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We present a continuous-variable �CV� Gaussian analog of cluster states, a new class of CV multipartite
entangled states that can be generated from squeezing and quantum nondemolition coupling HI= ��XAXB. The
entanglement properties of these states are studied in terms of classical communication and local operations.
The graph states as general forms of the cluster states are presented. A chain for a one-dimensional example of
cluster states can be readily experimentally produced only with squeezed light and beam splitters.
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I. INTRODUCTION

Entanglement is one of the most fascinating features of
quantum mechanics and plays a central role in quantum-
information processing. In recent years, there has been an
ongoing effort to characterize qualitatively and quantitatively
the entanglement properties of multiparticle systems and ap-
ply them in quantum communication and information. The
study of multipartite entangled states in the discrete-variable
regime has shown that there exist different types of entangle-
ment, inequivalent up to local operations and classical com-
munication �1� �LOCC�. For example, it is now well known
that the Greenberger-Horne-Zeilinger �GHZ� and W states
are not equivalent up to LOCC. Recently, Briegel and Raus-
sendorf introduced a special kind of multipartite entangled
states, the so-called cluster states, which can be created via
an Ising Hamiltonian �2�. It has been shown that via cluster
states, one can implement a quantum computer on a lattice of
qubits. In this proposal, which is known as a “one-way quan-
tum computer,” information is written onto the cluster and
then is processed and read out from the cluster by one-qubit
measurements �3�.

In recent years, quantum communication, or more gener-
ally quantum information with continuous variables �CVs�,
has attracted a lot of interest and appears to yield very prom-
ising perspectives concerning both experimental realizations
and general theoretical insights �4�, due to its relative sim-
plicity and high efficiency in the generation, manipulation,
and detection of the CV state. The investigation of CV mul-
tipartite entangled states has made significant progress in
theory and experiment. The quantification and scaling of
multipartite entanglement has been developed by different
methods, for example, by determining the necessary and suf-
ficient criteria for their separability �5–7�, and by the en-
tanglement of formation �8�. Multipartite quantum protocols
were proposed and performed experimentally, such as quan-
tum teleportation networks �9�, controlled dense coding �10�,
and quantum secret sharing �11� based on tripartite entangle-

ment. The study of entanglement properties of the harmonic
chain has aroused great interest �12�, which is in direct anal-
ogy to a spin chain with an Ising interaction. To date, the
study and application of CV multipartite entangled states has
mainly focused on CV GHZ-type states. However, a richer
understanding and more definite classification of CV multi-
partite entangled states are needed for developing a CV
quantum-information network. In this paper, we introduce a
class of CV Gaussian multipartite entangled states, CV clus-
terlike states, which are different from CV GHZ-like states.
We propose an interaction model to realize CV clusterlike
states and compare these states to GHZ-like states in terms of
LOCC. It is worth noting that a CV Gaussian cluster state in
our protocol cannot be used in universal quantum computers
over continuous variables �13�; however, it may be applied in
quantum network communication as a different type of mul-
tipartite entanglement.

II. CV GAUSSIAN CLUSTER STATE

We consider an N-mode N-party system described by a set
of quadrature operators R= �X1 , P1 ;X2 , P2 , . . . ;X1 , Pn� obey-
ing the canonical commutation relation �Xl , Pk�= i�lk. The
quantum nondemolition �QND� coupling Hamiltonian is em-
ployed in the form HI= ��XlXk, so in this process
quadrature-amplitude �“position”� and quadrature-phase
�“momentum”� operators are transformed in the Heisenberg
picture according to the following expressions:

Xl� = Xl, Pl� = Pl + gXk,

Xk� = Xk, Pk� = Pk + gXl, �1�

where g=−�t is the gain of the interaction, and � and t are
the coupling coefficient and the interaction time, respec-
tively. The important feature of this Hamiltonian is that the
momentum Pl and Pk pick up the information of the position
Xk and Xl, respectively, while the position remains un-
changed. The QND coupling of light was widely investigated
in many previous experiments �14� and recently has been
experimentally observed between light and the collective
spin of atomic samples �15�.
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Considering first a one-dimensional example of a chain of
N modes which are numbered from 1 to N with next-
neighbor interaction. Initially, all modes are prepared in the
quadrature-phase squeezed state Xl=e+rXl

�0� , Pl=e−rPl
�0�,

where r is the squeezing parameter and the superscript �0�
denotes initial vacuum modes. Applying QND coupling to
next-neighbor modes of a chain at different or the same time
yields a CV clusterlike state in the form

X1
C = e+rX1

�0�, P1
C = e−rP1

�0� + e+rX2
�0�,

� �
Xi

C = e+rXi
�0�, Pi

C = e−rPi
�0� + e+rXi−1

�0� + e+rXi+1
�0� ,

� �
XN

C = e+rXN
�0�, PN

C = e−rPN
�0� + e+rXN−1

�0� .

�2�

Here, without loss of generality, we put the gain of the inter-
action g=1. For simplicity we discuss the properties of CV
clusterlike states in the ideal case r→� corresponding to
infinite squeezing. When N=2, one obtains a state with total
position X1

C+X2
C→0 and relative momentum P1

C− P2
C→0 by

applying a local −90� rotation transformation XC→PC, PC

→−XC on mode 2, which corresponds to Einstein-Podolsky-
Rosen or two-mode squeezed states. The entanglement of a
state is not affected by local unitary transformation. It obvi-
ously exhibits maximum bipartite entanglement. Similarly,
one obtains the state for N=3 with total position X1

C+X2
C

+X3
C→0 and relative momentum Pi

C− Pj
C→0 �i , j=1,2 ,3�,

which corresponds to a CV three-mode GHZ-like state �9�.
However, quantum correlation of position and momentum of
the state for the N=4 case become X1

C+X2
C+X3

C→0, X3
C

+X4
C→0 and P1

C− P2
C→0, P2

C− P3
C+ P4

C→0 by applying a lo-
cal −90� rotation transformation on modes 2 and 4. Clearly, a
CV four-partite clusterlike state is not equivalent to a GHZ-
like state with total position X1+X2+X3+X4→0 and relative
momentum Pi− Pj→0 �i , j=1,2 ,3 ,4�. Note that when the
CV clusterlike state is generated by finite squeezing, quan-
tum correlation is expressed by the variance, such as
��2�X1

C+X2
C+X3

C��. More generally, CV N-partite clusterlike
states and GHZ-like states are not equivalent for N�3, as we
shall see below.

We now compare the entanglement properties of CV clus-
ter and GHZ-like states by LOCC in the limit of infinite
squeezing. First, we discuss the persistence of entanglement
of an entangled N-partite state, which means the minimum
number of local measurements such that, for all measure-
ment outcomes, the state is completely disentangled �2�. An
explicit strategy to disentangle the CV cluster-type state �2�
is to measure the positions of all even-number parties, j
=2,4 ,6 , . . ., and then displace momentum of the remaining
�unmeasured� parties with the measured results; such as the
momentum of party 1 displaced as P1�

C= P1
C−X2

C=e−rP1
�0� by

the measured result X2
C of party 2; and party 3 as P3�

C= P3
C

−X2
C−X4

C by parties 2 and 4. It is obvious that the remaining
parties become the originally prepared quadrature-phase
squeezed states that are product states and completely unen-
tangled. Thus the minimum number of measurements to dis-
entangle the cluster state is int �N /2�. For the GHZ state, in
contrast, a single local measurement suffices to bring it into a

product state. From this point of view, it is impossible to
destroy all the entanglement of the cluster if fewer than
int �N /2� parties are traced out �discarded�. But only if one
party for the GHZ state is traced, will the remaining state be
completely unentangled. Note that this is not true in the case
of finite squeezing. For example, if three weakly squeezed
vacuum states are used to generate a tripartite GHZ state, the
state is a fully inseparable tripartite entangled state, but the
remaining bipartite state after tracing out one of the three
subsystems is still entangled �9,10�.

Next, we investigate the entanglement properties of the
quantum teleportation network. In other words, we will an-
swer the question of how many parties need to be measured
from an N-partite entangled state to make bipartite entangle-
ment between any two of the N parties “distilled,” which
enables quantum teleportation. We first show that the parties
at the ends of the chain, i.e., parties 1 and N, can be brought
into bipartite entanglement by measuring the parties
2 , . . . ,N−1. After measurement of the momentum of party 2,
the remaining parties are identical to an entangled chain of
length N−1 when one displaces the position of party 1 as
X1�

C=X1
C− P2

C and measuring the result P2
C on party 2, then

applies a local rotation transformation XC→−PC, PC→XC

on parties 1. We can repeat this procedure and measure party
3, and so on. At the end, party 1 and N are brought into a
bipartite entanglement. To bring any two parties j ,k �j�k�
from the chain �1,2 , . . . ,N	 into bipartite entanglement, we
first measure the position of the “outer” parties j−1 and k
+1, then displace the momentum of parties j and k as Pj�

C

= Pj
C−Xj−1

C and Pk�
C= Pk

C−Xk+1
C , which projects the parties

j , j+1, . . . ,k into an entangled chain of length k− j+1. This
process that breaks chain into parts is called “disconnection”;
for example, one breaks a chain into two independent chains
when measuring the position of party j and displacing the
momentum of parties j−1 and j+1 as Pj−1� C= Pj−1

C −Xj
C and

Pj+1� C= Pj+1
C −Xj

C. A subsequent measurement of the “inner”
parties j+1, . . . ,k−1 will then project parties j, k into a bi-
partite entanglement, as shown previously. Note that the as-
sistance of all the “inner” parties is necessary to bring any
two parties from the chain into a bipartite entanglement;
however, for the “outer” parties it depends on which strategy
is chosen. The optimum strategy as shown previously is to
measure next-neighbor parties j−1 and k+1. The other strat-
egies may be with the help of parties j−2, j−3 and k
+2, k+3, or j−2, j−4, j−5 and k+2, k+4, k+5, and so
on. For the N-partite GHZ state, in contrast, bipartite en-
tanglement between any two of the N parties is generated
with the help of a local position measurement of N−2
modes �9�.

In the following we will generalize the one-dimensional
CV cluster to graph states that correspond to mathematical
graphs, where the vertices of the graph play the role of quan-
tum physical systems, i.e., the individual modes and the
edges represent interactions. A graph G= �V ,E� is a pair of a
finite set of n vertices V and a set of edges E, the elements of
which are subsets of V with two elements each �16�. We will
consider only simple graphs, which are graphs that contain
neither loops �edges connecting a vertex with itself� nor mul-
tiple edges. When the vertices a , b�V are the end points of
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an edge, they are referred to as being adjacent. An �a ,c	 path
is an ordered list of vertices a=a1 ,a2 , . . . ,an−1 ,an=c, such
that for all i, ai and ai+1 are adjacent. A connected graph is a
graph that has an �a ,c	 path for any two a ,c�V. Otherwise
it is referred to as disconnected. The neighborhood Na�V is
defined as the set of vertices b for which �a ,b	�E. In other
words, the neighborhood is the set of vertices adjacent to a
given vertex. The CV graph states with a given graph G are
conveniently defined as

Xa
G = e+rXa

�0�,

Pa
G = e−rPa

�0� + e+r 

b�Na

Xb
�0� for a � V . �3�

Equation �3� can be used to generalize some of the entangle-
ment properties from the one-dimensional case to graph
states. To bring any two parties on sites a , d�V into
bipartite entanglement, we first select a one-dimensional path
P�V that connects sites a and d. Then we measure all
neighboring modes surrounding this path in the position
component. By this procedure, we project the parties on the
path P into a state that up to local displacement on the mo-
mentum with measured results is identical to the linear chain
Eq. �2�. We have thereby reduced the graph states to the
one-dimensional problem.

III. PHYSICALLY REALIZABLE MODELS

We briefly mention that, to embody Eqs. �2� and �3�, we
can use the off-resonant interaction of linearly polarized op-
tical buses with N ensembles of atoms �confined in a vapor
cell�, providing the Hamiltonian HOA= ��XOXA. Here, XO
�XA� is the position operator of the bus �atomic ensemble�.
First, we prepare the spin-squeezed atomic ensembles by
means of QND coupling HOA and projection measurements
on light �15,17�. In the second step, the QND coupling
HAlk

= ���XAl
XAk

between ensembles can be implemented by
first letting an optical bus interact with ensemble l, then ap-
plying a 90� rotation transformation on the optical bus, then
letting the optical bus interact with ensemble k, then apply-
ing −90� rotation transformation on the optical bus, and fi-
nally letting the optical bus interact with ensemble l.

Stimulating opportunities also come from the experimen-
tal demonstration of CV entanglement swapping �18�, in
which a four-partite entangled state may be generated. Here
we show that a chain for a one-dimensional example of clus-
ter states can be experimentally produced with only squeezed
light and beam splitters as shown in Fig. 1 and give an ex-
plicit example where the quantum teleportation network is
implemented with four-partite clusterlike states compared
with GHZ-like states. To make this example simple and easy
to compare quadripartite clusterlike states with GHZ-like
states, we employ the scheme in Ref. �9� to generate the
cluster and GHZ-like states and implement the quantum tele-
portation network. Applying the beam splitter operations
�beam splitters 1, 2, and 3 give 1:3,1:2, and 1:1, respectively�
to momentum squeezing in modes 1,4 and position squeez-
ing in modes 2,3 yields a clusterlike state �momentum

squeezing in mode 1 and position squeezing in modes 2,3,4
yields a GHZ-like state�. The four-partite clusterlike �GHZ-
like� states are expressed by the Heisenberg operators

X1
C�Z� =

1

2
e+rX1

�0� +
�3

2
e−rX2

�0�,

P1
C�Z� =

1

2
e−rP1

�0� +
�3

2
e+rP2

�0�,

X2
C�Z� =

1

2
e+rX1

�0� −
1

�12
e−rX2

�0� +�2

3
e−rX3

�0�,

P2
C�Z� =

1

2
e−rP1

�0� −
1

�12
e+rP2

�0� +�2

3
e+rP3

�0�,

X3
C�Z� =

1

2
e+rX1

�0� −
1

�12
e−rX2

�0� −�1

6
e−rX3

�0� +
1
�2

e+�−�rX4
�0�,

P3
C�Z� =

1

2
e−rP1

�0� −
1

�12
e+rP2

�0� −�1

6
e+rP3

�0� +
1
�2

e−�+�rP4
�0�,

X4
C�Z� =

1

2
e+rX1

�0� −
1

�12
e−rX2

�0� −�1

6
e−rX3

�0� −
1
�2

e+�−�rX4
�0�,

P4
C�Z� =

1

2
e−rP1

�0� −
1

�12
e+rP2

�0� −�1

6
e+rP3

�0� −
1
�2

e−�+�rP4
�0�.

�4�

In the ideal case r→� corresponding to infinite squeezing,
the four-partite clusterlike state is a simultaneous eigenstate
of position X1

C−X2
C→0, 2X2

C−X3
C−X4

C→0 and momentum
P1

C+ P2
C+2P3

C→0, P3
C− P4

C→0; however, a GHZ-like state is
a simultaneous eigenstate of total momentum P1

Z+ P2
Z+ P3

Z

+ P4
Z→0 and relative position Xi

Z−Xj
Z→0 �i , j=1,2 ,3 ,4�.

IV. APPLICATION TO THE TELEPORTATION
NETWORK

The teleportation network protocol involving four partici-
pants Alice, Bob, Claire, and Doris is shown as follows. Let
us send the four modes of Eq. �4� to Alice, Bob, Claire, and

FIG. 1. A schematic diagram for generating a CV four-partite
cluster and GHZ-like state by means of squeezed light and beam
splitters.
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Doris, respectively. Alice wants to teleport an unknown
quantum state and couples her mode 1 with the unknown
input mode Xu= �Xin−X1� /�2, Pv= �Pin+ P1� /�2. Alice mea-
sures classical values xu and pv for Xu and Pv. Alice sends
her classical results xu and pv to Bob or Claire or Doris via
classical channels. For clusterlike states, Bob, Claire, or
Doris want to reconstitute the input state provided that addi-
tional classical information is received: Bob needs the result
of a momentum detection by Claire reducing P3

C to p3
C; Claire

needs the results of a momentum detection by Bob reducing
P2

C to p2
C and a position detection by Doris reducing X4

C to x4
C;

Doris needs the results of a momentum detection by Bob
reducing P2

C to p2
C and a position detection by Claire reduc-

ing X3
C to x3

C. Assuming that Claire detects her mode 3 and
sends the result to Bob, a displacement of Bob’s mode 2,
X2

C→Xtel=X2
C+g�2Xu, P2

C→Ptel= P2
C+g�2Pv+g3P3

C, ac-
complishes the teleportation. Here, the parameters g and g3
describe the normalized gain. For g=1, the teleported mode
becomes

Xtel
Bob = Xin −

2
�3

e−rX2
�0� +�2

3
e−rX3

�0�,

Ptel
Bob = Pin + �1 +

g3

2

e−rP1

�0� +
1
�3

�1 −
g3

2

e+rP2

�0�

+�2

3
�1 −

g3

2

e+rP3

�0� +
g3

�2
e−rP4

�0�. �5�

Now we assume arbitrary coherent-state input ain=Xin+ iPin
and calculate teleportation fidelity, in this case defined by
F��ain ��tel �ain�. It describes the overlap between the input
and the teleported states. In the case of unity gain g=1, the
fidelity for the Gaussian states is simply given by F
=2/��1+ ��2X̂tel���1+ ��2P̂tel��. The optimum teleportation
fidelity for Bob is achieved with g3=2�e+4r−1� / �e+4r+3� and
becomes

Fopt = ��1 + e−2r��1 +
3e+6r + 10e+4r + 3e−2r

�e+4r + 3�2 
�−1/2

. �6�

For r=0, we obtain Fclass=1/2, which corresponds to the
classical limit. When r�0, the fidelity of Bob’s output is
larger than 1/2; thus the quantum teleportation is successful.
Assuming that Alice teleports the unknown state to Claire,
Claire needs Alice’s classical values xu and pv and the addi-
tional classical information of the momentum detection by
Bob and the position detection by Doris. Claire performs a
local unitary squeezed transform a3�= 1

2X3
C+2P3

C and dis-
places her mode 3, X3

C→Xtel=
1
2X3

C+g�2Xu+g4X4
C, P3

C

→Ptel=2P3
C+g�2Pv+g2P2

C, to accomplish the teleportation.
For g=1, the teleported mode becomes

Xtel
Claire = Xin −

1

4
�1 − 2g4�e+rX1

�0� −
1

4�3
�7 + 2g4�e−rX2

�0�

− � 1

2�6
+

g4

�6

e−rX3

�0� +
1

2�2
�1 − 2g4�e+rX4

�0�,

Ptel
Claire = Pin + �3

2
+

g2

2

e−rP1

�0� +
1

2�3
�1 − g2�e+rP2

�0�

−�2

3
�1 − g2�e+rP3

�0� + �2g2e−rP4
�0�. �7�

We may achieve the optimum teleportation by the optimum
g2 and g4. Similarly, if Alice teleports the unknown state to
Doris, Doris needs Alice’s classical values xu and pv and the
additional classical information of the momentum detection
by Bob and the position detection by Claire. Thus we see that
the quantum teleportation network using a CV clusterlike
state is quite asymmetric among the parties, and the required
additional classical information and fidelity for the finite
squeezing depend on the partners. In contrast, the quantum
teleportation network using a CV GHZ-like state is symmet-
ric among the parties, and the required additional classical
information and fidelity for the finite squeezing are indepen-
dent of the partners �9�.

V. CONCLUSION

We have introduced a continuous-variable Gaussian ana-
log of cluster states. We have proposed an interaction model
to realize CV clusterlike states and compared these states to
GHZ-like states in terms of LOCC. Those states are different
from GHZ states and the entanglement of the states is harder
to destroy than for GHZ states. We have generalized the
one-dimensional CV cluster to graph states. To embody CV
cluster states, we have described experimental setups of
atomic ensembles and squeezed light that offer nice perspec-
tives in the study of CV multipartite entangled states. Cluster
states for CV multipartite entanglement may be applied to
multipartite quantum protocols and are of practical impor-
tance in realizing more complicated quantum communication
among many parties.
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