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The positivity of the partial transpose is in general only a necessary condition for separability. There exist
quantum states that are not separable, but nevertheless are positive under partial transpose. States of this type are
known as bound entangled states meaning that these states are entangled but they do not allow distillation of pure
entanglement by means of local operations and classical communication (LOCC). We present a parametrization
of a class of 2×2 bound entangled Gaussian states for bipartite continuous-variable quantum systems with two
modes on each side. We propose an experimental protocol for preparing a particular bound entangled state
in quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation
number of thermal inputs and the degrees of squeezing.
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Entanglement is a striking property of quantum mechanics,
being central in most quantum information technologies. One
of the most fundamental problems in quantum information
is to determine whether a quantum state is entangled or not.
During the last three decades, considerable effort has been de-
voted to solving this problem. Though it has not yet been com-
pletely solved, a great deal of progress has been made. A criti-
cal progress is the development of an elegant criterion, known
as partial transpose, for studying separability [1, 2]. The par-
tial transpose corresponds physically to a local time reversal
operation [3]. The positivity of the partial transpose provides a
necessary condition for separability. In some restricted cases,
this criterion turns out to be also sufficient. To be specific, for
discrete-variable quantum systems, the positive partial trans-
pose (PPT) criterion is necessary and sufficient for separabil-
ity of 2×2 and 2×3 dimensional systems [1, 2]. However, for
higher dimenional systems (e.g., 3×3 and 2×4 dimensional
cases), this criterion fails to be sufficient for separability [4].
For continuous-variable quantum systems, the PPT criterion is
necessary and sufficient for separability of continuous-varible
systems of 1× n oscillators in a joint Gaussian state [5–7].
However, for higher dimensions (e.g., a continuous-variable
system of 2× 2 oscillators in a Gaussian state), this criterion
fails to be sufficient for separability [5]. For some very special
classes of n×m Gaussian states (e.g., bisymmetric Gaussian
states [8], isotropic Gaussian states [9–12]), the PPT criterion
is also necessary and sufficient for separability.

The PPT criterion is in general not a sufficient condition
for separability. There exist non-separable (entangled) states
with positive partial transpose. These states are known as
bound entangled states meaning that these states are entan-
gled, but their entanglement cannot be distilled into maxi-
mally entangled states via LOCC [3]. Examples of bound en-
tangled states have been found for discrete-variable quantum
systems [4, 13], as well as for continuous-variable quantum
systems [5, 14]. A large effort has gone into the analysis and
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detection of bound entanglement [15–23], as well as their ap-
plications in steering [24], metrology [25], entanglement acti-
vation [26, 27], quantum key distribution [28, 29] and nonlo-
cality [30]. In particular, it has been shown recently that there
exist bound entangled states that can be used for steering [24]
and that can even violate a Bell inequality [30] for discrete-
variable systems. These results disprove a longstanding con-
jecture known as the Peres conjecture which states that bound
entangled states cannot violate any Bell inequality [31, 32].
For the continuous-variable case, it has been shown that bound
entangled Gaussian states cannot display steering under Gaus-
sian measurements [33, 34]. However, it is still an open ques-
tion whether there exist bound entangled Gaussian states that
can violate a Bell inequality and thus can display EPR steering
when non-Gaussian measurements are involved.

We consider continuous-variable entanglement with Gaus-
sian states which serve as key resources for Gaussian quan-
tum information processing [35, 36]. Gaussian states arise
naturally in quantum optics and are completely characterized
by the first and second moments of canonical operators. The
first moments (i.e., mean) contain no information about en-
tanglement and can be shifted to zero by local unitaries, thus
are irrelevant for our purpose. All the information about en-
tanglement of Gaussian states is contained in the second mo-
ments (i.e., covariance matrix). In this work, we parametrize a
class of 2×2 bound entangled Gaussian states by characteriz-
ing their covariance matrices. Our parametrization result pro-
vides a simple and accurate way to obtain examples of bound
entangled states. It does not rely on numerical computation
that may be significantly affected by rounding errors. In ad-
dition, for a particular bound entangled state, we propose an
experimental protocol for preparing it in quantum optics. We
also investigate the robustness properties of this protocol with
respect to the occupation number of thermal inputs and the
parameters of squeezing components. Though we only con-
sider the preparation of one particular state in this work, the
method we use here can be applied to any other bound en-
tangled Gaussian state to obtain a corresponding preparation
scheme.

The experimental preparation and verification of

ar
X

iv
:1

90
4.

11
74

8v
1 

 [
qu

an
t-

ph
] 

 2
6 

A
pr

 2
01

9

mailto:jzhang74@yahoo.com, jzhang74@sxu.edu.cn


2

continuous-variable bound entanglement has been conducted
in quantum optics [18]. It is known that continuous-variable
bound entanglement is a rare phenomenon [37]. It is possible
that a bound entangled state has both free entangled and
separable states very nearby. The experimental preparation
of bound entanglement generally requires a high-precision
control over the system parameters and hence is difficult
to implement. On the other hand, the verification of bound
entanglement in the laboratory is also a challenging task
since the entanglement and PPT tests are sometimes very
sensitive to experimental errors and certification requires
a very careful analysis of the experimental data. Different
from the generating scheme introduced in Ref. [18], we study
the preparation of bound entanglement using an analytical
method. We first perform some decompositions (specifically,
thermal decomposition of a covariance matrix [38] and
Euler decomposition of a canonical unitary [39, 40]) on a
particular bound entangled state. These decompositions are
then translated into an optical network with input fields such
that the target bound entangled state is generated. All of these
procedures are completed analytically. This purely analytical
treatment allows us to have a more precise understanding
of how bound entanglement is generated in quantum optics.
In addition, the scheme presented in this work allows us
to further investigate the robustness of bound entanglement
preparation by varying some parameters in the optical system
and pinpoint a region in the parameter space such that bound
entanglement can exist.

Let us consider a bosonic system of n modes. Each
mode is characterized by a pair of quadrature field opera-
tors {q̂k, p̂k}n

k=1 (position and momentum operators). We ar-
range the operators q̂k and p̂k in a vector of operators X̂ =
(q̂1, p̂1, · · · , q̂n, p̂n)

T . The canonical commutation relations for
X̂k take the form (with h̄ = 1)

[X̂ j, X̂k] = iσ jk, (1)

where σ jk is the generic entry of the 2n× 2n symplectic ma-

trix σ =
n⊕

k=1

(
0 1
−1 0

)
. We introduce the Weyl displacement

operator Wξ = exp(iX̂T σξ ) with ξ ∈ R2n. Then an arbi-
trary continuous-variable quantum state ρ can be fully de-
scribed in terms of its symmetrically ordered characteristic
function χ defined by χ(ξ ) = tr(ρWξ ). Gaussian states are
bosonic states with a Gaussian characteristic function. Gaus-
sian states are completely characterized by the first two mo-
ments of the canonical operators X̂k. The first moment is
called the mean value which is defined as the vector X̄ := 〈X̂〉
with X̄k = tr(ρX̂k). The second moment is called the covari-
ance matrix γ whose arbitrary element is defined by γ jk =

〈4X̂ j4X̂k +4X̂k4X̂ j〉, where4X̂ j := X̂ j−〈X̂ j〉. The covari-
ance matrix γ is a 2n× 2n real and symmetric matrix which
must satisfy the uncertainty principle [41]

γ + iσ ≥ 0. (2)

This matrix inequality is also a sufficient condition for a real,
symmetric matrix γ to represent a covariance matrix of a
Gaussian state. That is, for every real symmetric matrix γ

satisfying the inequality (2), there exists a Gaussian state with
this γ as its covariance matrix. The matrix inequality (2) im-
plies γ > 0.

Suppose we have two bosonic systems A with n modes and
B with m modes and the quantum state of the global bipartite
system A+B is in a Gaussian state. By definition, a quan-
tum state of a bipartite system is separable if its total density
operator can be expressed as a convex sum of product states
ρ =∑k ηkρk,A⊗ρk,B where ηk ≥ 0 and ∑k ηk = 1 [42]. A state
is called entangled if it is not separable. For Gaussian states,
all of the entanglement properties are contained in the covari-
ance matrices γ . It was shown in Ref. [5] that a Gaussian state
is separable if and only if there exist two real symmetric ma-
trices γA ≥ iσA and γB ≥ iσB such that

γ ≥ γA⊕ γB. (3)

The necessary and sufficient condition (3) can be further sim-
plified as γ ≥ γA⊕ iσB [12]. Although the condition (3) is very
useful in demonstrating that some particular quantum states
are entangled [5, 43, 44], it cannot be directly applied to an
arbitrary state, since the analytical determination of γA,B is in
general not possible.

In Ref. [5], it was also shown that a Gaussian state has pos-
itive partial transpose if and only if

γ + iσ̃ ≥ 0, (4)

where σ̃ = (−σA)
⊕

σB. Recall that the PPT criterion pro-
vides a necessary condition for separability. If a Gaussian
state is separable, then it must have a PPT covariance matrix
γ satisfying (4). However, the converse is in general not true.
There exist non-separable Gaussian states with a PPT covari-
ance matrix. This type of Gaussian state is known as a bound
entangled Gaussian state. For continuous-variable quantum
systems, the 2× 2 case is the simplest case in which bound
entanglement exists. A particular example of a 2× 2 bound
entangled Gaussian state can be found in Ref. [5]. Now we
attempt to generalize this example, and provide a parametriza-
tion of a class of 2×2 bound entangled Gaussian states.

First combining the conditions (2) and (4), we see that a
real symmetric matrix γ is a PPT covariance matrix if and
only if γ + iσ ≥ 0 and γ + iσ̃ ≥ 0. It is a minimal PPT co-
variance matrix if any PPT covariance matrix γ ′ satisfying
γ ′ ≤ γ must be equal to γ [5]. A minimal PPT covariance
matrix γ is separable if and only if it is a direct sum, i.e.,
γ = γA⊕ γB where γA,B correspond to pure states. A PPT co-
variance matrix γ is minimal if and only if γ + iσ and γ + iσ̃
do not majorize a common nonzero real symmetric positive
semidefinite matrix; that is, there is no real vector ζ 6= 0 that
is in the support of both matrices: γ + iσ and γ + iσ̃ . This is
the case if and only if the PPT covariance matrix γ satisfies
range(γ +σγ−1σ)∩ range(γ + σ̃ γ−1σ̃) = {0}.

Motivated by the bound entangled state example proposed
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in Ref. [5], we consider a covariance matrix of the form

γ =



γ11 0 0 0 γ15 0 0 0
0 γ22 0 0 0 0 0 γ28
0 0 γ33 0 0 0 γ37 0
0 0 0 γ44 0 γ46 0 0

γ15 0 0 0 γ55 0 0 0
0 0 0 γ46 0 γ66 0 0
0 0 γ37 0 0 0 γ77 0
0 γ28 0 0 0 0 0 γ88


. (5)

This matrix γ has a relatively simple form with no corre-
lations between position and momentum operators, but still
it can exhibit bound entanglement as we will show. A di-
rect calculation shows that any matrix γ of the form (5)
commutes with a diagonal matrix S with diagonal elements
(1,1,−1,−1,1,−1,−1,1). That is, Sγ = γS. Also, Sσ =
−σ̃S. Thus γ + iσ and γ− iσ̃ = S(γ + iσ)S are unitarily sim-
ilar. In this case, γ is a PPT covariance matrix if and only if
γ + iσ ≥ 0, which is equivalent to the positive semidefinite-

ness of
(

γ σ

σ> γ

)
≥ 0. By Schur complement, this is further

equivalent to γ > 0 and γ +σγ−1σ ≥ 0. To simplify analysis,
it is useful to introduce a permutation matrix:

P =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


.

Using P as a permutation matrix, we find that σ ′ :=

PσPT =

(
0 I
−I 0

)
and γ ′ := PγPT = γ ′1 ⊕ γ ′2 where γ ′1 =γ11 0 γ15 0

0 γ33 0 γ37
γ15 0 γ55 0
0 γ37 0 γ77

 and γ ′2 =

γ22 0 0 γ28
0 γ44 γ46 0
0 γ46 γ66 0

γ28 0 0 γ88

. Thus, it

suffices to check γ ′ > 0 and γ ′+σ ′γ ′−1σ ′ ≥ 0. This happens
if and only if γ ′2 > 0 and γ ′1− γ

′−1
2 ≥ 0.

On the other hand, we want γ to be a minimal PPT covari-
ance matrix. This happens if range(γ +σγ−1σ)∩ range(γ +
σ̃ γ−1σ̃) = {0}. Further analysis shows that γ is a mini-
mal PPT covariance matrix if rank(γ +σγ−1σ ,γ + σ̃ γ−1σ̃) =
rank(γ + σγ−1σ) + rank(γ + σ̃ γ−1σ̃) [45]. In order for γ

to correspond to an entangled state, we assume γ15 6= 0,
γ28 6= 0, γ37 6= 0, and γ46 6= 0 such that γ is of a non-
block diagonal form. In this case, it can be shown that
rank(γ +σγ−1σ ,γ + σ̃ γ−1σ̃) = 8. Since rank(γ +σγ−1σ) =

rank(
(

γ σ

σ> γ

)
)−8 = 2rank(γ + iσ)−8 = 2rank(γ + iσ̃)−

8 = rank(
(

γ σ̃

σ̃> γ

)
) − 8 = rank(γ + σ̃ γ−1σ̃), we obtain

rank(γ + σγ−1σ) = rank(γ + σ̃ γ−1σ̃) = 4. It follows that
rank(γ ′+σ ′γ ′−1σ ′) = 4; that is rank(γ ′1− γ

′−1
2 )+ rank(γ ′2−

γ
′−1
1 ) = 4. Since γ ′2 − γ

′−1
1 = γ ′2(γ

′
1 − γ

′−1
2 )γ ′−1

1 , we have
rank(γ ′2− γ

′−1
1 ) = rank(γ ′1− γ

′−1
2 ) = 2. Since γ ′1− γ

′−1
2 ≥ 0,

we take

γ
′
1− γ

′−1
2

=

γ11 0 γ15 0
0 γ33 0 γ37

γ15 0 γ55 0
0 γ37 0 γ77

−
d11 0 0 d14

0 d22 d23 0
0 d23 d33 0

d14 0 0 d44



=

β1α1 α1
α2 −β1α2

β2α3 α3
α4 −β2α4


β1α1 α1

α2 −β1α2
β2α3 α3
α4 −β2α4


T

.

We take d14 = (β2 − β1)α1α4, d23 = (β1 − β2)α2α3, d11 =
α5, d22 = α6, d33 = (β1−β2)

2α2
2 α2

3 (1+α7)/α6, and d44 =

(β2−β1)
2α2

1 α2
4 (1+α8)/α5. Here in order for γ to be positive

definite, we require β1 6= β2, β1β2 6= −1, α1 6= 0, α2 6= 0,
α3 6= 0, α4 6= 0, α5 > 0, α6 > 0, α7 > 0, and α8 > 0. Then a
direct calculation yields

γ11 = α5 +(1+β
2
1 )α

2
1 , (6)

γ22 =
1+α8

α5α8
, (7)

γ33 = α6 +(1+β
2
1 )α

2
2 , (8)

γ44 =
1+α7

α6α7
, (9)

γ55 = (β1−β2)
2
α

2
2 α

2
3 (1+α7)/α6 +(1+β

2
2 )α

2
3 , (10)

γ66 =
α6

α7(β1−β2)2α2
2 α2

3
, (11)

γ77 = (β2−β1)
2
α

2
1 α

2
4 (1+α8)/α5 +(1+β

2
2 )α

2
4 , (12)

γ88 =
α5

α8(β2−β1)2α2
1 α2

4
, (13)

γ15 = (1+β1β2)α1α3, (14)

γ28 =
1

(β1−β2)α1α4α8
, (15)

γ37 = (1+β1β2)α2α4, (16)

γ46 =
1

(β2−β1)α2α3α7
. (17)

Theorem 1. For any real β1 6= β2, β1β2 6=−1, α1 6= 0, α2 6= 0,
α3 6= 0, α4 6= 0, α5 > 0, α6 > 0, α7 > 0, and α8 > 0, a matrix of
the form (5) with entries determined by Eqs. (6) - (17) always
corresponds to a 2×2 bound entangled Gaussian state.

Examples of Bound Entangled States. We construct four ex-
amples of 2×2 bound entangled Gaussian states according to
the parametrization described in Theorem 1. The first example
is already shown in Ref. [5]. It is demonstrated that this bound
entangled state can also be obtained using the parametrization
above.

Example 1. Choose β1 = 1, β2 = 2, α1 =−α2 = α3 = α4 =√
3

3 , α5 = α6 =
4
3 , and α7 = α8 = 3. The resulting covariance
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matrix calculated from Eqs. (6) - (17) is

γ =



2 0 0 0 1 0 0 0
0 1 0 0 0 0 0 −1
0 0 2 0 0 0 −1 0
0 0 0 1 0 −1 0 0
1 0 0 0 2 0 0 0
0 0 0 −1 0 4 0 0
0 0 −1 0 0 0 2 0
0 −1 0 0 0 0 0 4


. (18)

Example 2. Choose β1 = 1, β2 = 3, α1 = α2 = α3 = α4 =√
2

2 , α5 = α6 = α7 = α8 = 1. The resulting covariance matrix
calculated from Eqs. (6) - (17) is

γ =



2 0 0 0 2 0 0 0
0 2 0 0 0 0 0 −1
0 0 2 0 0 0 2 0
0 0 0 2 0 1 0 0
2 0 0 0 7 0 0 0
0 0 0 1 0 1 0 0
0 0 2 0 0 0 7 0
0 −1 0 0 0 0 0 1


. (19)

Example 3. Choose β1 = 1/3, β2 = 1/2, α1 = α2 = 3/2,
α3 = α4 = 4, α5 = α6 = α7 = α8 = 1/2. The resulting covari-
ance matrix calculated from Eqs. (6) - (17) is

γ =



3 0 0 0 7 0 0 0
0 6 0 0 0 0 0 −2
0 0 3 0 0 0 7 0
0 0 0 6 0 2 0 0
7 0 0 0 23 0 0 0
0 0 0 2 0 1 0 0
0 0 7 0 0 0 23 0
0 −2 0 0 0 0 0 1


. (20)

Example 4. Choose β1 =−
√

2, β2 = 2
√

2, α1 = 1/2, α2 =

−
√

2/2, α3 = 1/3, α4 = −
√

2/2, α5 = 1, α6 = 3, α7 = 2,
α8 = 2/9. The resulting covariance matrix calculated from
Eqs. (6) - (17) is

γ =



7
4 0 0 0 − 1

2 0 0 0
0 11

2 0 0 0 0 0 3
0 0 9

2 0 0 0 − 3
2 0

0 0 0 1
2 0 − 1

2 0 0
− 1

2 0 0 0 2 0 0 0
0 0 0 − 1

2 0 3
2 0 0

0 0 − 3
2 0 0 0 29

4 0
0 3 0 0 0 0 0 2


. (21)

The covariance matrices (18), (19), (20) and (21) are all 2×2
bound entangled states. In particular, the covariance matrix
(21) cannot be constructed using the method developed in
Ref. [5]. This is because the matrix (21) does not commutate
with the skew symmetric matrix R with R13 = R24 = R75 =
R86 = 1, and zero remaining entries as defined in Ref. [5].

Preparation of the bound entangled state (18). We propose
an experimental protocol for generating the bound entangled

state with covariance matrix (18). According to Williamson’s
theorem [38], the covariance matrix (18) can be diagonal-
ized through a symplectic transformation. It is found that
γ = SDST , where D = diag(1,1,1,1,3,3,3,3) contains the
symplectic eigenvalues of γ and the symplectic matrix S sat-
isfies SσST = σ and is given by

S =



0 s12 0 s14 0 s16 0 s18
s21 0 s23 0 s25 0 s27 0
0 s14 0 −s12 0 s18 0 −s16

s23 0 −s21 0 s27 0 −s25 0
0 s52 0 s54 0 s56 0 s58

s83 0 −s81 0 s87 0 −s85 0
0 −s54 0 s52 0 −s58 0 s56

s81 0 s83 0 s85 0 s87 0


,

(22)

with

s12 =
(−
√

13−3)
√

5+
√

13+(3−
√

13)
√

5−
√

13
8
√

13
,

s14 =
(
√

39+4
√

3)
√

5+
√

13+(
√

39−4
√

3)
√

5−
√

13
12
√

13
,

s16 =
(
√

39+3
√

3)
√

5+
√

13+(
√

39−3
√

3)
√

5−
√

13
8
√

7
√

13
,

s18 =
(4−
√

13)
√

5+
√

13− (4+
√

13)
√

5−
√

13
4
√

7
√

13
,

s21 =
(
√

39−3
√

3)
√

5+
√

13+(
√

39+3
√

3)
√

5−
√

13
8
√

13
,

s23 =
(4−
√

13)
√

5+
√

13− (4+
√

13)
√

5−
√

13
4
√

13
,

s25 =
(3−
√

13)
√

5+
√

13− (3+
√

13)
√

5−
√

13
8
√

7
√

13
,

s27 =
(
√

13+4)
√

5+
√

13+(
√

13−4)
√

5−
√

13
4
√

3
√

7
√

13
,

s52 =
(
√

39+
√

3)
√

5+
√

13+(
√

39−
√

3)
√

5−
√

13
24
√

13
,

s54 =

√
5+
√

13−
√

5−
√

13
4
√

13
,

s56 =
(7
√

13−25)
√

5+
√

13+(7
√

13+25)
√

5−
√

13
8
√

7
√

13
,

s58 =
−
√

3
√

5+
√

13+
√

3
√

5−
√

13
4
√

7
√

13
,

s81 =
−
√

3
√

5+
√

13+
√

3
√

5−
√

13
4
√

13
,

s83 =
(−1+

√
13)
√

5+
√

13+(1+
√

13)
√

5−
√

13
−8
√

13
,

s85 =

√
5+
√

13−
√

5−
√

13
4
√

7
√

13
,
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s87 =
(−25−7

√
13)
√

5+
√

13+(25−7
√

13)
√

5−
√

13
8
√

3
√

7
√

13
.

Here the symplectic eigenvalues of γ can also be computed
from the standard eigenspectrum of the matrix iσγ . Using
the Euler decomposition [39, 40], the symplectic matrix S in
Eq. (22) can be further decomposed as

S = K[
4⊕

k=1

S(rk)]L, (23)

where K and L are symplectic and orthogonal matrices and
correspond to passive canonical unitaries (i.e., the ones that
preserve the average photon number of the input state), while
S(r1), · · · , S(r4) is a set of one-mode squeezing matrices. We
find

S(r1) = S(r2) = S(r3) = S(r4) =

(√
17+1
4 0
0

√
17−1
4

)
. (24)

The values of the matrices K and L can be found in [46].
Therefore, the bound entangled Gaussian state γ in Eq. (18)
can be decomposed as

γ = K[
4⊕

k=1

S(rk)]LDLT [
4⊕

k=1

S(rk)]KT . (25)

Thus the bound entangled Gaussian state (18) can be prepared
beginning with an initial product state corresponding to the di-
agonal matrix D, and then applying a multiport interferometer
L, a parallel set of one-mode squeezers S(rk) and finally a mul-
tiport interferometer K. The transformations described by the
multiport interferometers L and K can be both implemented
using a network of beam splitters and phase shifters [47, 48];
see [46] for details.

Combining the above analysis, the experimental protocol
for preparing the bound entangled Gaussian state (18) is de-
picted in Fig. 1. The input fields â1 and â2 are in the vac-
uum state while other two input fields â3 and â4 are in the
thermal state with covariance matrix 3I (i.e., the average pho-
ton number is n̄ = 1). By applying a multiport interferome-
ter L, a parallel set of one-mode squeezers S(rk) and finally
a multiport interferometer K, the Gaussian state obtained at
the output (d̂1, · · · , d̂4) has the covariance matrix (18), and is
a bound entangled state with respect to the bipartite splitting
such that Alice possesses modes {d̂1, d̂2} and Bob possesses
modes {d̂3, d̂4}.

Bound Entanglement Region. Consider the optical system
depicted in Fig. 1. We fix the passive unitaries L and K (i.e.,
the corresponding beam splitters and phase shifters imple-
menting L and K remain unchanged). Also, we fix the optical
inputs â1 and â2 which remain in the vacuum. Suppose the
other optical inputs â3 and â4 are in the same thermal state
with covariance matrix (2n̄+1)I where n̄ is the average pho-
ton number. Suppose the squeezers S(r1), · · · , S(r4) between

L and K realize the same symplectic transformation; that is,

S(r1)= S(r2)= S(r3)= S(r4)=

(
e−r 0
0 er

)
, where r∈R is the

2
â

4
â

1â

3
â

2
b̂

4
b̂

1
b̂

3
b̂

A1

A2

A34A

S(r2)
2
ĉ

4
ĉ

1
ĉ

3
ĉ

S(r

3

)

S(r

4

)

S(r1)

B2

B3

B4B1

2
d̂

4
d̂

1
d̂

3
d̂

L K

p4

q4

/2-π

/2π

p3

p2

q3

q2

p1

q1

FIG. 1: A diagram for preparation of the bound entangled Gaussian
state (18). The initial states â1 and â2 are in a vacuum state while
the other two optical modes â3 and â4 are in a thermal state with
covariance matrix 3I (i.e., the average photon number of the thermal
field is n̄ = 1). The unitary multiport interferometers L and K are re-
alized via using a network of beam splitters and phase shifters. The
transmittances and reflectances of the beam splitters A1, · · · ,A4 and
B1, · · · ,B4 are determined by the corresponding unitary transforma-
tions; see [46] for details. The box labeled −π/2 (π/2) represents
the relative phase shift â→ iâ (−iâ). S(r1), · · · , S(r4) are a set of one-
mode squeezers as described by Eq. (24). The output Gaussian state
(d̂1, · · · , d̂4) has the covariance matrix (18), and is a bound entangled
state with respect to the bipartite splitting such that Alice possesses
modes {d̂1, d̂2} and Bob possesses modes {d̂3, d̂4}.

squeezing parameter. As discussed before, if κ := 2n̄+1 = 3
and τ := e−r = (

√
17+1)/4, the state produced at the output

has the covariance matrix (18), and is bound entangled with
respect to the bipartition {{d̂1, d̂2},{d̂3, d̂4}}. Now we vary
the thermal inputs n̄ and the squeezing parameter r such that
we can obtain different Gaussian states at the output. The en-
tanglement properties of these output states can be determined
from their covariance matrices via solving a semidefinite pro-
gramming problem. The results are shown in Fig. 2. As can
be seen in Fig. 2, without the presence of squeezing, no en-
tanglement can be generated. If we add a small amount of
squeezing, the output state should be bound entangled. How-
ever, if we continue to increase the amount of squeezing, the
output state should eventually enter a region of free entangle-
ment.

In conclusion, we have parametrized a class of 2×2 bound
entangled Gaussian states. For a particular bound entan-
gled state, we present an experimental protocol for generat-
ing it in quantum optics. It is interesting to extend this result
to continuous-variable multipartite bound entangled states,
which may serve as a useful resource for multiparty quan-
tum communication such as remote information concentra-
tion [49], secure quantum key distribution [28, 29], and super-
activation [50]. We believe the results we present here may
contribute to a deeper understanding of entanglement in the
continuous-variable domain.
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1 2 3 4 5 61.5 2.5 3.5 4.5 5.5

1.1

1.2

1.3

1.4

1.5

1.1079

1.1837
1.2389

1.3134
1.3396

1.3610 1.3789
1.3940 1.4070

Bound entanglement

Free entanglement

1

1.6 1.5770

FIG. 2: The bound entanglement region obtained from the system
described in Fig. 1 by varying the thermal inputs and the squeezing
components. The shaded region corresponds to the bound entangled
states with respect to the bipartition {{d̂1, d̂2},{d̂3, d̂4}}. The point
marked with a red star corresponds to the bound entangled state (18)
which is generated when κ = 3 and τ = (

√
17+1)/4. It lies on the

boundary between bound and free entangled states. As the average
photon number n̄ increases, the boundary curve between the bound
and free entanglement regions approaches a horizontal asymptote
τ = 1.5770 (marked by a dotted blue line). Thus when the squeez-
ing parameter r satisfies e−r > 1.5770, we will always obtain free
entanglement at the output no matter how large the value of n̄.
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Supplemental Material

I. THE MATRICES K AND L

The unitary matrices K and L appearing in Eq. (23) are given by

K =
1√

17−3
√

17



2 0 0 0 0 −
√

17−3
2 0 −

√
17−3
2

0 2 0 0
√

17−3
2 0

√
17−3
2 0

0 0 2 0 0 −
√

17−3
2 0

√
17−3
2

0 0 0 2
√

17−3
2 0 −

√
17−3
2 0√

17−3
2 0

√
17−3
2 0 0 2 0 0

0
√

17−3
2 0

√
17−3
2 −2 0 0 0√

17−3
2 0 −

√
17−3
2 0 0 0 0 2

0
√

17−3
2 0 −

√
17−3
2 0 0 −2 0


,

L =
1√

17−3
√

17



0 l12 0 l14 0 l16 0 l18
−l12 0 −l14 0 −l16 0 −l18 0

0 l14 0 −l12 0 l18 0 −l16
−l14 0 l12 0 −l18 0 l16 0
l51 0 l53 0 l55 0 l57 0
0 l51 0 l53 0 l55 0 l57
−l53 0 l51 0 −l57 0 l55 0

0 −l53 0 l51 0 −l57 0 l55


,

l12 =

(
− (21+3

√
17)+3(1−

√
17)
√

13+(5−
√

17)
√

39+(5−
√

17)
√

3
)√

5+
√

13

48
√

13

+

(
(21+3

√
17)+3(1−

√
17)
√

13+(5−
√

17)
√

39− (5−
√

17)
√

3
)√

5−
√

13

48
√

13
,

l14 =

(
(30−6

√
17)+(3+

√
17)
√

39+(7
√

17−3)
√

3
)√

5+
√

13

48
√

13

+

(
− (30−6

√
17)+(3+

√
17)
√

39− (7
√

17−3)
√

3
)√

5−
√

13

48
√

13
,

l16 =

(
(35−7

√
17)
√

13− (125−25
√

17)+(
√

17−1)
√

39+(7+
√

17)
√

3
)√

5+
√

13

16
√

7
√

13

+

(
(35−7

√
17)
√

13+(125−25
√

17)+(
√

17−1)
√

39− (7+
√

17)
√

3
)√

5−
√

13

16
√

7
√

13
,

l18 =

(
(37−9

√
17)
√

13+(33
√

17−133)+(2
√

17−10)
√

3
)√

5+
√

13

16
√

7
√

13

+

(
(37−9

√
17)
√

13+(133−33
√

17)+(10−2
√

17)
√

3
)√

5−
√

13

16
√

7
√

13
,

l51 =

(
(4
√

17−12)
√

39+(10
√

17−54)
√

3+(63−9
√

17)+(21−3
√

17)
√

13
)√

5+
√

13

96
√

13

+

(
(4
√

17−12)
√

39− (10
√

17−54)
√

3− (63−9
√

17)+(21−3
√

17)
√

13
)√

5−
√

13

96
√

13
,



2

l53 =

(
(21
√

17−51)+(3
√

17−21)
√

13+(2
√

17−14)
√

39+(8
√

17−56)
√

3
)√

5+
√

13

96
√

13

+

(
(−21

√
17+51)+(3

√
17−21)

√
13+(2

√
17−14)

√
39− (8

√
17−56)

√
3
)√

5−
√

13

96
√

13
,

l55 =

(
− (106+42

√
17)+(12

√
17+28)

√
13+(

√
17−7)

√
39+(3

√
17−21)

√
3
)√

5+
√

13

32
√

7
√

13

+

(
(106+42

√
17)+(28+12

√
17)
√

13+(21−3
√

17)
√

3+(
√

17−7)
√

39
)√

5−
√

13

32
√

7
√

13
,

l57 =

(
(−56+8

√
17)+(14−2

√
17)
√

13+(7−
√

17)
√

39+(17−7
√

17)
√

3
)√

5+
√

13

32
√

7
√

13

+

(
(56−8

√
17)+(14−2

√
17)
√

13+(7−
√

17)
√

39− (17−7
√

17)
√

3
)√

5−
√

13

32
√

7
√

13
.

II. REALIZATION OF THE TRANSFORMATIONS L AND K

The input-output relations described by L and K can be, respectively, written as
b̂1
b̂2
b̂3
b̂4

=
1√

17−3
√

17

−il12 −il14 −il16 −il18
−il14 il12 −il18 il16

l51 l53 l55 l57
−l53 l51 −l57 l55


â1

â2
â3
â4

 ,


d̂1
d̂2
d̂3
d̂4

=
1√

17−3
√

17


2 0

√
17−3
2 i

√
17−3
2 i

0 2
√

17−3
2 i −

√
17−3
2 i√

17−3
2

√
17−3
2 −2i 0√

17−3
2 −

√
17−3
2 0 −2i


ĉ1

ĉ2
ĉ3
ĉ4

 .

Realization of the multiport interferometer L: By direct calculation, we find

1√
17−3

√
17

−il12 −il14 −il16 −il18
−il14 il12 −il18 il16

l51 l53 l55 l57
−l53 l51 −l57 l55

= A4A3A2A1A0

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

where

A0 =


1 0 0 0
0 1 0 0
0 0 l51l55+l57l53√

(l2
51+l2

53)(l
2
55+l2

57)

l57l51−l53l55√
(l2

51+l2
53)(l

2
55+l2

57)

0 0 l53l55−l57l51√
(l2

51+l2
53)(l

2
55+l2

57)

l51l55+l53l57√
(l2

51+l2
53)(l

2
55+l2

57)

 ,

A1 =
1√

17−3
√

17


1 0 0 0

0 −i
√

l2
12 + l2

14 0 −i
√

l2
51 + l2

53
0 0 1 0

0 −
√

l2
51 + l2

53 0
√

l2
12 + l2

14

 ,

A2 =
1√

17−3
√

17


−i
√

l2
12 + l2

14 0 i
√

l2
51 + l2

53 0
0 1 0 0√

l2
51 + l2

53 0
√

l2
12 + l2

14 0
0 0 0 1

 ,



3

A3 =


l12√

l2
12+l2

14
− l14√

l2
12+l2

14
0 0

l14√
l2
12+l2

14

l12√
l2
12+l2

14
0 0

0 0 1 0
0 0 0 1

 , A4 =


1 0 0 0
0 1 0 0
0 0 l51√

l2
51+l2

53

l53√
l2
51+l2

53

0 0 − l53√
l2
51+l2

53

l51√
l2
51+l2

53

 .

are Bogoliubov transformations and can be realized using beam splitters. The matrix

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 implements a π phase

shift onto the optical input â2. However, this π phase shift is not relevant in our case since the optical input field â2 is in the
vacuum. Also, the beam splitter A0 is not relevant in our case since it acts on two identical thermal inputs â3 and â4. It makes
no difference whether these two components (the π phase shifter and the beam splitter A0) are added to the quantum system or
not. Therefore, they are removed and do not appear in Fig. 1.

Realization of the multiport interferometer K: By direct calculation, we find

1√
17−3

√
17


2 0

√
17−3
2 i

√
17−3
2 i

0 2
√

17−3
2 i −

√
17−3
2 i√

17−3
2

√
17−3
2 −2i 0√

17−3
2 −

√
17−3
2 0 −2i

= B4B3B2B1

1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

 ,

where

B1 =


1 0 0 0
0 1 0 0
0 0 −

√
2

2

√
2

2
0 0 −

√
2

2 −
√

2
2

 , B2 =


1 0 0 0

0 2√
17−3

√
17

0 −(
√

17−3)
√

2
√

17−3
√

17
0 0 1 0

0 (
√

17−3)
√

2
√

17−3
√

17
0 2√

17−3
√

17

 ,

B3 =


2√

17−3
√

17
0 −(

√
17−3)

√
2
√

17−3
√

17
0

0 1 0 0
(
√

17−3)
√

2
√

17−3
√

17
0 2√

17−3
√

17
0

0 0 0 1

 ,B4 =


1 0 0 0
0 1 0 0
0 0

√
2

2

√
2

2
0 0

√
2

2 −
√

2
2

 ,

are Bogoliubov transformations and can be realized using beam splitters.
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