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Spin-orbit-coupled Bose-Einstein condensates held under a toroidal trap
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We study a quasispin-1/2 Bose-Einstein condensate with synthetically generated spin-orbit coupling in a
toroidal trap and show that the system has a rich variety of ground states. As the central hole region increases,
i.e., the potential changes from harmoniclike to ringlike, the condensate exhibits a variety of structures, such as a
modified stripe, an alternately arranged stripe, and countercircling states. In the limit of a quasi-one-dimensional
ring, the quantum many-body ground state is obtained, which is found to be the fragmented condensate.
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I. INTRODUCTION

The engineering of a synthetic gauge field and spin-orbit
coupling (SOC) in neutral atomic gases recently has attracted
major attention both theoretically and experimentally [1–10].
In condensed-matter physics, the SOC plays an important
role for the emergence of many exotic quantum phenomena
[11,12]. The creation of SOC in spinor Bose-Einstein conden-
sates (BECs) not only offers us a new platform to simulate the
response of charged particles to an external electromagnetic
field, but also opens up an entirely new paradigm for studying
strong correlations of quantum many-body systems, which
enables quantum simulations of condensed-matter phenomena
because of the high controllability of the system [13–16].
Very recently, another type of SOC, namely, the spin and
orbital-angular-momentum coupling, has also been proposed
[17–19].

For a homogeneous SO-coupled condensate, the mean-field
ground state favors either a plane wave or a striped wave
depending on the ratio between inter- and intracomponent
interactions [20,21]. The presence of the trapping potential
modifies this situation and leads to a rich ground-state physics
[22–28]. In the presence of a two-dimensional (2D) harmonic
trap, a complex phase diagram of Rashba SO-coupled Bose
gases was observed in which there are two classes of phases
and several subphases [23]. In addition, SO-coupled BECs
subject to rotation have been studied, which exhibit a rich
variety of the ground-state phases and vortex configurations
depending on the strength of the SOC and rotation frequency
[29–33].

Bosonic gases loaded in a toroidal trap have attracted
considerable interest [34–40] where such a trapping potential
can be realized by a blue-detuned laser beam to make
a repulsive potential barrier in the middle of a harmonic
magnetic trap [41]. The toroidal trap provides us an ideal
platform to study fascinating properties of a superfluid, such
as persistent flow [42–44] and symmetry-breaking localization
[45,46]. Now the point is that, in the presence of a toroidal
trap, we are inquisitive about whether such a potential can
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essentially change the properties of a SO-coupled BEC, which
is what we attempt to do in this paper.

The paper is organized as follows. In Sec. II we formulate
the theoretical model describing the SO-coupled BECs held
under a toroidal trap. Various ground states generated by the
effects of the SOC and toroidal potential are investigated using
the mean-field theory in Sec. III. The quantum many-body
ground state is studied in the limit of a quasi-one-dimensional
(quasi-1D) ring in Sec. IV. The main results of the paper are
summarized in Sec. V.

II. MODEL

We consider a two-component BEC with a Rashba SOC
confined in a quasi-2D toroidal trap on the x-y plane. The
second-quantized Hamiltonian of the system is given by Ĥ =
Ĥ0 + Ĥint, where

Ĥ0 =
∫

dr ψ̂
†
[

− h̄2∇2

2M
+ Vso + V (r)

]
ψ̂,

Ĥint =
∫

dr
(

g↑↑
2

ψ̂
†2
↑ ψ̂2

↑ + g↓↓
2

ψ̂
†2
↓ ψ̂2

↓ + g↑↓ψ̂
†
↑ψ̂

†
↓ψ̂↓ψ̂↑

)
,

(1)

where ψ̂ = (ψ̂↑,ψ̂↓)T denotes the field operator of the atom
with pseudospin state ↑ , ↓ and M is the atomic mass.
The Rashba SOC is Vso = −iκ(σx∂x + σy∂y) with σx,y being
the Pauli matrices and κ is the strength of the SOC. Here
we further assume that the two intracomponent interaction
parameters are the same g↑↑ = g↓↓ ≡ g. When the quasi-
2D system is realized by a tight harmonic potential with
frequency ωz, the effective interaction parameters are given
by g = √

8πh̄2a/(Maz) and g↑↓ = √
8πh̄2a↑↓/(Maz), where

a and a↑↓ are the corresponding s-wave scattering lengths and
az =√

h̄/(Mωz).
The trapping potential considered here is a toroidal trap,

which reads

V (r) = 1
2Mω2

⊥r2 + V0e
−2r2/σ 2

0 , (2)

where ω⊥ is the radial trap frequency of the harmonic potential
r2 = x2 + y2 and V0 and σ0 are proportional to the intensity
and beam waist of the optical plug. The bottom of the potential
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in Eq. (2) is located at

R = σ0√
2

√
ln

4V0

Mω2
⊥σ 2

0

. (3)

Expanding Eq. (2) around r = R and neglecting the third and
higher orders of r − R, we obtain

Vr (r) = Mω2
0

2
(r − R)2, (4)

where ω0 = 2ω⊥R/σ0 and a constant is omitted. This approxi-
mation is valid when h̄ω0 is much larger than the characteristic
energy of the system.

III. MEAN-FIELD ANALYSIS

A. Ground states

We implement the mean-field approximation by replacing
the field-operators ψ̂↑,↓ with the macroscopic wave-functions
ψ↑,↓ in Eq. (1), which gives the Gross-Pitaevskii (GP) energy
functional. We numerically minimize it by using the imaginary
time-evolution method and obtain the ground-state wave
function. We work in dimensionless units by scaling with the
appropriate factors of the harmonic trap energy h̄ω⊥ and the
harmonic trap length

√
h̄/(Mω⊥). The trapping potential in

Eq. (2) can be rewritten as Vr (r) = r2/2 + Ae−r2/l2
with l =√

Mω⊥σ 2
0 /(2h̄) and A = V0/(h̄ω⊥). The trapping potential in

Eq. (4) is V (r) = ω̃2
0(r − R)2/2 with ω̃0 = ω0/ω⊥.

Figure 1 shows the ground-state density profiles of the
system for g < g↑↓, i.e., the two components are immiscible.
For small κ , the system exhibits the radial phase separation
where one component is surrounded by the other one as shown
in Fig. 1(a) for κ = 0.75. If the SOC is absent and the ratio∫ |ψ↑|2dr/

∫ |ψ↓|2dr is not fixed, the ground state is occupied
only by one component for the immiscible case. The two thin
rings of n↓ in Fig. 1(a) are therefore the effect of the SOC. With
an increase in the SOC, our numerical results show that the
rotational symmetry is broken and the system always shows
a modified stripe phase, which is similar to that predicted
for homogeneous condensates [20,22]. However, this phase is
different from the previous stripe phase in that the stripe is
bent near the central hole and tends to be perpendicular to the
perimeter of the central hole as shown in Fig. 1(b). We note
that for fixed SOC, this tendency becomes more significant as
the size of the central hole is increased, which can be seen
from Fig. 1(b-1) to Fig. 1(b-2).

In the limit of a very tight and narrow annulus, the system
can be regarded as a quasi-1D ring. In this case, all the stripes
are perpendicular to the perimeter of the central hole. The
ground-state density distribution of the system therefore shows
an alternately arranged stripe pattern along the ring as shown in
Fig. 1(b-3). The number of stripes increases with the strength
of the SOC.

More insights can be obtained if we look at the momentum-
space density distributions presented in the third column of
Figs. 1(a) and 1(b) where the dashed circles indicate |k| = κ .
For the modified stripe phases shown in Fig. 1(b), more and
more k’s around the Rashba ring are entering the condensate
wave function with increasing l. In the limit of the quasi-

k space

k space

k space

k space

En
er
gy

FIG. 1. Ground states in a toroidal trap for the immiscible case
with A = 100, g = 800, and g↑↓ = 1000. (a) and (b) Density profiles
of up- and down-components n↑ = |ψ↑|2 and n↓ = |ψ↓|2 and k-space
densities

∑
j=↑,↓ | ∫ ψj exp(−ik · r)d r|2 for (a) κ = 0.75 and l =

2.0 and (b-1)–(b-3) κ = 2.0 and l = 1.0, l = 2.5, and l = 4.0. The
dashed circles in the k space indicate |k| = κ . (c) Dependence of
the total energy on the width l of the toroidal trap for fixed SOC
κ = 2.0. The stripe state (b-1) is smoothly changed to state (b-3) as l

is increased.

1D ring shown in Fig. 1(b-3), k’s with the same amplitude
but different angles are uniformly distributed around the ring,
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leading to the formation of the azimuthal stripe pattern. In
Fig. 1(c), we plot the dependence of the total energy on the
width l of the toroidal trap for fixed SOC κ = 2.0. We find
that the stripes are changing smoothly from being vertical
[Fig. 1(b-1)] to being azimuthal [Fig. 1(b-3)], which clarifies
that the transition is not discrete but continuous.

Figure 2 shows the miscible cases with g > g↑↓. When
the central hole is small, the ground state is similar to the
plane wave [20] where all the bosons are condensed into a
single plane-wave state and the direction of the plane wave
is chosen on the x-y plane breaking the rotational symmetry.
As the central hole is increased, the effect of the toroidal
potential emerges. The direction of the flow tends to be
azimuthal, and the flow pattern becomes countercircling as
shown in the phase distributions of Figs. 2(a-1) and 2(a-2)
for l = 1.0 and 3.0, respectively. In this case, we observe a
countercircling gradient of the wave-function phase with the
rotational symmetry broken, which is visible in the density
distribution. We notice that for a Rashba SO-coupled system,
the actual particle current consists of both the canonical part
related to the superfluid velocity and the gauge part induced
by the SOC. For the countercircling flow, these two parts have
the same magnitude but opposite directions. Consequently, the
total particle current is zero, and no particle flows out of the
potential.

For a larger l (close to the ring limit), the tendency of
azimuthal flowing becomes more significant. In this case,
the flow becomes one-way circulating with the rotational
symmetry, and the density distribution has rotational symmetry
as shown in Fig. 2(a-3) for l = 5.0. Meanwhile, it is well
known that for a Rashba SO-coupled system, there always
exists a small spatial displacement along the perpendicular
direction of the phase gradient in the miscible region, which
results from the spin-dependent force induced by SOC [24,47].
The spin-up component always shifts inwards all around the
ring, leading to the pattern formation of density difference
shown in Fig. 3(a). The above-mentioned countercircling
and one-way flows can also be explained by the different
momentum-space density distributions shown in the middle
column of Fig. 2(a). In Fig. 2(b), we plot the dependence
of the total energy on the width l for two such different
structures and compare their energy difference. We find that
the former (latter) state is the ground state for l � (�)4.8.
Thus, the transition of the ground state among the states in
Figs. 2(a-1)–2(a-3) is discrete, unlike the continuous transition
in the immiscible case in Fig. 1.

B. Variational analysis

The results in Figs. 1 and 2 indicate that the direction of
the wave-number vector tends to be azimuthal in a toroidal
trap, and this tendency is more significant for a tighter
toroidal confinement. To understand this result, we employ
the Gaussian variational method. For simplicity, we assume a
potential V = x2/2 and show that the wave-number vector
becomes perpendicular to the confinement, i.e., in the y

direction. For the miscible case, as we discussed before,
there always exists a small spatial displacement in such two
components as shown in Fig. 3(a) for the ring limit case. Thus,

FIG. 2. Ground states in a toroidal trap for the miscible case
with A = 100, g = 1000, g↑↓ = 800, and κ = 2. (a) Density n↑, k-
space density, and phase arg ψ↑ distributions for κ = 2.0 and for
l = 1.0,3.0, and 5.0, corresponding to (a-1)–(a-3), respectively.
The dashed circles in the k space indicate |k| = κ . In the phase
distribution, the region satisfying n↑ + n↓ > 10−4 is extracted, and
the arrows represent the directions of the phase gradient. (b)
Dependence of the total energy on the width l for two different flow
structures (a-1)–(a-3). The inset shows the energy difference between
two such structures within the region marked by the double-headed
arrow, which indicates that the former (latter) state is the ground state
for l � (�)4.8.

the variational wave functions are assumed to be

ψ↑ = 1√
2

1

π1/4σ 1/2
e−[(x+X)2/2σ 2]eik·r,

ψ↓ = 1√
2

−eiφk

π1/4σ 1/2
e−[(x−X)2/2σ 2]eik·r, (5)
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FIG. 3. (a) Density difference n↑ − n↓ of the state in Fig. 2(a-3).
(b) Density n↑ and phase arg ψ↑ of the state in Fig. 1(b-3) where the
dashed square region in the left panel is magnified in the right panel.
The arrows indicate the phase gradient (ψ∗

↑∇ψ↑ − ψ↑∇ψ∗
↑)/(2i). (a)

and (b) justify the variational wave functions of Eqs. (5) and (7),
respectively.

where σ, X, and k are variational parameters and φk is the
angle between k and the x axis. The shift X in Eq. (5) is justified
by the numerical result shown in Fig. 3(a), where |ψ↑|2 and
|ψ↓|2 are shifted in the opposite directions perpendicular to
the direction of confinement. Substituting Eq. (5) into the GP
energy functional, we obtain the variational energy as

E = 1

4σ 2
+ k2

2
+ σ 2

4
+ X2

2
− κ

(
k + ky

k

X

σ 2

)
e−(X2/σ 2)

+ 1

4
√

2πσ
(g + g↑↓e−(X2/σ 2)). (6)

We note that this energy is independent of the direction of k
if X = 0. Assuming X 	 σ , we find that kx = 0, ky 
 ±κ ,
and X 
 ±κ/σ 2 minimize E. The energy of the state with k
in the y direction is smaller than that with k in the x direction
by 
κ2/(2σ 4

0 ). Thus, in the miscible case, the ground state
tends to have momentum perpendicular to the direction of
confinement.

For the immiscible case, we assume that the +k and −k
components shift in opposite directions of confinement. This
is justified from the phase distribution in Fig. 3(b) in which
the phase gradient in opposite directions emerges on the edges
of the condensate. Thus, the variational wave functions can be
assumed to be

ψ↑ = 1

2π1/4σ 1/2
[e−[(x−X)2/2σ 2]eik·r + e−[(x+X)2/2σ 2]e−ik·r],

ψ↓ = −eiφk

2π1/4σ 1/2
[e−[(x+X)2/2σ 2]eik·r − e−[(x−X)2/2σ 2]e−ik·r],

(7)

which reduces to the usual stripe state for X = 0. With the same
procedure as above (see the Appendix), we find that the energy
is minimized by kx = 0, ky 
 ±κ , and X 
 ±κ/σ 2, which
are the same as in the miscible case. Thus, in both miscible
and immiscible cases, the direction of the wave-number vector
k tends to be perpendicular to the direction of confinement,
which explains the behaviors in Figs. 1 and 2, i.e., the wave-
number vector tends to be azimuthal in a toroidal trap.

IV. QUANTUM MANY-BODY ANALYSIS

We have so far considered a quasi-2D system within the
mean-field approximation. When the toroidal potential is so
tight that h̄ω0 is much larger than any other energy scales and
a0 ≡ √

h̄/(Mω0) 	 R, the system reduces to a quasi-1D ring.
In this limit, the spatial degrees of freedom are reduced, and
the problem is simplified, which enables us to go beyond the
mean-field approximation. For this purpose, we formulate the
system of bosons with the SOC confined in a quasi-1D ring
potential.

First we eliminate the radial degree of freedom in Eq. (1)
and reduce the Hamiltonian to 1D. The radial wave function
can be approximated by the ground state of[

−1

2

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ Vr (r)

]
f (r) = E0f (r), (8)

where
∫ ∞

0 f 2(r)r dr = 1. Using the fact that the atoms are
confined to r 
 R, one can show

∫ ∞
0 f 2(r)dr 
 1/R and∫ ∞

0 f (r)f ′(r)r dr 
 −1/(2R), giving

−i

∫ ∞

0
f (r)

(
∂

∂x
± i

∂

∂y

)
f (r)r dr 
 ie±iθ

R

(
1

2
∓ i

∂

∂θ

)
.

(9)

Dividing the field operator into the radial and azimuthal parts
as ψ̂↑,↓(r) = f (r)φ̂↑,↓(θ ) and using Eq. (9), the Hamiltonian
in Eq. (1) reduces to [48]

Ĥ =
∫ 2π

0
dθ

{
φ̂
†
(

E0 − 1

2R2

∂2

∂θ2

)
φ̂

+ iκ

R

[
e−iθ φ̂

†
↑

(
1

2
+ i

∂

∂θ

)
φ̂↓ + eiθ φ̂

†
↓

(
1

2
− i

∂

∂θ

)
φ̂↑

]

+ gC

2
(φ̂†2

↑ φ̂2
↑ + φ̂

†2
↓ φ̂2

↓) + g↑↓Cφ̂
†
↑φ̂

†
↓φ̂↓φ̂↑

}
, (10)

where φ̂ = (φ̂↑,φ̂↓)T and C = ∫ ∞
0 f 4(r)r dr . Since the total

number of atoms is fixed, we neglect the term of E0 in the
following.

We expand the field operator as

φ̂↑,↓(θ ) =
∞∑

n=−∞
â↑,↓n

einθ

√
2π

, (11)

where â↑,↓n satisfies the bosonic commutation relations.
Substituting Eq. (11) into the one-body part of Eq. (10), we
obtain

Ĥ0 =
∞∑

n=−∞

[
n2

2R2
(â†

↑nâ↑n + â
†
↓nâ↓n)

+ iκ

R
m(â†

↓n+1â↑n − â
†
↑nâ↓n+1)

]
, (12)

where m = n + 1/2. The second line of Eq. (12) originates
from the SOC term where the strength of the coupling κm/R

between up- and down-components is proportional to the
azimuthal quantum number n. This is different from the case
of Raman coupling between two components using Gaussian
and Laguerre-Gaussian beams [17,38,41,49].
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Using linear transformation as

α̂−
m = â↑n cos α + iâ↓n+1 sin α,

α̂+
m = â↑n sin α − iâ↓n+1 cos α, (13)

with tan 2α = 2κR, Eq. (12) is diagonalized as

Ĥ0 =
∞∑

m=−∞
(E+

mα̂+†
m α̂+

m + E−
mα̂−†

m α̂−
m), (14)

where

E±
m = 1

2R2

(
m2 + 1

4
± m cos 2α

)
± κ

R
m sin 2α. (15)

These energies are twofold degenerate because of E−
m =

E+
−m. For κ � R−1, the mixing angle becomes α → π/4,

and the quasiparticles in Eq. (13) consist of the up- and
down- components with equal weight where the energies are
E±

m 
 (m2 + 1/4)/(2R2) ± κm/R. For κ = 0, the energies in
Eq. (15) reduce to those of free particles in a ring E+

m =
(n + 1)2/(2R2) and E−

m = n2/(2R2).
We consider the quantum many-body state that mini-

mizes 〈Ĥ0〉. The solution of ∂E±
m/∂m = 0 is given by m =

∓
√

1 + (2κR)2/2. Let ∓m0 be the half integers that are closest
to ∓

√
1 + (2κR)2/2 and minimize E±

m , which we define as
Emin = E±

∓m0
. For κ � R−1, the energy is minimized by

m0 
 κR. In this case, the energy is Emin 
 −κ2/2, and the
wave number along the ring is 
m0/R 
 κ , which agree with
those of the ground state for a uniform system. The N -particle
states that minimize 〈Ĥ0〉 are given by

|N − p,p〉 = (α̂+†
−m0

)N−p(α̂−†
m0 )p√

(N − p)!
√

p!
|0〉, (16)

where p = 0,1, . . . ,N . These states satisfy Ĥ0|N − p,p〉 =
NEmin|N − p,p〉 and hence are (N + 1)-fold degenerate.
When κR <

√
3/2, we find α < π/6, m0 = 1/2, and n = 0,

and the trivial state in which all the atoms are at rest is
recovered. We therefore consider the case of κR >

√
3/2 in

the following.
Next we examine the interaction energy. We assume that

the ground state is spanned by the states in Eq. (16). The
expectation value of the interaction part of Eq. (10) with respect
to the many-body state in Eq. (16) is calculated to be

〈N − p,p|Ĥint|N − p,p〉
= C

16π
[3g + g↑↓ + (g − g↑↓) cos 4α]N (N − 1)

− C

8π
(g − g↑↓)(1 + 3 cos 4α)p(N − p). (17)

The matrix element 〈N − p,p|Ĥint|N − p′,p′〉 vanishes for
p �= p′. The first term on the right-hand side of Eq. (17) is
constant and unimportant. In the second term, 1 + 3 cos 4α is
negative since we are considering the case of π/6 < α < π/4.
Therefore, the interaction energy is minimized by p = 0 or
p = N for g > g↑↓, i.e., the many-body ground state is |N,0〉
or |0,N〉. These states correspond to the plane-wave state since
all the atoms have the same momentum along the quasi-1D
ring.

For g < g↑↓, the interaction energy in Eq. (17) is minimized
by p = N/2, i.e., the ground state is |N/2,N/2〉, which is
the fragmented BEC [14,50,51]. This state has rotational
symmetry about the z axis reflecting the symmetry of the
Hamiltonian. However, if we measure the density distribution
of this state, alternate domains of the two components are
observed, which correspond to the stripe phase in the mean-
field theory. This is understood from the density correlations
of state |N/2,N/2〉,

〈φ̂†
↑(θ )φ̂†

↑(θ + �θ )φ̂↑(θ + �θ )φ̂↑(θ )〉
= 〈φ̂†

↓(θ )φ̂†
↓(θ + �θ )φ̂↓(θ + �θ )φ̂↓(θ )〉

= N

16π2

[
N − 1 − cos2 2α + N

2
sin2 2α cos(2m0�θ )

]
,

(18)

〈φ̂†
↑(θ )φ̂†

↓(θ + �θ )φ̂↓(θ + �θ )φ̂↑(θ )〉

= N

16π2

[
N − sin2 2α − N

2
sin2 2α cos(2m0�θ )

]
. (19)

These correlation functions indicate that, if an up-component
atom is detected at θ , a down-component atom is more likely
to be detected at θ + νπ/(2m0) than another up-component
atom, where ν is an integer [52]. Thus, the fragmented state
|N/2,N/2〉 corresponds to the stripe along the ring with a
wavelength of 2m0.

The approximation that the ground state is spanned only by
the states in Eq. (16) is valid when the interaction energy gρ is
much smaller than the azimuthal kinetic-energyh̄2/(MR2) and
the SOC energy h̄2κ2/M , where ρ = N/(Ra0az) is the typical
density. These conditions are rewritten as NaR/(a0az) 	 1
and Na/(κa0az) 	 1 and are satisfied by, e.g., N ∼ 100, a ∼
0.1 nm, R ∼ 10, a0 ∼ az ∼ 1 μm, and κ � R−1, which can
be realized by Feshbach resonance. These conditions are
relaxed if we allow excitations above the many-body state
in Eq. (16). In such a case, multiple azimuthal angular
momenta m must be taken into account, and the numerical
diagonalization is needed to obtain the ground state [45].

V. CONCLUSIONS

We have investigated the effect of a toroidal trap on
SO-coupled BECs. In contrast to the case of the harmonic
trap, the interplay between the SOC and the toroidal trap can
result in a rich variety of ground states, such as a modified
stripe, an alternately arranged stripe, and countercircling
states. We found that the condensate in a toroidal trap tends to
have wave-number vectors in the azimuthal direction, which
becomes more significant for a tighter toroidal trap. This
finding can be explained by the Gaussian variational analysis.
We also have formulated a quantum many-body problem for
the quasi-1D ring trap for both miscible and immiscible cases.
In the latter case, the ground state of the system is found to be
a fragmented condensate. Owing to the recent developments
in the experimental implementation of SOC and the high
degrees of control over most of the system parameters, the
various states found in this paper may be observed in current
experiments.
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APPENDIX: VARIATIONAL ANALYSIS IN
THE IMMISCIBLE CASE

Substituting Eq. (7) into the GP energy functional and
integrating with respect to x, we obtain

Ekinetic = 1

4σ 2
+ k2

2
, (A1)

Epotential = σ 2

4
+ X2

2
, (A2)

Esoc = −κ

(
k + ky

k

X

σ 2

)
e−[X2/σ 2]

+ ie−k2
xσ

2
ky cos(2kxX + θ ) cos 2kyy, (A3)

Einteraction = 1

8
√

2πσ
[g(1 + 2e−[2X2/σ 2]) + g↑↓

− (g↑↓ − g)e−2k2
xσ

2−[2X2/σ 2] cos 4kyy], (A4)

where Ekinetic and Epotential are the same as those in the miscible
case in Eq. (6). The second line of Eq. (A3) vanishes by
integrating with respect to y. Similarly, the second line of
Eq. (A4) also vanishes for ky �= 0. In this case, assuming
X 	 σ , one finds that kx = 0, ky 
 ±κ , and X 
 ±κ/σ 2

minimize the total energy. The energy lowered by the shift
X is 
κ2/(2σ 4). When the immiscible interaction energy
dominates the SOC energy, the second line of Eq. (A4) is
minimized by kx = ky = 0 and X = 0, which corresponds to
the state shown in Fig. 1(a).
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