exists the
possibility that the transition of the supersolid is related
with the ordering of magnetic structure. The vector of spin
density is represented as S = Ψ†σΨ/|Ψ|2 with the repre-
sentation of pseudo-spin, where the vector of Pauli matrix
is described as σ. In the form of meron and anti-meron
pair crystal, spontaneous magnetic ordering can be rep-
resented by the texture of spin [28]. Meron pairs exist in
the domain of spin-up, while anti-meron pairs exist in the
domain of spin-down. It should be noted that the topo-
logical configuration with the spin-up or spin-down points
that rotate away from the core of meron represents the
meron. There is a so-called circular hyperbolic structure
corresponding to the meron pair of the anti-meron pair
with the opposite orientation of spin.

The topological charge (Chern number) Q represented
as the spatial integral of the density of topological charge
q (r) = (1/8π) εijS·∂iS×∂jS, characterizes the topological
spin textures. The density distribution of the topological
charge in the cases of rectangular lattice and triangular
lattice is presented in the figures. In should be noted that
both the pairs of meron and anti-meron are topologically

non-trivial. The value of the topological charge is 1 in
the case of meron pair, while the values of the topolog-
ical charge is −1 in the case of anti-meron pair. In the
superfluid phase of topological trivial, the values of the
topological charge are 0.

The bulk rotation usually stabilizes the lattices of
topological spin texture, such as skyrmion lattices and
meron pair [29–31]. In recent times, interplay between har-
monic trap and spin–orbit-coupling is used to realize the
skyrmion lattices [32]. It is easy to show that the inter-
play between the spin-dependent periodic potential and
the spin–orbit-coupling can also stabilize the skyrmion
lattices within a very large regime of the strength of the
interaction of atoms. In the conditions of realistic with-
out the method of Feshbach resonance, this strength of
interaction can be experimentally realized naturally. Con-
sequently, the method of creating and manipulating the
texture of topological spin in the system of spin–orbit-
coupling is provided by the above observation.

The supersolid phase properties have been discussed in
the sections above and now we can focus on the appear-
ing of superfluid phase when the strength of spin–orbit-
coupling is weak. In this case, along the axis y the trans-
lational symmetry is preserved, the density modulation of
the system is not supported. Nevertheless, the existence
of spin–orbit-coupling can break the symmetry of spin-
rotation in the plane of Sx–Sy and realize the domain
walls of spontaneous chiral.

To illustrate this phenomenon clearly, the effect of spin–
orbit-coupling with the two component condensates rela-
tive phase θ↑− θ↓, where the phases of the wave functions
of spin-up and spin-down are represented as θ↑ and θ↓,
respectively. The Hamiltonian of the system is not depen-
dent on the two components’ relative phase when the spin–
orbit-coupling is absent. Under the effect of spin–orbit-
coupling, except the periodic jumps along the axis x, the
phase of superfluid does not alter, then we can get that
∇θ↑ = ∇θ↓ = 0. Because of the translational symmetry,
we can make an approximation about the gradient that
∂y|Ψ↑|2 ' ∂y|Ψ↓|2 ' 0, then we can represent the term of
spin–orbit-coupling as:∫

Ψ†VsoΨdr = 2κ
∫
|Ψ↓|∂x|Ψ↑| sin (θ↑ − θ↓) dr (2)

the Hamiltonian is dependent with the relative phase
written as θ↑ − θ↓, under the effective of the spin–orbit-
coupling. Let the energy functional minimized, relative
phase of the wave function of the ground state is located
at the points ±π/2, where the sign ± of this point is corre-
sponding to the sign of the gradient ∂x|Ψ↑|. Consequently,
the modulation of the periodic density along the axis x
generates the alternating of a relative phase between the
−π/2 and the π/2.

The domains of spin-up and spin-down are separated by
the domain wall, the type of the domain walls are deter-
mined by the relative phase [33]. Analyze the vector of the
spin density S, it is easy to find that the relative density
determines the Sz component, while the relative phase
determines the spin projection direction in Sy–Sz plane
that illustrated by the azimuthal angle α = θ↓ − θ↑ =

https://www.epjd.epj.org


Page 4 of 13 Eur. Phys. J. D (2020) 74: 138

arctan (Sy/Sx). Without the effect of spin–orbit-coupling,
the arbitrary relative phase is found in the two component
condensates, then the projection of the spin can have arbi-
trary direction on the plane Sx–Sy within the domain wall.
With the effect of spin–orbit-coupling, the value of the rel-
ative phase is ±π/2, then the symmetry of spin rotation in
the plane Sx–Sy becomes broken. According to the rela-
tion that Sx = 2|Ψ↑||Ψ↓| cos (θ↑ − θ↓) /

(
|Ψ↑|2 + |Ψ↓|2

)
, in

this case we can have Sx = 0. Then the spins of the domain
wall become restricted in the plane Sy–Sz and the Bloch
wall is formed.

One of the domain wall’s important properties is the chi-
rality, that characterizes the left-handed rotation from the
right-hand rotation. In recent times, the chirality of the
domain wall has been explored in the system of ultra-thin
ferromagnetic films [34–36]. Opportunities for the design
of the spintronics device and the application in the pro-
cessing of information are given by the chirality of the
domain wall. By the means of altering the sign of spin–
orbit-coupling of Rashba type, we can manipulate the chi-
rality of Bloch wall in present system. While in the sys-
tem of real experiment, modulation of the rf field’s phase
is supposed to alter the sign of the spin–orbit-coupling of
Rashba type [23].

Interaction of the symmetry of SU(2) is discussed with
the relation that g↑↑ = g↓↓ = g↑↓. More than this situ-
ation, the case of g↑↑ = g↓↓ 6= g↑↓ which represents the
interaction of the symmetry of non-SU(2) should be con-
sidered. It is found that when the phase of the supersolid
stabilized with the interplay of the periodical potential
depth V0 with the interaction of SU(2) symmetry and the
strength of spin–orbit-coupling κ, the phase of supersolid
is favored by the interaction of asymmetry with g↑↑ > g↑↓.
In the case that g↑↑ < g↑↓, the difference between g↑↓
and g↑↑ is much smaller than g↑↓ that g↑↓ − g↑↑ � g↑↓,
the phase of the supersolid is stable too. In the case that
g↑↑ � g↑↓, the phase of supersolid is unfavorable, and
replaced by the phase of superfluid.

Now we focus on the anisotropy effect of spin–orbit-
coupling additionally. The phase of supersolid is found
with the decreasing of κx, in the case of Rashba spin-
obit-coupling, the phase of supersolid is stable in a given
range of κx < κy. With the increasing of the anisotropy,
there is a transition to the phase of superfluid of the
system. Specially, in the case that κx = 0, the spin–
orbit-coupling is unidirectional, and the phase of super-
solid with the texture of non-trivial topological spin
vanishes.

The system we discussed in this section is thought to
be experimentally realized with the condensates of 87Rb
atoms by magnetic states written as |F = 1,mF = −1〉
and |F = 1,mF = 1〉 in the manifold of the ground state
that F = 1. The combination of the pair of the laser
beams of cross-linear polarized counter-propagating and
the magnetic pulse can implement the potential of spin-
dependent periodic and the spin–orbit-coupling of Rashba
type [23–26]. In the case of typical experiment, consider
the system of the harmonic potential with frequencies
ωz ≈ 2π × 200 Hz and ω⊥ ≈ 2π × 40 Hz that trap the
atoms with the number of total atoms N = 1.7 × 105

and the scattering length of s-wave aαβ ≈ 100aB (where
aB describes the Bohr radius), the parameter of effective
interaction is obtained that g̃ ≈ 6000. Using 10.6µm CO2

laser, the lattice constant a can be produced coinciding
with the value π

√
~/mω⊥.

By the measurements of momentum distribution using
the technique of time-of-flight imaging [37] or the in-situ
measurements [38,39] of the structure of lattice, the phase
of supersolid can be identified. By the imaging technique
of the magnetization-sensitive phase-contrast, the config-
urations of the topological spin of the textures of the
meron-pair can be imaged with a high resolution of spa-
tial non-destructively, as well as the domain walls of chi-
ral. The extracting of the relative phase of the imaging
technique of dual state can also determine the chirality of
domain wall (Fig. 3).

As a conclusion of this section, in the system of spin-
dependent periodic potential, Bose–Einstein condensates
with the spin–orbit-coupling are reviewed. It is shown that
the combination of the spin-dependent periodic potential
and the spin–orbit-coupling results in the appearance of
the phase of supersolid, that characterizes the coinciden-
tal ordering of magnet with the textures of topological
non-trivial spin. The diagram of the phase of the sys-
tem the changing depth of the periodic potential and
the strength of the spin–orbit-coupling, the effects of the
anisotropic spin–orbit-coupling and the asymmetric inter-
action of atoms are reviewed. We also discussed the exper-
imental situations about the realization and the observa-
tion of the supersolid phase.

3 Chiral supersolid

In this section, the quantum phase of the ground state
of Bose gases with the long-range interactions of soft-
core and spin–orbit-coupling is reviewed. It is surpris-
ing that the interplay between the long-range interac-
tion of soft-core and spin–orbit-coupling can result in
chiral supersolid spontaneous circulation of the parti-
cles of which appears in all of the unit cells [2]. Then
the chirality under the effect of the spin–orbit-coupling
generates an angular momentum of finite value [40,41],
which violates the general prediction that the many-
body system’s ground states can not have the total
angular momentum with finite value and goes further
than the conventional means of the angular momen-
tum yielded by the synthetic magnetic fields [42] or
the external rotation [43,44]. The angular momentum’s
orientation is corresponding to the separation form of
the phase, able to be changed by the adjusting of
the inter-atom interaction or the strength of spin–orbit-
coupling. It should be noted that the different type of the
spin–orbit-coupling such as Rashba type or Dresselhaus
type results in opposite orientation of particle current
chirality.

Consider the system of Bose–Einstein condensate with
the homogeneous two-dimensional spin–orbit-coupling
and the long-range interaction of soft-core. Using the
Gross–Pitaevskii mean-field approximation, Hamiltonian

https://www.epjd.epj.org
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Fig. 3. Chirality of the domain wall. (a) The relative phase
section view along axis x, where relative phase is written as
θ↑ − θ↓. The relative phase is fixed at ±π/2 by the effect of
Rashba type spin–orbit-coupling, and the relative phase peri-
odic modulation between π/2 and −π/2 is induced by the
densities’ periodic change along axis x. (b) Bloch walls of
right-handed chirality stabilized by positive strength of Rashba
type spin–orbit-coupling that κ > 0. (c) Bloch walls of left-
handed chirality stabilized by negative strength of Rashba type
spin–orbit-coupling that κ < 0. These figures are taken from
reference [1].

of this system is represented as:

H =
∫
drΨ†

(
−~2∇2

2M
+ VSO

)
Ψ

+
1
2

∫
dr

∑
i,j=↑,↓

gijΨ∗i (r)Ψ∗j (r)Ψj(r)Ψi(r)

+
1
2

∫
drdr′

∑
i,j=↑,↓

Ψ∗i (r)Ψ∗j (r
′)Uij(r−r′)Ψj(r′)Ψi(r)

(3)

where Ψ = [Ψ↑ (r) ,Ψ↓ (r)]> is the order parameter of
spinor, r = (x, y) is normalized with

∫
drΨ†Ψ = N .

The term of spin–orbit-coupling is represented as VSO =
−i~κ (σx∂x ± σy∂y), where Pauli matrices are described
as σx,y, the strength of spin–orbit-coupling is described as
κ. The type of the spin–orbit-coupling is distinguished by
the sign ±, the Rashba type described by sign + while the
Dresselhaus type described by sign −. The gij represents
the contact interaction strength, in the case of SU(2) sym-
metry we have g = g↑↑ = g↓↓ = g↑↓. The long-range inter-
action of the soft-core described by the effective potential
which presented as Uij (r) = C̃

(ij)
6 /

(
R6
c + |r|6

)
, the inter-

action strength written as C̃(ij)
6 and the blockade radius

written as Rc [45].
The ground states of many-body system can be

obtained through the numerically minimizing of the
Hamiltonian functional. Without the effect of spin–orbit-
coupling, the phase of supersolids with the softening of
roton-type mode is induced by the long-range interaction
of soft-core [45]. Due to the chiral operation Ô = K̂, the
Hamiltonian of the system is symmetric. The chiral sym-
metry is broken by the effect of the type of Rashba or
Dresselhaus spin–orbit-coupling and the the phase of
exotic chiral supersolid with the phase of clockwise or
counter-clockwise circulation possessed each unit cell.
Then the two components of spin are separated along
the orientation of radius in unit cell. The intra-component
interaction always exists in the centre that is surrounded
by the stronger intra-component interaction with opposite
spin. While the core component’s phase is trivial, the vor-
tex of each unit cell is formed by the phase gradient valued
2π along the path closed around the toroidal component.
It should be noted that there is a surprising observation
that the same orientation of circulation is chosen by all
of the vortices, that is distinctive compared to the hard-
core system of spin–orbit-coupling, where there are paired
vortices and anti-vortices [32,46–51] (Fig. 4).

In order to illustrate the aligned vortices with a better
picture, using polar coordinates, the term of Rashba spin–
orbit-coupling is written as:

HSO =−2κ
∫

Λ0

dr Re
[
Ψ∗↑ exp (−iϕ)

(
i
∂

∂r
+

∂

r∂ϕ

)
Ψ↓

]
(4)

where we write the core component as θ•, to avoid the dis-
sipation of energy, there must have ∂θ•/∂ϕ = 0. Neglect
the radial diffusion and consider rotational symmetry,
assume that ∂θj/∂r = 0 and ∂nj/∂ϕ = 0, the term of
spin–orbit-coupling becomes:

HSO =2κ
∫

Λ0

dr [sin (θ• − θ◦ ± ϕ)
√
n◦∂r

√
n• ] (5)

where the component of surrounding toroidal is written
as θ◦, when the core component is spin-up or spin-down,
the sign ± takes + or −. To minimize the energy of spin–
orbit-coupling, we have:

θ• − θ◦ ± ϕ =
π

2
+ 2πl, (l ∈ Z) (6)

https://www.epjd.epj.org


Page 6 of 13 Eur. Phys. J. D (2020) 74: 138

Fig. 4. Chiral supersolid phase induced by soft-core long-range
interactions and Rashba type spin–orbit-coupling. The distri-
butions of density and phase are shown in (a) and (b) with the

soft-core long-range interactions that C̃
(↑↑)
6 N = 2C̃

(↓↓)
6 N =

2500 ~2R4
c/M , and in (c) and (d) with the soft-core long-range

interactions that 2C̃
(↑↑)
6 N = C̃

(↓↓)
6 N = 2500 ~2R4

c/M . The ele-
vation of quantity is illustrated by the arrow orientation in
color wheel. These figures are taken from reference [2].

where the value of the core component θ• is a con-
stant. Consequently we have the result that the surround-
ing component θ◦ tends to have the 2π or −2π valued
phase gradient when there is a spin-up or spin-down core
component.

The phase non-trivial circulation and the separation of
radial phase are considered as the textures of topological
spin. Write the Bloch vector as s = Ψ†σΨ/|Ψ|2, project
the state Ψ on the unit Bloch surface, we can get that
sx = ±

√
1− s2

z sinϕ, sy = ∓
√

1− s2
z cosϕ, and sz =

(n↑ − n↓) / (n↑ + n↓).
Within the unit cell, the particle current of spontaneous

circulating is acquired by the chiral supersolid. In the the-
ory of hydrodynamic, the conservation of mass requires
the presentation of actual particle current with the exis-
tence of gauge potential that:

j =
~

2Mi

[
Ψ†∇Ψ−

(
∇Ψ†

)
Ψ
]
− 1
M

Ψ†AΨ (7)

where A = −κM (σx, σy) describes the gauge poten-
tial in the case of Rashba type spin–orbit-coupling, A =
−κM (σx,−σy) describes the gauge potential in the case
of Dresselhaus type spin–orbit-coupling. The first term is
the canonical part of the current of the particle that cor-
responding to the phase gradient ∇θj , the second term is
the gauge part due to the phase difference between core
and surrounding component θ•−θ◦. In the case of Rashba
spin–orbit-coupling, we represent the current of particle
as:

jR =
~
M

n◦
r
ê±ϕ − 2κ

√
n↑n↓ê±ϕ (8)

where the sing ± of ê±ϕ is determined by the spin of the
core component, that in the case of spin-up we have ê+ϕ

corresponding to counter-clockwise while in the case of
spin-down we have ê−ϕ corresponding to clockwise. The
gauge and canonical parts of the currents of the particle
always have the opposite orientation of circulation which
guarantee the cost of energy keeps less. Specially, in the
case that the strength of spin–orbit-coupling is stronger,
the gauge part becomes dominant and the orientation of
the circulating and the spin in the core of the vortex satisfy
the rule of left-hand. In the case of Dresselhaus spin–orbit-
coupling, the current of the particle is represented as:

jD = − ~
M

n◦
r
ê±ϕ + 2κ

√
n↑n↓ê±ϕ (9)

then the opposite particle current chirality is induced by
the spin–orbit-coupling of Dresselhaus type.

It is implied by the existence of the chiral circulating
current, that there is an angular momentum of finite value
exists in the supersolid phase ground state. In unit cell, the
Rushba spin–orbit-coupling induces the angular momen-
tum that represented as:

lz = ±
∫

Λ0

dr
[
~n◦ − 2κM

√
n↑n↓r

]
(10)

the system’s total angular momentum can not be zero,
because all the vortices circulate with the same orien-
tation. It should be noted that the breaking of chiral
symmetry leads to the appearance of the finite angular
momentum. Additionally, the orientation of the spin in
the core of vortex determines the angular momentum’s
direction. Therefore, the changing of the relative strength
of the interactions of the intra-component expressed
as C̃

(↓↓)
6 and C̃

(↑↑)
6 can alter the direction of angular

momentum.
In chiral supersolid, the angular momentum of total spin

is non-zero too. Through the numerical simulations, it is
found that there are much more particles in the core of
vortex with weak strength of intra-component interaction,
than the particles in surrounding ring. As the parame-
ters are examined, the surrounding component just con-
stitutes less than 10% particles in total. It is also found
that the orientations of the orbital angular momentum
and the total spin angular momentum are same in the
case of Dresselhaus spin–orbit-coupling while opposite in
the case of Rashba spin–orbit-coupling.

The phase diagram of the ground state is considered as
the function of the strengths of spin–orbit-coupling and
the long-range interaction of soft-core by the means of
running the codes of parameter grid values. We have dis-
cussed the phase of chiral supersolid (CSS) before, and dis-
cover other two types of supersolid phase that are named
as the phase of standing-wave supersolid (SWSS) and the
phase of plane-wave supersolid (PWSS). The system ren-
ders a breaking of translational symmetry to construct
the structure of crystalline, as the demand of the phase of
supersolid in both SWSS and PWSS cases. In the case of
SWSS phase, the strip formation and modulation of den-
sity characterize the wave function of condensate. In the
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Fig. 5. (a) Phase diagram generated by changing the

strengths of soft-core long-range interaction written as C̃
(↓↓)
6

and C̃
(↑↑)
6 . The strength of spin–orbit-coupling is fixed that

κ = 4 ~/MRc. (b) Phase diagram generated by changing
the strength of Rashba type spin–orbit-coupling written as κ
and the strength of soft-core long-range interaction written as

C̃
(↓↓)
6 . The strength of soft-core long-range interaction is fixed

that C̃
(↑↑)
6 N = 2500 ~2R4

c/M . These figures are taken from
reference [2].

case of PWSS phase, along the given direction the mod-
ulation of phase is featured by the wave function of local
condensate in unit cell. It should be noted that the local
structures of the phases of SWSS and PWSS are similar to
the phases of strip and plane-wave, which is due to com-
petition between the interactions of inter-component and
intra-component.

In the case that C̃(↓↓)
6 = C̃

(↑↑)
6 , the Hamiltonian of the

system possesses a symmetry of time reversal expressed
as T̂ = iσyK̂. In chiral supersolid ground state, this time
reversal symmetry will be broken spontaneously (Fig. 5).

The phase of anomalous chiral supersolid (ACSS) phase
is found in the phase diagram. The chirality is fea-
tured by the ACSS phase with finite orbital and spin
angular momenta as well as the phase of CSS investi-
gated before. There is a difference that weaker intra-
component interaction spin component prefers to dwell
in surrounding toroidal ring than the core of vortex. In
the case of traditional Bose–Einstein condensate without
the effect of spin–orbit-coupling, this separation of phase
is unfavorable in general [52]. Nevertheless, in the case of
strong spin–orbit-coupling, a large angular momentum is
required that is accommodated by the higher density of
particle number easily. It should be noticed that by the
means of adjusting the interatomic interaction and the
strength of spin–orbit-coupling, the phases of CSS can be
turned to the phases of ACSS through the phase transi-
tion, the orientation of the angular momentum can also
be changed.

In the case that one of the interactions of intracompo-
nents C̃(↓↓)

6 and C̃
(↑↑)
6 is weak, the existence of the phase

of spin-polarized superfluid is found. In this spin-polarized
superfluid phase, the component of long-range interaction
of soft-core is where all the particles condensate, the phase
and the density distribution in space is uniformed.

As the conclusion of this section, with the effect of long-
range interaction of soft-core, the phase diagram of the
ground state of the Bose gases of spin–orbit-coupling is

reviewed. The supersolid phase with exotic chirality can
be stabilized in this system.

4 Supersolid in three-dimensional system

With the effect of in-plane isotropic spin–orbit-coupling
of Rashba type, the system of homogeneous three-
dimensional two-spices Bose gases [3] is considered and
represented by the Hamiltonian:

H =
∫
d3r

∑
σ=↑,↓

[
ψ†σ

(
−~2∇2

2m
− µ

)
ψσ + g

(
ψ†σψσ

)2]
+
∫
d3r

[
2g↑↓ψ

†
↑ψ↑ψ

†
↓ψ↓ +

(
ψ†↑R̂ψ↓ + h.c.

)]
(11)

where the ψσ and ψ†σ are bosonic operators which sat-
isfy the relation of commutation that

[
ψσ (r) , ψ†σ′ (r

′)
]

=

δσσ′δ
3 (r− r′), the chemical potential is written as µ, the

interaction of inter-species and intra-species are written as
g↑↓ and g, R̂ = λ (p̂x − ip̂y) illustrates the in-plane spin–
orbit-coupling, the strength of this Rashba type in-plane
spin–orbit-coupling is written as λ. For convenience, we
use the Rydberg atomic units that 2m = ~ = kB = 1.
Write the condensate density as n0, the basic scale of
energy is set as gn0, thus

√
gn0 is the corresponding basic

scale of momentum.
Due to the translational invariance, this Hamiltonian

has significant properties. In the case of non-interacting
system, there are huge degenerate states of the low-
est energy, that locate at the Rashba ring described by
q2
x+q2

y = (λ/2)2. When the interactions exist, this system
might favor a striped phase or plane wave phase, depend-
ing on whether g < g↑↓ or g > g↑↓. The stripe phase is
characterized by translational invariance’s spontaneously
being broken and the linera combinations of plane wave
pairs with momenta of opposite directions, while the phase
of plane wave involves just a single momentum of con-
densation. In general, the continuous symmetry’s spon-
taneously being broken is expected to be the origin of
the new mode of gapless Goldstone type. It is assumed
that the direction of the momentum of the condensa-
tion is parallel with the axis x that K = Kx̂. The form
of the wave function of the condensate is represented as
φ0σ (r) =

∑
α φ0ασe

i(2α−1)K·r, where σ is pseudo-spin and
there is integer value of α.

Consider the parameters of variation φ0ασ and the con-
straint condition of K that the value of the density of
total particle number is fixed at n0, the energy of ground
state can be minimized, then the mean-field construct of
the wave function of condensate is obtained, including the
terms of opposite signs of phase e±iKx, e±i3Kx, . . . cor-
responding to the modulation of density. The long range
order of diagonal is expected to be exit by the periodic
modulation shown by the density distribution.

Based on the top of the ground state of the mean-
field, quantum fluctuation is considered. By the means
of functional integral, this problem is treated system-
atically. The system’s partial function is represented as
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Z =
∫
d
[
ψ†σ, ψσ

]
e−S , where the action S is described as

S =
∫ 1/T

0
dτ
[∫
d3r

∑
σ ψ
†
σ∂τψσ +H

(
ψ†σ, ψσ

)]
[53], tem-

perature is written as T . Using the theory of Bogoliubov,
the Bose field ψσ is written as the summation of fluc-
tuating part φσ and mean-field part φ0σ, illustrated by
ψσ = φσ + φ0σ. The effective action is represented as
Seff = S0 + Sg =

∫
dτd3r (L0 + Lg), where the mean field

action and the Gaussian action are written as S0 and Sg,
the mean field Lagrangian and the Gaussian Lagrangian
are written as L0 and Lg. The expressions of L0 and Lg
can be written as:

L0 =
∑
σ

[
φ∗0σ

(
−∇2 − µ

)
φ0σ + gn2

0σ

]
+ 2g↑↓n0↑n0↓ +

(
φ∗0↑R̂φ0↓ + c.c

)
(12a)

Lg =
∑
σ

[
φ†σ

(
∂τ + ξ̂σ

)
φσ + g

(
φ2

0σφ
†2
σ + h.c.

)]
+
(
φ∗↑R̂φ↓ + h.c.

)
+ 2g↑↓

[(
φ∗0↑φ

∗
0↓φ↑φ↓ + φ∗0↑φ0↓φ↑φ

†
↓

)
+ h.c.

]
(12b)

where ξ̂σ = −∇2−µ+4gn0σ +2g↑↓n0σ̄ and n0σ = φ∗0σφ0σ

are used for simplification. As well as the solution of
mean-field that φ0σ (r), the fluctuation fields φ̂σ (r) are
expanded as:(

φ↑ (r)
φ↓ (r)

)
=
∑
qα

(
φqα↑
φqα↓

)
ei(2α−1)K·reiq·r (13)

using this expression, we can represent Sg as:

Sg =
∑
qασ

φ†qασ
[
−iwn + q2

α − µ
]
φqασ

+
∑
qα

(
Rqαφ

†
qα↑φqα↓ + h.c.

)
+
∑
qαβσ

[
φ†qασφqβσ

∑
α1+α=α2+β

×
(
4gφ∗0α1σφ0α2σ2g↑↓φ∗0α1σ̄φ0α2σ̄

)
+ g

∑
α1+α2=α+β

(
φ0α1σφ0α2σφ

†
qασφ

†
−qβσ + h.c.

)]

+
∑
qαβ

2g↑↓

[ ∑
α1+α2=α+β

(
φ∗0α1↑φ

∗
0α2↓φqα↑φ−qβ↓+h.c.

)
+

∑
α1+α=α2+β

(
φ∗0α1↓φ0α2↑φ

†
qα↑φqβ↓ + h.c.

)]
. (14)

It is defined that Rq = λ (qx − iqy) and qα =
q + (2α− 1) K. In order to express the Gaussian
action concisely, the column vector is defined as Φq =(∏

α φqα↑φqα↓
∏
β φ
†
−qβ↑φ

†
−qβ↓

)T
, where α and β are

integers and grouped in order of ascending. Then we can
write the Gaussian action as Sg = 1

2

∑
(q,iwn) Φ†qG−1Φq−

∑
qα

ξqα
2 , where the bosonic Matsubara frequencies are

described as wn, ξqα = [q + (2α− 1) K]2 +(2g + g↑↓)n0−
µ. We can also construct the matrix elements of
G−1
ασ;α′σ′ (q, iwn), the inverse Green’s function conve-

niently from the equation above.
By the means of solving the secular function of the

inverse Green’s function that detG−1 (q, iwn) = 0, the
excitation spectrum of the system can be found. In
the case of plane wave phase [54,55], the excitation has
been calculated, without the consideration of the spinor
of the system, there is only one gapless branch. Consider
the propagating of excitation in three dimension Cartesian
coordinate system with the coordinates x, y and z, name
the corresponding wave vectors as qx, qy and qz. The exci-
tation spectrum’s four branches are shown. The appear-
ance of the double gapless bands makes the stripe phase
different from the uniform phases, due to the sponta-
neous breaking of the U(1) gauge symmetry and the
translational invariance symmetry. The period configu-
ration in the space of momentum is shown by the exci-
tation along the axis x. The behavior like free particle
that ω1 (0, δqy, 0) ∝ (δqy)2 along the axis y is shown by
the lowest branch, while the behavior like phonon that
ω1 (0, 0, δqz) ∝ δqz is shown that along the axis z.

To find out the gapless band corresponding to the trans-
lational invariance symmetry breaking, we focus on the
velocity of sound. In the case that the two gapless bands
are limited with the limitation of long wave, the veloci-
ties of sound along the axis x are presented. When the
value of interaction parameter g↑↓/g decreases, the value
of the lower sound velocity VS1 decreases as a result, finally
vanishes at gc↑↓/g = 1 which named as transition point.
Then it is indicated that the VS1 is relative with the
Goldstone mode with the spontaneous breakdown of con-
tinuous translational symmetry. When the value of inter-
action parameter crosses the transition point, the varia-
tion of higher velocity VS2 is continuous. We consider this
as the sound velocity of conventional superfluid due to the
breakdown of U(1) gauge symmetry.

We have shown the sound velocities’ two branches’
directional dependence. It is obviously that both of the
two branches of sound velocities have the mirror sym-
metry that VS (θ, ϕ) = VS (θ, π + ϕ) = VS (π − θ, ϕ). It
should be noted that the lower branch sound velocity VS1

vanished along the axis y, while the higher branch sound
velocity VS2 always has finite value along all the direc-
tions. Along the directions of axis x and axis z, the veloc-
ities of sound are slight different, that shows the Rashba
spin–orbit-coupling inducing anisotropy.

In this system, the thermodynamic potential can be
written as Ω = −T lnZ = Ω0 + Ωg = TS0 + T

2 Tr lnG−1−
1
2

∑
qα ξqα. Because of the assurance of the non-divergent

behaviors, we should renormalize the interactional param-
eters g↑↓ and g [56,57]. The correction of quantum fluc-
tuation to the energy of ground state that ∆EG = Ωg
is presented. As the strength of inter-species g↑↓ turned
across the strength of intra-species g, the sign of the
correction ∆EG is reversed. In the case of stripe phase,
∆EG increases when g↑↓ increases, while in the case of
plane wave phase, ∆EG increases when g↑↓ decreases. It

https://www.epjd.epj.org


Eur. Phys. J. D (2020) 74: 138 Page 9 of 13

Fig. 6. The velocities of sound VS1 and VS2 along the axis x for
the two lowest excitation branches as a function of interaction
parameter written as g↑↓/g. VS1 appears from the point that
translational invariance is broken, and vanishes at the point of
transition that gc

↑↓ = g (red vertical dash line) where the phase
of supersolid gives away to the phase of plane wave. VS2 rep-
resents the conventional sound mode corresponding to sponta-
neous breakdown of internal gauge symmetry. The parameter
has the value that: λ/

√
gn0 = 4. This figure is taken from

reference [3].

is indicated that there is a first order phase transition
by the discontinuity of the ground state energy shifting.
The ground state energy correction is enhanced by the
spin–orbit-coupling. At the point of phase transition, it is
obvious that energy correction is lower, so the phase of
plane wave is preferred than the stripe phase. This is a
verification of the mechanism of “order from disorder” [3]
(Fig. 6).

The type of breaking symmetry in this system has fun-
damental effects. The discrete type symmetry leads to
robust states which corresponding to gapped excitations,
while the continuous type states results in infinite degen-
erate ground states which can evolve from each other with-
out the cost of energy, then this system is susceptible to
the effects of quantum fluctuation. In the case of Rashba
type spin–orbit-coupled Bose gases, the increasing of den-
sity of states of low energy will enhance the quantum fluc-
tuation significantly [55,58]. To make the system stable, a
finite quantum depletion is required. The quantum fluc-
tuation excited particle density is evaluated by Green’s
function as: nex =

∑
(q,iwn)

∑
ασ Gασ,ασ (q, iwn). Analysis

of the excitation spectrum low energy asymptotic behav-
ior shows absence of the infra-divergence that result in a
finite value of nex. The quantum depletion is enhanced by
the spin–orbit-coupling and the interspecies coupling. nex

is discontinuous at the point of transition that g↑↓ = g,
characterized by the phase transition of first-order.

Compared with the case of zero-temperature, spin–
orbit-coupling induced low energy state density increase
will change this system in the case of finite tempera-
ture [59,60]. To extend the celebrated Bogoliubov theory
from the case of zero-temperature to the case of finite
temperature, we need to consider the effects of the inter-
actions of the excitations. In this section, using the the-
ory of Popov approximation [61], in the condition of finite

Fig. 7. The sound velocities VS1 and VS2 that have the depen-
dence of the direction: (a) in the plane x–y; (b) in the plane
y–z; and (c) in the plane z–x. It should be noted that the veloc-
ity of sound of the lower branch written as VS1 vanishes along
axis y. The parameters have the values that: λ/

√
gn0 = 2 and

g↑↓/g = 2. These figures are taken from reference [3].

temperature, we can get a gapless spectrum and a suitable
description of Bose gases. Neglecting the anomalous aver-
ages, the terms of fluctuating fields are written as [57]:
φ†σφσφσ ≈ 2<φ†σφσ>φσ,

(
φ†σφσ

)2 ≈ 4<φ†σφσ>φ
†
σφσ and

φ†↑φ↑φ
†
↓φ↓ ≈ <φ†↑φ↑>φ

†
↓φ↓ + <φ†↓φ↓>φ

†
↑φ↑. Let the linear

term of fluctuating fields disappear, the chemical potential
shift can be written as: µ(T ) = µ(0)+(2g + g↑↓)nex, where
the density that excited out of condensates are written as:
nex =

∑
σ <φ

†
σφσ>. The Gaussian action here has a simi-

lar structure as before, except the temperature dependent
n0 (Fig. 7).

In this section, it is reviewed that supersolid phase exists
in the system of Rashba type spin–orbit-coupled ultra-cold
atomic condensates. This distribution of density presents
a periodic modulation with the breakdown of transla-
tional symmetry that can spontaneously chose the spa-
tial period. The elementary excitation propagates along
the orientation that perpendicular to the double gapless
bands featured by the stripe. The correction of quantum
fluctuation to the energy of ground state presents that the
discontinuous phase transition point is a first order tran-
sition point. The quantum depletion of the condensate is
enhanced by the spin–orbit-coupling and the interspecies
coupling. Using the method of Bragg spectroscopy [62],
the sound velocity and the excitation spectrum can be
probed.

5 Optical Bragg scattering of cold atoms in
two-dimensional optical lattices

Quantum manipulation and quantum simulation of quan-
tum phase can be studied on the system of ultra-cold
atoms in optical lattices. Nevertheless, it is difficult to
detect these quantum phases. In order to detect quan-
tum phases, optical Bragg scattering of ultra-cold atoms
loaded on optical lattices can be used, including tradi-
tional Mott insulting and superfluid phases, many kinds
of charge density wave (CDW) and valence bond solid
(VBS), charge density wave supersolid (CDW-SS) and
valence bond supersolid (VB-SS) [4].

The ultra-cold interacting bosonic atoms loaded on opti-
cal lattices are studied by a theory of optical Bragg scat-
tering. In this system, the optical Bragg scattering couples
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Fig. 8. The optical Bragg scattering of ultra-cold atoms in
the system of two-dimensional optical lattices. The transfer
energy and transfer momentum are written as ω = ω1 − ω2

and q = k1 − k2, respectively. The Aperture is represented as
A, and the PhotoMultiplier is represented as PM. (a) and (b)
shows the on-site term and the off-site term induced by the off-
resonant scattering processes, respectively. These figures are
taken from reference [4].

to the valence bond order parameter induced by the hop-
ping of the bosonic atoms on lattices, as well as the density
order parameter (Fig. 8).

In the system of two-dimensional optical lattices, the
Hamiltonian of the extended Bose–Hubbard model is rep-
resented as:

HBH = −t
∑
<i,j>

(
b†i bj +H.c.

)
− µ

∑
i

ni (ni − 1)

+ Vi
∑
<i,j>

ninj + V2

∑
<i,k>

nink + . . . (15)

where the boson density is described by ni = b†i bi; the
nearest neighbor hopping is described by t, tuned by
the optical lattice potential depth; the onsite interaction,
the nearest neighbor interaction and the next nearest
neighbor interaction are described by U , V1 and V2, respec-
tively; the possible ring-exchange interactions and further
neighbor interactions are described by the ellipsis sym-
bol. The filling factor is described by n = Na/N , where
atoms’ number is described by Na, lattice sites’ num-
ber is described by N . The Feshbach resonance can be
used to tune the onsite interaction U [63]. Many types of
optical lattices can be realized by constructing the suit-
able optical lattices with the suitable geometry of leaser
beams, such as Kagome, body-centered-cubic, triangu-
lar and honeycomb lattices [64,65]. In the optical lat-
tices, long range interaction interactions of the ultra-cold
atoms can be constructed in many ways. In the system of
the two-dimensional optical lattice loading Chromium-52
atoms [66] or polar molecules [67] with dipole moments
vertical to the trapping plane is represented by extended
boson Hubbard model with p3/r2 which described the
long range repulsive interaction, where the dipole moment
is described by p. By the numerical simulation, the
CDW-SS could be found stable in this system within a
large regime of parameter.

The Hamiltonian of the interaction between the two
laser beams with two level ultra-cold bosonic atoms is

written as:

Hint =
∫
d2rΨ†(r)

[ p2

2ma
+ VOL(r) +

~ωa
2
σz

+
Ω
2

∑
l

(
e−iωltσ+ul(r) + h.c.

) ]
Ψ(r) (16)

where the operator of two component boson annihila-
tion is represented as Ψ(r) = (ψe, ψg), frequencies ωl
are the frequencies of the incident and scattered lights,
ul(r) = eikl·r+iφl are the mode functions. In this sys-
tem, Rabi frequencies Ω are very weak when compared
with the laser beams that constructing the optical lat-
tices. The difference of the two energy level is ωa, then
the detunings of laser atoms are ∆l = ωl − ωa, when it is
far away from the resonance. Difference of the energy level
is much larger than the energy transfer ω = ω1 − ω2 and
the Rabbi frequency Ω, then we can make an approximate
that ∆1 ∼ ∆2 = ∆. Let the upper energy level e be elim-
inated adiabatically, expanding the field operator of the
ground state atom as ψg(r) =

∑
i biw (r − ri), where the

Wannier functions of the VOL(r) corresponding to lowest
Bloch band are represented as w (r − ri), the atom’s anni-
hilation operator on the site i is represented as bi. Then
the Hamiltonian of the effective interaction between the
ground state g and the off-resonant laser beams is repre-
sented as:

Hint = ~
Ω2

∆
e−iωt

 N∑
i

Ji,ini +
N∑

<i,j>

Ji,jb
†
i bj

 (17)

where Ji,j =
∫
drw (r − ri)u∗1(r)u2(r)w (r − rj) = Jj,i

represents the matrix element of interaction,
∑N
i Ji,ini

represents the on-site interaction and we can define that
D̂ =

∑N
i Ji,ini,

∑N
<i,j> Ji,jb

†
i bj represents the off-site

interaction and we can define that K̂ =
∑N
<i,j> Ji,jb

†
i bj .

In the lowest Bloch band, Wannier function can be consid-
ered as real function, so we represent off-site interaction
as K̂ =

∑N
<i,j> Ji,j

(
b†i bj + h.c.

)
, b†i bj + h.c. is the off-

site coupling to the Bose atoms’ nearest neighbor kinetic
energy, we can define that Kij = b†i bj + h.c.

It is obvious that:

D̂ (q) = f0 (q)
N∑
i=1

e−iq·rini = Nf0 (q)n(q) (18)

where f0 (q) =
∫
dre−iq·rw2(r), q = k1−k2, and the den-

sity operator’s Fourier transformation at the momentum q

represented as n (q) = 1
N

∑N
i=1 e

−iq·rini =
∑

k b
†
kbk+q. It

should be noted that n (q) = n (q +K), where the recip-
rocal lattice vector is represented as K. The wave vector
q is confined in an interval that L−1 < q < a−1, where
L ∼ 100µm represents the trap size and a ∼ 0.5µm rep-
resents the lattice constant. Actually, the off-site kinetic
coupling contains much more interesting information. In
the optical lattice of square structure, since the orienta-
tion of the bonds can only forward the same of the x̂ axis
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or the ŷ axis, we can represent the bonds as:

K̂square = N [fx (q)Kx (q) + fy (q)Ky (q)] (19)

where the function fα (q) = f (q, ri − rj = α) =∫
dre−iq·rw(r)w (r + ri − rj) , α = x, y represents the

form factors and the Fourier transformations of the
operator of kinetic energy Kij = b†i bj + h.c. that
forwards the same direction of α = x, y bonds
with the momentum q represented as Kα (q) =
1
N

∑N
i=1 e

−iq·riKi,i+α = eiqα/2
∑

k cos kαb
†
kbk+q, α = x, y.

It is similar as n (q) = n (q +K) that Kα (q) =
Kα (q +K). Evaluation of harmonic approximation [63]
shows that fx(π, 0) ∼ ie−

1
4 (V0/Er)−1/2−π2

4 (V0/Er)1/2 and
f0(π, 0) ∼ e−

1
4 (V0/Er)−1/2

, then |fx (π, 0) /f0 (π, 0) | ∼
e−

π2
4

√
V0/Er , where the potential of optical lattice and

the energy of the recoil are represented as V0 and Er =
~2k2/2m. When V0/Er > 4, the value of f0(π, 0) is close
to 1. Compare this ratio with the ratio of the hopping t
of the on-site interaction U : |fx (π, 0) /f0 (π, 0) | ∼ t

U
as
a ,

where the scattering length of zero field is represented
as as and the optical lattice constant is represented as
a = λ/2 = π/k. Choosing the characteristic values that
t/U ∼ 10−1, as/a ∼ 10−2, we can evaluate that |fα/f0| ∼
10−3. It should be noted that only in the system of optical
lattice that V0 � Er, the harmonic approximation can be
effective, so the value calculated above must be underes-
timated, in fact, it id expected that |fα/f0| ≥ 10−3.

By the theory of standard linear response, the differen-
tial cross section of the photons that scattered from the
system of cold atoms can be described:

dσ

dΩdE
= S (q, ω) ∼

(
Ω2

∆

)2

N2
[
|f0 (q) |2Sn (q, ω)

+
∑
α=x̂,ŷ

|fα (q) |2SKα (q, ω)
]

(20)

in this equation, ω = ω1 − ω2, q = k1 − k0, and the
function of dynamic density-density response is repre-
sented by Sn (q, ω) = 〈n (−q,−ω)n (q, ω)〉. The function
of bond–bond response is represented as SKα (q, ω) =
〈Kα (−q,−ω)Kα (q, ω)〉.

The transition from superfluid state to Mott state can
be analyzed with the integer filling factor n. Let the q
equal to K = (2π, 0) which describes the shortest recip-
rocal lattice vector. In superfluid state, we have dσSF

dΩ ∼
|fSF

0 (2π, 0) |2N2n2+2|fSF
x (2π, 0) |2N2B2, where the aver-

age kinetic energy of a bond in superfluid side is repre-
sented as B. In the case of Mott state, we have dσM

dΩ ∼
|fM0 (2π, 0) |2N2n2. Because the average kinetic energy B
is detectable in the superfluid side only and approximate
evaluation shows that |fSF

0 (2π, 0) |2 ∼ |fM0 (2π, 0) |2 ∼ 1,
the increasing of scattering cross section due to the pre-
factor N2 that across from Mott state to the superfluid
state can be expected as:

dσSF

dΩ
− dσM

dΩ
= 2|fSF

x (2π, 0) |2N2B2 (21)

Fig. 9. The cross section of optical scattering in (a) CDW,
where the ratio of the peaks at Qn over K is approximated as
m2/n2 ∼ 1. The cross section of optical scattering in (b) VBS
state, where the ratio of the peaks at QK over K is approxi-
mated as |fx/f0|2K2/n2 ≥ 10−5, which in the experiments of
current optical Bragg scattering still visible. These figures are
taken from reference [4].

because of the lack of the VBS order in CDW when Qn =
(π, π), the second term in equation (6) is too small that
can be ignored, so we have:

dσ

dΩdE
|CDW ∼

(
Ω2

∆

)2

N2|f0 (q) |2SN (q, ω) (22)

it should be showed that there is a peak when q = Qn,
that the square of the atoms’ number in trap is the scale
of amplitude ∼ |f0(π, π)|2N2m2, where the order param-
eter of the CDW is described as m = nA − nB [68]. Let
q = K, so that SCDW (K) ∼ |f0 (2π, 0) |2N2n2, there is
a relation that f0 (2π, 0) ∼ f2

0 (π, π). If we ignore the lit-
tle difference between the tow from factors, the ratio of
these two peaks could be estimated as ∼m2/n2. Through
a second order phase transition [68], CDW might tran-
sit into CDW-SS, when the filling is slightly away from
1/2. Define that n = nA + nB = 1/2 + δn, we can get
〈n(q)〉 = mδq,Qn

+ nδq,0. The density of the superfluid
can be written as ρs ∼ δn = n− 1/2. The scattering cross
section in the CDW-SS is similar like the scattering cross
section in the CDW: SCDW-SS (Qn) ∼ |f0 (π, π) |2N2m2,
while SCDW-SS (K) ∼ |f0 (2π, 0) |2N2n2+2|fx (2π, 0) |2N2

(δn)2B2 will be increased. The strength of average bond B
induced by the small component of superfluid ρs ∼ δn =
n− 1/2 that flowing through the lattice entirely. Because
of the component of the superfluid in the CDW-SS phase
and the increasing of the total density, the right peak will
be increased (Fig. 9).

Compared to the CDW state, the VBS state will be dis-
cussed when QK = (π, 0). In VBS, there is a uniform den-
sity distribution, if q = K, the differential cross equation
could be simplified that the second term of equation (6)
could be ignored, then we have the diffraction peak with
the scale of amplitude described by the square of atoms’
number in the trap that ∼|f0 (2π, 0) |2N2n2, where the
VBS state’s uniform density described as n = 1/2 and
f0 (2π, 0) ∼ f4

0 (π, 0). Nevertheless, if the q is near the
QK , we could ignore the first term of differential scattering

https://www.epjd.epj.org
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cross section, then we have:

dσ

dΩdE
|VBS ∼

(
Ω2

∆

)2

N2
∑
α=x̂,ŷ

|fα (q) |2SKα(q, ω) (23)

this equation shows that there is a peak at q = QK that
characterizes the VBS ordering, and the scale of amplitude
described by the square of the atoms’ number in the trap
∼ |fx (π, 0) |2N2K2, where the order parameter is repre-
sented as K = Kx −Ky [68]. Then we have the relation
thatK2/n2|fx (π, 0) /f0 (2π, 0) |2 ≥ 10−5. When the filling
is slightly away from 1/2, through a second order phase
transition [68], VBS is turned into VB-SS. Because of the
superfluid component in VB-SS phase and the increasing
of the total density, right peak will be increased. When
q = QK = (0, π), the VBS order can be discussed sim-
ilarly. The SK (q) peaks at (π, 0) and (0, π) should be
observed because of the existence of the order of palquette
VBS. By the method of Bragg scattering, we can distin-
guish the plaquette VBS and the dimer VBS.

In this section, to detect various ground states with the
system of square lattice, the method of optical Bragg scat-
tering is reviewed.

6 Summary

In this article, several important cases about the super-
solid have been reviewed. The coexistence of the diagonal
long-range order of solid and the off-diagonal long-range
order of superfluid characterizes the supersolid phase.
To investigate supersolid phase, we discussed several
circumstances of cold atoms, such as cold atoms with
spin–orbit-coupling in spin dependent periodic poten-
tial with hard-core or soft-core long-range interactions,
three-dimensional cold atoms with spin–orbit-coupling of
Rashba type and optical Bragg scattering in optical lat-
tices. The combination of the spin–orbit-coupled ultra-
cold hard-core atoms with contact interaction and the
spin-dependent potential can be used to build super-
solid phase. The interplay of spin–orbit-coupling and soft-
core long-range interaction can construct exotic supersolid
phase, which contains the spontaneous breakdown of the
symmetry of chirality. The optical Bragg scattering can be
used to detect the supersolid phase in the system of ultra-
cold atoms in optical lattices. Investigation of supersolid
phase can make progress to go beyond the existing knowl-
edge about the separation of phase and the generating of
angular momentum.

As a phase of matter, supersolid phases have been the-
oretically predicted many years ago [13]. With the devel-
opment of modern physics in theories and experimental
instruments, scientists have made great progress about
the investigating of matter phases including the supersolid
phase. Supersolid can be understood as the combination of
diagonal and off-diagonal long-range orders of both solids
and superfluids [1,2]. The system of cold atoms in optical
lattice has supported a good platform for the investigation
of supersolid. In recent years, scientists have observed the
supersold phase experimentally [69,70].

This article has reviewed some of the recent develop-
ments about the investigation of supersolids. We expect
that the combination of the theoretic analysis and exper-
imental realization of the novel physics of supersolid phe-
nomena can be heuristic for the development of modern
physical researches.
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