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• Effects of both strength and orientation of the dipoles are discussed.
• Various topological defects can be formed in different parameter regions.
• Present one possible way to obtain regular arrangements of spin textures.
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a b s t r a c t

We investigate the topological defects and spin structures of a
rotating binary Bose–Einstein condensate, which consists of both
dipolar and scalar bosonic atoms confined in spin-dependent
optical lattices, for an arbitrary orientation of the dipoles with
respect to their plane of motion. Our results show that the tunable
dipolar interaction, especially the orientation of the dipoles, can be
used to control the direction of stripe phase and its related half-
vortex sheets. In addition, it can also be used to obtain a regular
arrangement of various topological spin textures, such as meron,
circular and cross disgyration spin structures. We point out that
such topological defects and regular arrangement of spin structures
arise primarily from the long-range and anisotropic nature of
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dipolar interaction and its competition with the spin-dependent
optical lattices and rotation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

One of the remarkable aspects of a dilute gas of Bose–Einstein condensate (BEC) is the great success
of the mean-field theory governed by the well-known Gross–Pitaevskii (GP) equation. Many of the
observed static and dynamics properties of the BEC are usually studied by solving such an equation
involving a local term that describes the short-range contact interactions. Recently experimental
progress in trapping and cooling of atoms with large magnetic moments, such as 52Cr (168Er or 164Dy)
condensate with dominant long-range and anisotropic dipole–dipole interaction (DDI), has launched
huge interest in the field of nonlocal nonlinearity, which has been a subject of active investigation in
disparate physical systems during the past years [1–5].

Historically, the nonlocal nonlinearity was studied in the physics of plasmas [6] and nematic
liquid crystals [7], and also in nonlinear media [8]. Notably, previous studies on dipolar quantum
gases have shown that the nonlocal nonlinearity, introduced by DDI, plays a crucial role in the
nonlinear dynamics of the system, especially in the physics of soliton and vortex [9,10], and its related
topological structures [11–13]. Besides the high degree of control overmost of the systemparameters,
the long-range and anisotropic nature of dipolar quantum gases not only offer researchers to explore
regions of parameter space that are difficult to access in a naturally occurring system, but also make
the system an ideal candidate for exploring a variety of nonlinear phenomena and the formation of
various topological defects and spin structures [14,15].

Recently, it has become possible to produce a two-component BEC, in which the atoms in
one component have a magnetic dipole moment and the atoms in the other component are
nonmagnetic [16–18]. The major merits of such a system lie in the fact that it not only allows the
pattern and topological defects formation without suffering a dipolar collapse, but also offers us an
alternative way for exploring the effects of DDI on the non-dipolar condensate. However, previous
studies on such a system mainly involved dipoles either perpendicular or parallel to the condensate
plane. In addition, in real experiments, designing various types of the optical lattice (OL), such as
double-periodic optical superlattice and spin-dependent (rotating or not) OLs, is within current
experimental capability [19,20]. More specifically, Han et al. have investigated the half-vortex sheets
and domain-wall trains of a two-component BEC without DDI in spin-dependent OLs [21].

Proceeding along these lines, it is then natural to consider a two-component condensate, which
consists of both dipolar and scalar atoms confined in spin-dependent OLs, for an arbitrary orientation
of the dipoles with respect to the plane of motion of the atoms, which is what we attempt to do
in this work. It is shown that the present system, contrary to the non-dipolar case, not only has
eyebrowlike spin texture and half-vortex sheet, but also exhibits exotic ground-state structures and
regular arrangements of various spin structures, such as self-squeezing, meron, circular and cross
disgyration. Furthermore, our results show that the orientation of dipoles constitutes an additional
tuning parameter, providing us a unique mechanism for the formation of various topological defects
and resulting in rich ground state phases.

2. Formalism

The system considered here is schematically illustrated in Fig. 1. A quasi-two-dimensional (quasi-
2D) two-component BEC, each with mass mi and atom number Ni, is used, where the atoms in
component 1 have a magnetic dipole moment and the atoms in component 2 are nonmagnetic. In
addition, a magnetic field is applied to fix the direction of the fully polarized magnetic dipoles, which
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Fig. 1. (Color online) Schematic diagram. The component 1 (yellow) has a dipole moment, which is polarized by an external
field and forms an angle θ with the z axis; while component 2 (purple) not. The external potential considered here is a
combination of harmonic potential and spin-dependent optical lattices, and each component is confined at the minima of
respective optical lattice.

is in the x–z plane and forms an angle θ with the z-axis [22]. Such a system is confined in one-
dimensional spin-dependent OLs and subject to a rotation along the z-axis. At mean-field level, the
system can be described by the nonlocal GP equation [23]

ih̄
∂ψi(r, t)
∂t

=


hi(r)+ gii|ψi|

2
+ gi(3−i)|ψ(3−i)|

2
+
µ0µiµ(3−i)

4π


Udd(r)|ψ(3−i)(r′, t)|2dr′

+
µ0µ

2
i

4π


Udd(r)|ψi(r′, t)|2dr′


ψi(r, t), (1)

where hi(r) = −
h̄2
2mi

∇
2

+ V i
ext(r) − ΩLz , ψi is the condensate wave function with normalization

dr|ψi(r, t)|2 = Ni, Lz = −ih̄(x∂y−y∂x) is the z-component of the angularmomentum,µ0 andµi are
themagnetic permeability of vacuum and themagnetic dipolemoment for component i, respectively.
For the isotropic contact interactions, gii = 2

√
2π h̄2 aii/milz and gi(3−i) =

√
2π h̄2 ai(3−i)/mRlz with

lz =
√
h̄/mωz andmR = m1m2/(m1+m2)being the oscillator length in the z direction and the reduced

mass, aii and ai(3−i) are the corresponding intra- and inter-component scattering lengths, respectively.
The long-range and nonlocal DDI potential has the form with

Udd(r − r′) =
1 − 3 cos2Θ

|r − r′|3
, (2)

whereΘ is the angle between the polarization direction and the interatom vector r− r′. The external
trapping potential, Vext(r), is assumed to be a combination of harmonic and spin-dependent OLs of
the form

V i
ext(r) =

mi

2
ω2

⊥
(x2 + y2)+ Voli, (3)

with ω⊥ = ωx = ωy, Vol1 = I0 sin2(kx) and Vol2 = I0 cos2(kx) for components 1 and 2, respectively
[20,24]. Here k is thewave vector of the laser light used for theOLpotential and I0 is the potential depth
of the lattices. For simplicity, we assume that the two components have the same mass m and the
same number of atoms N , and consider only repulsive short-range contact interactions. In addition,
we assume component 2 is nondipolar, resulting in zero inter-component dipolar interaction. For
dipolar component 1, to compare the dipolar and contact interactions, we define the relative strength
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of such two interactions as ξdd = µ0µ
2
1m/(12πas h̄

2), with dipolar length add = µ0µ
2
1m/(12π h̄2) and

as being the three-dimensional s-wave scattering length. In real experiments, this value can be tuned
by Feshbach resonance (tuning the s-wave scattering length) and an external field rotation, leading to
a large parameter space.

The stationary states of the system can be obtained by using the imaginary-time propagation in
Cartesian coordinates [25,26]. The DDI is treated by Fourier transformation inmomentum space using
a convolution theorem in the usual fashion, which can be written as

Φ(r, t) =
µ0µ

2
1

3
√
2π lz

F −1
2D [ñ(k, t)F(klz/

√
2)], (4)

here F2D is the 2D Fourier transform operator and ñ(k, t) = F2D[n(r, t)]. The function F(q) with
q ≡ klz/

√
2 is the k space DDI for the quasi-2D geometry, which consists of two parts coming from

polarization perpendicular or parallel to the direction of the dipole tilt. That is F(q) = cos2(α)F⊥(q)+
sin2(α)F∥(q) with α being the angle between ẑ and the polarization vector d̂. Here F⊥(q) = 2 −

3
√
πqeq

2
erfc(q), F∥(q) = −1 + 3

√
π(q2d/q)e

q2erfc(q), qd is the wave vector along the direction of
the projection of d̂ onto the x–y plane, and erfc is the complementary error function [27,28]. Without
loss of generality, we further assume that all the contact interactions are fixed as g11 = g22 = g12 =

g = 1000, the period and potential depth of the OL are fixed as T = π and I0 = 5. Finally, we work
in dimensionless units by introducing the scales characterizing the trapping potential: the length is
expressed in units of oscillator length l0 =

√
h̄/mω⊥, the time is expressed in units of t0 = 1/ω, the

energy is expressed in units of oscillator energy h̄ω, and the probability density |ψi|
2 is expressed in

units of Nil−3
0 . We start from some proper initial wave-function and propagate it until the fluctuation

in the norm of the wave function becomes smaller than 10−6.

3. Topological defects and spin structures

Let us consider the stationary states of the system. As discussed in [21], for the non-dipolar
case, straight half-vortex sheets and domain-wall trains emerge as the ground state phases of the
system. In what follows we systematically perform numerical simulations for various values of the
system parameters to study the ground-state and rotational properties of the system. It is found that
the presence of tunable dipolar interactions in component 1 provides a unique mechanism for the
formations of various regular arrangements of topological defects and spin structures.

In Fig. 2, we show the typical density distributions of the system for fixed g = 1000, ξdd = 0.8,
Ω = 0.6, but for different orientations of the dipoles θ = 0°, 15°, 30°, 45°, 60°, 90°. The first
three columns correspond to the densities of components 1 and 2, and the total density of these two
components, respectively. As shown in Fig. 2, it is clear that not only the density of each component but
also the total density of these two components depends sensitively on the orientation of the dipoles.
This is obviously different from the non-dipolar case with the same OLs, where the system undergoes
phase separation in the form of stripes arranged alternately along the direction of the OLs (i.e., x-axis
direction), and the total density of the system is almost unchanged for a large range of parameter
sets [21].

When the dipoles are polarized along the z-axis, i.e., θ = 0°, the DDI is purely repulsive and
isotropic. As shown in Fig. 2(a), the ground-state density of the system is the well-known stripe
phase, where each component is arranged alternately along the direction of the OLs (i.e., x-axis
direction). In this case, the net effect of DDI is to increase the number of vortices in component 1
[as shown in Fig. 3(a) for the phase distribution of the system, where its positions are determined
by the singularities of the phase], and to enlarge the dipolar cloud. Recall that a two-component
system allows the existence of half-quantized vortices, whose winding number is one half of a singly
quantized vortex in single-component BEC. We thus refer to these vortices and its related vortex
structures as half-quantized vortices and straight half-vortex sheets, respectively [29].

Upon increasing θ to 15°, we find a similar vortex structure since the attractive part of the dipolar
interaction is less important. However, it, to some extent, leads to the change of density distribution,
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Fig. 2. (Color online) Effects of long-range and anisotropic DDI on the density distributions of the system. The contact
interactions are fixed as g = 1000, the strength of DDI ξdd = 0.8, the rotation frequency Ω = 0.6, the period of the optical
lattice potential T = π , and the orientation of the dipoles θ = 0°, 15°, 30°, 45°, 60°, 90°. The size of the frame is 25.6 × 25.6
in dimensionless unit of l0 =

√
h̄/mω⊥ .

as shown in Fig. 3(b) for the density difference of these two components. In this case, some high
energy atoms can overcome the OL and have a certain tunneling probability, as shown in Figs. 2(b)
and 3(b). As θ exceeds 30°, the situation is changed. In this case, the attractive part of the dipole
interaction becomes dominant, leading to a change of the direction of the stripe phase, that is, the
stripes of each component are arranged alternately perpendicular to the direction of the OLs (i.e.,
y-axis direction). As expected, this phenomenon occurs more obviously for even larger θ , such as
θ = 45°, 60°. Typical density and phase distributions of such cases are shown in Figs. 2(c)–(e) and
Figs. 3(c)–(e), respectively.

An interesting observation occurs at θ = 90°. In this case, the orientation of the dipoles is parallel
to their plane ofmotion, and the DDI is attractive in the x-axis but repulsive in the y-axis. The presence
of repulsive inter-component interaction, together with this anisotropic and long-range DDI, leads to
the self-squeezing of the dipolar component, as shown in Figs. 2(f) and 3(f). This behavior is in a sense
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Fig. 3. (Color online) The phase distributions and density difference of the two components for the states represented in Fig. 2.
For the phase distributions, value of the phase varies continuously from 0 (blue) to 2π (yellow). The parameters are the same
as those in Fig. 2, and the size of the frame is 25.6 × 25.6 in dimensionless unit of l0 =

√
h̄/mω⊥ .

reminiscent of the cases in [22], where a single (two)-component dipolar component was considered
in anisotropic (isotropic) harmonic potential, respectively.

In principle, rapid rotation will generate more vortices between the stripes of each component.
However, it does not change the essential density distribution of the present system, and this holds
even for the non-rotational case (Ω = 0), where there is no vortex appearing at all. In addition, the
system always shows a similar change of the density profiles over a large range of ξdd. Hence, the
physical mechanism for the change of the direction of the stripes and the self-squeezing, lies in the
anisotropic nature of DDI and its competition with OLs. Consequently, we can safely conclude that the
orientation of the dipoles,which constitutes an additional tuning parameter, can be used to change the
direction of the straight half-vortex sheets, and to induce the self-squeezing of the dipolar component,
even in the presence of the spin-dependent OLs.
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Fig. 4. (Color online) The two-dimensional representations of the pseudospin S projected onto the x–y plane corresponding to
the states represented in Fig. 2: (a) θ = 90°; (b) θ = 60°; (c) θ = 45°; (d) θ = 30°; (e) θ = 15°; (f) θ = 0°. The arrows represent
the transverse spin vector (Sx , Sy) with length and color representing its magnitude and the values of Sz , which ranges from −1
(blue) to 1 (yellow). In (f), the circular disgyration spin structures are denoted by the black circles with arrows indicating the
directions of circulations, and the cross disgyration one is denoted by red dashed rectangle. The other parameters are the same
as those in Fig. 2, and the size of the frame is 25.6 × 25.6 in dimensionless unit of l0 =

√
h̄/mω⊥ .

Topological spin textures, such as skyrmions (Anderson–Toulouse vortices) and merons (half-
skyrmion, Mermin–Ho vortices) play a central role in describing the physics of elementary particles,
liquid 3He-A, and BEC [30–35]. For a condensate with an internal spin degree of freedom, the
realization and stability of such spin textures have been studied [36,37]. For the dipolar quantum
gases, previous studies have shown that dipolar effects in atomic BEC can be used to develop various
spin textures [38,39]. Thus, it is also of interest to investigate the pseudospin S of the system, which
manifests itself as the presence of various topological spin structures.

By introducing a normalized complex-valued spinor φ, the two-component wave functions can
be written as ψ↑↓ =

√
ρT (r)φ↑↓(r) with ρT (r) being the total density and the spinor satisfies

|φ↑|
2

+ |φ↓|
2

= 1. Consequently, the pseudospin vector can be defined as S = φ(r)Tσφ(r) with
σ being the Pauli matrix. The explicit expressions of S = (Sx, Sy, Sz) are given by [40]

Sx = (φ∗

1φ2 + φ∗

2φ1) = 2|φ1 ∥ φ2| cos(θ1 − θ2),

Sy = −i(φ∗

1φ2 − φ∗

2φ1) = −2|φ1 ∥ φ2| sin(θ1 − θ2),

Sz = |φ1|
2
− |φ2|

2, (5)

where θ1,2 is the phase of the wave function φ↑↓ and the modulus of the total spin is |S| = 1.
Fig. 4 shows the two-dimensional representations of pseudospin S projected onto the x–y plane,

corresponding to the states represented in Fig. 2 for different orientations of the dipoles. It is easy to
see that such spin texture depends very sensitively on the orientation of the dipoles. For θ = 90°
and 60°, we again observe the so-called eyebrowlike spin textures on the domain walls, which was
previously observed for the non-dipolar condensate. However, in the present case, due to the long-
range and anisotropic nature of DDI, the directions of both the domain wall and eyebrowlike spin
texture are changed from the x-axis (parallel to the direction of OLs) to y-axis direction (perpendicular
to OLs), as shown in Fig. 4(a) and (b).

Decreasing the orientation angle θ , the eyebrowlike spin textures gradually evolve into the
meron and whirling patterns randomly arranged, as shown in Fig. 4(c) for 45°. In addition, by
further decreasing θ , such as θ = 30°, 15°, some meron evolves into circular disgyration with
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Fig. 5. (Color online) The two-dimensional representations of the pseudospin S projected onto the x–y plane corresponding
to the same parameters represented in Fig. 2(f). The profiles (a) and (b) are obtained by the numerical simulation starting from
trial wave functions with different global phase difference.

different circulations, as shown in Fig. 4(d) and (e). Eventually, when the orientation of the dipoles
is perpendicular to their plane of motion, i.e., θ = 0°, regular arrangements of circular and cross
disgyration spin structures are formed. Typical spin texture of such case is shown in Fig. 4(f), where the
circular disgyration spin structures are denoted by themarked black circleswith arrows indicating the
directions of circulations, and the cross disgyration spin structure is denoted by red dashed rectangle.
Furthermore, we note that the Hamiltonian of the system and GP equation (1) are invariant under
the gauge transformation ψi → ψi exp(iϕi) with ϕi being an arbitrary real number. For the same
parameters, we obtain other regular arrangements of spin structures, as shown in Fig. 5, where their
energies are the same as that of Fig. 4(f). Therefore, continuous degenerate states will appear in the
present system.

Actually, similar spin structures were previously observed in a spin-1 condensate [31,32,36] and
recently in spin–orbit-coupled condensate in the Mott-insulator regime [41], where different types
of interactions result in such structures. For the present system, it is necessary to point out the
following: (i) in the absence of rotation and only DDI and contact interactions are taken into account,
no topological spin structure can be formed; (ii) in the absence of DDI and for the immiscible casewith
g11g22 < g212, only eyebrowlike spin textures can be formed on the domain walls; (iii) in the absence
of DDI and for the miscible case with g11g22 > g212, only randomly arranged spin structures can be
formed by either increasing the intra-component interaction or lowering the heights of the optical
lattices. Consequently, the formations of regularly arrangement of spin structures, are essentially due
to the intrinsic long-range characteristic of DDI and its competition with the spin-dependent OLs and
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rotation. From the energetical point of view, the repulsive interaction increases with a decrease of
the orientation angle, and it is purely repulsive for θ = 0°. Consequently, regular arrangements of
the spin structures, such as meron, circular disgyration, and cross disgyration, are more energetically
favorable.

The results presented above can be realized using current experimental setups. The special two-
component system can be realized by selecting two states in the ground hyperfinemanifolds of atomic
Cr, Er, or Dy, where components 1 and 2 consist of states with spin projections mJ = −J and
mJ = 0. The spin-dependent OL potentials can be realized by using two counter propagating blue-
detuned laser beams with the same frequency but perpendicular linear polarization vectors [24].
For the tunable DDI, the orientation of dipoles can be manipulated by an external polarized field,
and its magnitude can be controlled by means of rotating another orienting field [42]. Hence, the
parameters used in this study are feasible in current experiments. Finally, the topological spin textures
are experimentally observable by magnetization-sensitive phase-contrast imaging technique.

4. Conclusion

In conclusion, we have studied the ground-state phases of a rotating binary dipolar condensate,
which consists of both dipolar and non-dipolar components and is confined in spin-dependent OLs,
for an arbitrary orientation of the polarization axis with respect to their plane of motion. We show
that the tunable dipolar interaction, especially the orientation of the dipoles, can be used to control
the direction of the stripe phase and its related half-vortex sheets. In addition, when the orientation
of the dipoles is aligned along the x-axis, we also find the well-known self-induced squeezing of the
dipolar component along the y-axis direction, even in the presence of spin-dependent optical lattices
in the x-axis direction. Furthermore, we observe a variety of nontrivial topological defects such as
eyebrowlike spin texture, meron, circular disgyration, and cross disgyration, and find that regular
arrangements of such spin textures can be obtained by changing the orientation of the dipoles.

The underlying physics of the formation of such topological defects and spin structures is the
competition among DDI, rotation, and the spin-dependent OLs. Our results open up alternative ways
for the formation of various topological defects and spin structures in future experiments.
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