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Abstract
We investigate the ground states and spin textures of rotating two-component Bose–Einstein
condensates (BECs) confined in an annular potential. For the two-component miscible BECs,
we analytically give the critical angular velocity of each component with the Thomas–Fermi
approximation (TFA), at which the density profile changes from a disc shape into an annulus
shape, forming a giant vortex. We present a phase diagram showing three kinds of density
profiles of the ground states that are two disc shaped, one disc and another annulus shaped, and
two annulus shaped. For the two-component immiscible BECs with particle number grave
imbalance, we also discuss their ground states using the TFA, and three kinds of symmetrical
structures of the density profiles are classified analytically. The spin textures of the
two-component immiscible BECs have been studied and we find three kinds of symmetrical
structures of the spin textures in the annular trap. One of these textures is an annular skyrmion
which has been observed in harmonic potentials. Both of the other spin textures contain a new
structure composed of concentric double-annulus skyrmion whose topological charge is the
sum of the ones of two annular skyrmions, and the topological charge of each annular skyrmion
is equal to the absolute value of the difference between the quantum numbers of circulation of
two components inside this annular skyrmion. We also prove that these new textures are robust
by investigating the dynamical behaviours of the system under external disturbances.

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, many interesting consequences have been
obtained theoretically and experimentally in the field of cold
atoms. With the improved experimental technology, it is very
easy to construct and control different structures of potentials
such as the harmonic potentials, the optical lattice potentials
and the annular or ring-shaped potentials [1–4]. Because of
the circular geometric structure, the annular potentials are
very important for many fields, such as the accelerator physics
[5–8], persistent currents [2], vortices [9, 10], solitons [11–13]
in Bose–Einstein condensates (BECs) and so on.

The rotating single-component BECs in anharmonic
trapping potentials have been studied extensively and display

1 Author to whom any correspondence should be addressed.

very rich topological states with unique vortex structures
[14, 15]. Many theoretical studies about two-component
BECs confined in annular traps have been carried out. For
example, the rotational properties of two-component Bose
gases confined in a one-dimensional single-ring potential are
studied and the persistent currents are found in this system
[16]. And various phases of the ground state are identified and
the rotational properties are also studied for the mixture of
Bose gases confined in a two-dimensional concentric double-
annulus-like trap [17]. However, few researches about the
vortex structures have been carried out and none of these
studies has considered the spin textures of the rotating two-
component BECs in a two-dimensional annular trap.

In this paper, we investigate the ground states and the spin
textures of rotating two-component BECs confined in a two-
dimensional annular trap. The system has many parameters
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such as anharmonic trapping potential, rotation angular
velocity, population imbalance between the two components,
inter-component and intra-component interaction strengths,
and the interplay of them will induce a very rich phase
diagram. Firstly, we consider the ground states of two
miscible components with different angular velocities. For
each component, a central density hole which contains several
phase defects will appear, forming a giant vortex, when the
angular velocity exceeds a critical value. We give their critical
angular velocities with the Thomas–Fermi approximation
(TFA) and present a phase diagram of the two components
which shows three kinds of density profiles of the ground
states by varying the angular velocities and intra-component
interaction strengths.

Secondly, we study the ground states of two-component
immiscible BECs with symmetric structures. For the two
components with their particle number grave imbalance, the
density distribution of the big component is hardly affected
by the small one, but the small component experiences a
trap formed by the external trap plus the repulsive interaction
from the big component. So we can also approximate their
profiles with the TFA, and the phases of the ground states
are analytically classified into three kinds of symmetric
structures according to the competition among the chemical
potentials and the effective potential barriers. We also research
numerically the spin textures of two-component immiscible
BECs. Three kinds of interesting spin textures are found. One
of them is annular skyrmion (giant skyrmion); this structure
has been observed and researched in the harmonic trapping
potentials [18, 19]. Both of the other spin textures contain a
new structure which we name as concentric double-annulus
skyrmion. This texture cannot exist in harmonic trapping
potentials and has, so far, not been studied.

This paper is organized as follows: in section 2, we
introduce the basic formulation of the problem. In section 3, the
two-component miscible condensates are studied analytically
with the TFA, and the phases of the ground states are classified.
In section 4, we analytically discuss the two-component
immiscible BECs with the TFA in the limit of N1 � N2.
The density profiles and spin textures of the condensates in the
annular trap are studied numerically. And the conclusions are
given in section 5.

2. Formulation of the problem

We consider two-component BECs at zero temperature,
confined in an axially symmetric potential:

V = 1
2 m

[
ω2

⊥V0(r − r0)
2 + ω2

z z2
]
, (1)

where r =
√

x2 + y2, ω⊥ and ωz are the frequencies of the
confinement in the x–y plane and along the z axis, respectively.
V0 is a dimensionless constant that characterizes the barrier
height for a fixed r0. The potential has a minimum at r0.
Supposing λ = ωz

ω⊥
� 1, the system can be simplified into

a quasi-two-dimensional model, and the trapping potential is
reduced to its two-dimensional form V = 1

2 mω2
⊥V0(r − r0)

2,
as shown in figure 1. The trapped two-component BECs
can be characterized by the condensate wavefunctions � =

(a) (b)

Figure 1. (a) Schematic of the annular trapping potential. (b) The
cross sections of V along the x axis at y = 0.

(�1, �2)
T. In the weak interaction limit, the condensates in a

rotating frame with angular velocity � around the z axis can
be well described by the coupled Gross–Pitaevskii equations
(CGPEs):

i�
∂� j(r, t)

∂t
=

[
−�

2∇2

2m
+V +

2∑
k=1

Ujk|�k|2−�L̂z

]
� j(r, t),

(2)

where Ujk = 4π�
2a jk/m, ( j, k = 1, 2) represents the

intra-(U11,U22) or inter-component (U12) interaction strength
characterized by the s-wave scattering length ajk and particle
mass m. L̂z = −i�(x∂y−y∂x) is the z-component of the angular
momentum operator. The wavefunctions are normalized as∑

j

∫ ∣∣� j

∣∣2
dr = N, where N is the total number of particles

in the condensates.
We can separate the degrees of freedom of the

wavefunction as � j(r, t) = ψ j(x, y, t)φ(z). After rescaling
r̃ = r/a0, t̃ = ω⊥t, ψ̃ j = ψ ja0/

√
N, �̃ = �/ω⊥, L̃z =

Lz/�, where a0 = √
�/mω⊥, we obtain the two-dimensional

dimensionless coupled CGPEs (for simplicity, we remark •
instead of •̃ in the following):

i
∂ψ1

∂t
=

(
−1

2
∇2 + 1

2
V0(r − r0

)2

+ g11 |ψ1|2

+ g12 |ψ2|2 − �Lz)ψ1, (3a)

i
∂ψ2

∂t
=

(
−1

2
∇2 + 1

2
V0(r − r0

)2

+ g22|ψ2|2

+ g12|ψ1|2 − �Lz)ψ2, (3b)

where the interaction coefficients are defined as g jk =
4πNηa jk with the reductive parameter η = ∫

dz |φ(z)|4 /∫
dz |φ(z)|2, and the wavefunctions are normalized as∑
j

∫ ∣∣ψ j

∣∣2
dx dy=1. Considering the added centrifugal

potential when � �= 0, we assume �2 < V0 in the following
in order to ensure that the condensates can be trapped.

In addition, we assume that the particle distribution
satisfies the relation:∫

(|ψ1|2 − |ψ2|2) dr = M, (4)

where M ∈ (0, 1) is an adjustable parameter representing
the distribution of particles in two components, assuming the
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particle distribution of the first component is larger than that
of the second component.

3. Two-component miscible BECs

In this section, we consider the two-component miscible BECs
trapped in an annular potential. Their interaction coefficients
satisfy g2

12 < g11g22. We can give an equivalent Lagrangian
formalism based on the GPEs

L[ψ1, ψ2] = T [ψ1, ψ2] − F[ψ1, ψ2] (5)

where

T [ψ1, ψ2] =
∫

dr

⎧⎨
⎩

∑
j=1,2

[
i

2

(
ψ∗

j

∂ψ j

∂t
− ∂ψ∗

j

∂t
ψ j

)]⎫⎬
⎭ (6)

is the time-dependent part of the Lagrangian functional, and

F[ψ1, ψ2] =
∫

dr
{ ∑

j=1,2

[
1

2
|∇ψ j|2 + V |ψ j|2

+
∑

k=1,2

g jk

2
|ψ j|2|ψk|2 − � Re

(
ψ∗

j Lzψ j
) − μ j|ψ j|2

]}
(7)

is the free-energy functional, and μ j is a Lagrangian multiplier.

3.1. TF approximation

Using the replacement ψ j = √
ρ j(r, t) exp(iθ j(r, t)), we

obtain |∇ψ j|2 = |∇√
ρ j|2 + |∇θ j|2|ψ j|2 in equation (7). The

absolute squared amplitude ρ j(r, t) = |ψ j(r, t)|2 gives the
condensate density and the gradient of the phase θ j(r, t) gives
the dimensionless superfluid velocity v = ∇θ j(r, t) of the jth
component. In particular, as the trap structure can be changed
conveniently by adjusting the parameters V0 and r0, a density
hole might appear in one or both components. So the density
distribution of each component may be a disc or an annulus.
Whether it is a disc or an annulus, v = � × r, is always valid
[20, 15]. The curvature of the density ∇√

ρ j is neglected in the
TFA. In this approximation, the variation of the free energy
F[ψ1, ψ2] with respect to |ψ j|2 yields

g11|ψ1|2 + g12|ψ2|2 = μ1 + 1
2�2r2 − V, (8a)

g22|ψ2|2 + g12|ψ1|2 = μ2 + 1
2�2r2 − V, (8b)

and these two coupled equations yield the TF densities of two
components

ρ1(r) = (g22 − g12)
[
(�2 − V0)r2 + 2r0V0r − r2

0V0
]

2
(
g11g22 − g2

12

)
+ g22μ1 − g12μ2(

g11g22 − g2
12

) , (9a)

ρ2(r) = (g11 − g12)
[ (

�2 − V0
)

r2 + 2r0V0r − r2
0V0

]
2
(
g11g22 − g2

12

)
+ g11μ2 − g12μ1(

g11g22 − g2
12

) , (9b)

for ρ j (r) > 0 and ρ j (r) = 0 otherwise. It is difficult to present
an explicit expression of the chemical potentials μ1 and μ2,
but they can be determined by the normalization condition and
equation (4).

3.2. Condensate with a central hole

We assume that two components have no central hole initially,
i.e. the density profiles of two components are disc shaped
when � = 0. With increasing �, a central hole will appear in
one or both components because of the strong Coriolis forces,
and the density profiles will change from disc to annulus. The
TF radius Rj of the jth component can be obtained by finding
where the density goes to zero. Then we obtain

R±
1 =

V0r0±
√

�2V0r2
0 +(V0−�2)

2(g22μ1−g12μ2)

(g22−g12 )

(V0 − �2)
, (10a)

R±
2 =

V0r0±
√

�2V0r2
0 +(V0−�2)

2(g11μ2−g12μ1)

(g11−g12 )

(V0 − �2)
. (10b)

Here the plus sign denotes the outer radius R+
j and the

minus sign denotes the inner radius R−
j of the annulus of

the jth component. A central hole first appeared in the first
component when the chemical potentials satisfy the relation
g22μ1 −g12μ2 = V0r2

0
2 (g22 − g12). Substituting it into equation

(10a), we obtain the corresponding TF radii R+
1 = 2V0r0

(V0−�2)
and R−

1 = 0. According to the normalization condition and
equation (4), we obtain the critical angular velocity of the first
component satisfying

�2
1h = V0

⎧⎨
⎩1 −

[
8V0r4

0π (g22 − g12)

3 (1 + M)
(
g11g22 − g2

12

)
]1/3

⎫⎬
⎭ . (11)

Similarly, we obtain the critical angular velocity of the
second component satisfying

�2
2h = V0

⎧⎨
⎩1 −

[
8V0r4

0π (g11 − g12)

3 (1 − M)
(
g11g22 − g2

12

)
]1/3

⎫⎬
⎭ , (12)

where the chemical potentials satisfy g11μ2 − g12μ1 =
V0r2

0
2 (g11 − g12) , and the TF radii of the second component

is R+
2 = 2V0r0

(V0−�2)
and R−

2 = 0.

From equations (10a) and (10b) we can see that the TF
inner and outer radii of the annulus of each component satisfy
the simple relation

R+
j + R−

j = 2V0r0

(V0 − �2)
. (13)

This equation shows that the mean radius is determined by
V0, r0 and �. It grows with increasing angular frequency,
increasing r0 and decreasing V0.

With rotation, three density patterns of the condensates
can be classified without considering the single vortex in
the condensates. Without loss of generality, we assume that
�1h > �2h; then the central hole firstly appears in the second
component when we increase the rotation frequency.

Case 1: � < �2h < �1h. Both components are disc
shaped, and their TF radii are R+

1 and R+
2 in equation (10).

Case 2: �2h < � < �1h. The first component is disc
shaped and the second component is annulus shaped, and their
TF radii are R+

1 and R±
2 in equation (10). A giant vortex is

formed in the second component.
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Figure 2. �–g phase diagram for parameters g12 = 400, V0 = 4,
r0 = 2 and M = 0.2. The squares indicate that two components are
disc shaped, the triangles indicate that the big component is a disc
and the small component is an annulus, and the circles indicate that
two components are annulus shaped. The solid line indicates the
critical angular velocity of the big component from equation (11),
and the dashed line indicates the critical angular velocity of the
small component from equation (12).

Case 3: �2h < �1h < �. Both components are annulus
shaped and their TF radii are R±

1 and R±
2 in equation (10),

respectively. A giant vortex is formed in each component.
Assuming g11 = g22 = g, we illustrate the phase diagram

of the ground-state density distribution of the two components
with the varied � and g. Other parameters of the system are
assumed as g12 = 400, V0 = 4, r0 = 2 and M = 0.2 in
our simulations. By using the imaginary-time propagation
method t → τ = it [21, 22], we solve equations (3a)
and (3b) numerically and obtain a series of ground states
of the condensates, as shown in figure 2. We also show the
relationship between the critical angular velocity � jh of the
jth component and g obtained from equations (11) and (12)
in figure 2. The results from the numerical simulation and the
analytic calculation show good agreement.

In addition, the central hole(s) might also appear as � is
absent with the suitable values of V0 and r0. Using the above
methods, we can also obtain the critical value of V0 for the
appearance of a central hole

V 1h
0 = 3(1 + M)

(
g11g22 − g2

12

)
8πr4

0

(
g22 − g12

) . (14a)

V 2h
0 = 3(1 − M)

(
g11g22 − g2

12

)
8πr4

0

(
g11 − g12

) . (14b)

Assuming V 1h
0 > V 2h

0 , the density patterns of the condensates
corresponding to the above cases 1–3 are determined by
V0 < V 2h

0 < V 1h
0 , V 2h

0 < V0 < V 1h
0 and V 2h

0 < V 1h
0 < V0,

respectively. And we can obtain the TF radii when we let � = 0
in equations (10a) and (10b). Then equation (13) becomes
R+

j + R−
j = 2r0. It means that the mean radius of the annular

component is only determined by r0. So the jth component

(a)

(b)

Figure 3. (a) The ground state density profiles of |ψ1|2 (left) and
|ψ2|2 (right) for � = 0 and V0 = 25. (b) The cross sections of |ψ1|2
(left) and |ψ2|2 (right) along the x axis at y = 0, where solid and
dashed curves represent the results obtained from the numerical
calculation and those obtained from the analytical calculation in TF
approximation respectively.

has a constant mean radius for different V0 (V0 > V jh
0 ), if it

is annular shaped, and two components have the same mean
radius r0, if they are both annular shaped.

We take an example for comparing the analytical
calculations with numerical simulations when � = 0. The
intra- and inter-component interactions of the condensates are
chosen g11 = 1000, g22 = 800 and g12 = 600. We assume
r0 = 2, M = 0.2 and V0 = 25. From equations (14a) and
(14b), we obtain the critical values V 1h

0 = 19.7, V 2h
0 = 6.6.

As V0 satisfies V 2h
0 < V 1h

0 < V0, the density profiles of
both components are annulus shaped, as shown in figure 3.
The density distribution of two components shows the local
minimum at r = 0 and the local maximum at r = 2. According
to equations (10a) and (10b) with � = 0, the TF radii of two
components are R1 = 3.85 and R2 = 0.15. Figure 3(b) shows
the cross sections of |ψ1|2 and |ψ2|2 along the x axis at y = 0,

where solid and dashed curves represent the results obtained
from the numerical calculation and the variational calculation,
respectively.

It should be emphasized that the TF approximation
assumes that the healing length ξ is much smaller than the
width of the annulus, where ξ j = �/

√
2mgjρ j, characterizing

the vortex core size of a jth component BEC. In addition, the
central hole in our paper means a zero density region at the
trap centre when � is absent. For the case that � �= 0, several
vortices will appear due to the nonzero angular momentum;
then the central hole in our paper does not mean a single
quantized vortex in the trap centre, but a giant vortex, i.e. a
vortex with multiple quantum circulation.
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4. Two-component immiscible BECs

4.1. TF approximation for the case of N1 � N2

In this section, we assume that the inter-component scattering
length is larger than the intra-component scattering length.
Then the two components are immiscible, and the TFA is no
longer applicable because the TFA fails to describe the domain
boundary region, where the quantum pressure term cannot be
neglected. But if N1 � N2, the density distribution of the big
component is hardly affected by the small component, and the
small component experiences a trap not only produced by the
external trap but also by the repulsive interaction of the big
component. So we can respectively approximate their profiles
with the TF distribution.

For the big component, the TF density is

ρ1(r) = μ1 − 1
2 [V0(r − r0)

2 − �2r2]

g11
, (15)

for ρ1 (r) > 0 and ρ1 (r) = 0 otherwise. The chemical
potential μ1 can be determined by the normalization
condition

∫ |ψ1|2 dr =1. Its effective potential is Veff1 =[
V0 (r − r0)

2 − �2r2
]
/2, and we define V 0

eff1 = 1
2V0r2

0,

representing the value of the effective potential at r = 0. With
the angular frequency increasing, a central hole will appear.
According to the normalization condition, we obtain the square
of critical angular frequency

�2
1h = V0

[
1 −

(
4πV0r4

0

3g11

)1/3
]

. (16)

When � = �1h, the TF radius is R1 = 2V0r0

(V0−�2)
and the

chemical potential μ1 = V 0
eff1. For � < �1h, the density

distribution of the big component is a disc. Its TF radius is

R1 =
V0r0 +

√
V0r2

0�
2 + 2μ1(V0 − �2)

V0 − �2
. (17)

For � > �1h, the density profile of the big component is an
annulus. Its TF inner and outer radii are

R±
1 = V0r0(

V0 − �2
) ± (

3g11

4πr0V0
)1/3, (18)

where the plus sign denotes the outer radius R+
1 and the

minus sign denotes the inner radius R−
1 . The chemical potential

μ1 = (6g11V 2
0 r2

0π
2)

2/3
(V0−�2)

8r2
0π

2V 2
0

− r2
0V0�

2

2(V0−�2)
< V 0

eff1. And the inner
and outer radii satisfy the relation

R+
1 + R−

1 = V0r0

(V0 − �2)
, R+

1 − R−
1 =

(
6g11

πr0V0

)1/3

. (19)

From equation (19) we can see that the mean radius is
only determined by the potential and the rotation frequency,
which is similar to the case of two-component miscible
condensates. And the width of the annulus is unrelated to the
rotation frequency. In other words, if we increase the rotation
frequency, the inner and outer radii will increase due to the
stronger centrifugal force, but the width of the annulus is
unchanged. In addition, when � = 0, the central hole might
also appear, and the critical value of V0 is V h

0 = 3g11

4πr4
0
. For

V0 > V h
0 , the condensate is annulus shaped, and for V0 < V h

0 ,

the condensate is disc shaped. It should be pointed out that the
above conclusions in this section also apply to the case of a
single-component BEC in this trap.

For the small component, the situation is more
complicated. Its density distribution is not only affected
by the external potential, but also by the big component.
The effective potential of the small component is Veff2 =
V0
2 (r − r0)

2 + g12ρ1 − �2r2

2 . According to the density profiles
of the big component, and the competition among the chemical
potentials and the effective potential barriers of the two
components, the density profile of the small component can
be divided into the following three cases.

Case 1. The density profile of the big component is a disc
and that of the small component is an annulus surrounding the
big component. In this case, the chemical potentials and the
effective potentials at r = 0 satisfy V 0

eff1 < μ1 < μ2 < V 0
eff2;

here V 0
eff2 =

(
μ1 − V0r2

0
2

)
g12/g11 + V0r2

0
2 . The TF radii of the

annulus are

R−
2 =

V0r0+
√

V0r2
0�

2−2(V0−�2)
g11μ2−g12μ1

g12−g11

V0 − �2
(20)

R+
2 =

V0r0+
√

V0r2
0�

2 + 2μ2(V0 − �2)

V0 − �2
. (21)

Case 2. The density profile of the big component is an annulus
and that of the small component is a small disc plus a big
annulus. The small disc fills the density hole of the big
component and the big annulus surrounds the big component.
There is a local maximum value of the effective potential
Veff2 = V0r2

0
2 at r = 0, and a local minimum value Veff2 = μ1

at r = R1. In this situation, μ1 < V 0
eff1 = V 0

eff2 < μ2; here,

V 0
eff2 = V0r2

0
2 . The corresponding TF radius of the disc is

Rdisc
2 =

V0r0−
√

V0r2
0�

2−2(V0−�2)
g11μ2−g12μ1

g12−g11

V0 − �2
, (22)

and the TF radii of the annulus can be obtained by equations
(20) and (21).

Case 3. The density profile of the big component is an
annulus and that of the small component is a small annulus
plus a big annulus. The small annulus of the small component
is surrounded by the big component, and the big annulus of the
small component surrounds the big component. In this case,
μ1 < μ2 < V 0

eff1 = V 0
eff2; here, V 0

eff2 = V0r2
0

2 . The corresponding
TF radii are

R−
2s =

V0r0−
√

2μ2(V0 − �2) + V0r2
0�

2

V0 − �2
, (23a)

R+
2s =

V0r0−
√

�2V0r2
0 −2(V0−�2)

g11μ2−g12μ1

g12−g11

V0 − �2
, (23b)

R−
2b =

V0r0+
√

�2V0r2
0 −2(V0−�2)

g11μ2−g12μ1

g12−g11

V0 − �2
, (23c)
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(a) (b) (c)

Figure 4. The ground state density profiles and phases for different
angular velocities: (a) � = 0.1ω⊥, (b) � = 0.6ω⊥ and (c)
� = 1.4ω⊥. The first and the third rows are the density profiles of
ψ1 and ψ2. The second and the fourth rows are the phases
corresponding to the density profiles of the first and the third rows,
respectively.

R+
2b =

V0r0+
√

2μ2(V0 − �2) + V0r2
0�

2

V0 − �2
, (23d)

where R−
2s and R+

2s represent the inner and outer radii of the
small annulus, and R−

2b, R+
2b represent the inner and outer radii

of the big annulus, respectively. It should be emphasized that
we only consider the condensates with a symmetrical structure
in this paper. In other words, we do not consider the case
that the condensates have broken symmetry; for example, the
centre of two components differ or the condensates are two
droplets [19].

4.2. Spin textures

In this section, we discuss three kinds of spin textures of
the two-component immiscible BECs with different angular
velocities �. The intra- and inter-component interactions of
the condensates and other parameters are chosen g11 = 550,

g22 = 1000, g12 = 800, M = 0.2 V0 = 4, r0 = 2.

The density profiles and corresponding phases are shown in
figure 4. The big component locates near the trap centre,
and the small component spreads to the low density region
of the big component because of its strong intra-component
interaction. When � = 0.1ω⊥, the density profile of the
big component is a disc and that of the small component
is an annulus, as shown in figure 4(a). Three phase defects
of the small component enter into the centre density hole,

forming a giant vortex. The spinor-order parameter of the
two-component BECs allows us to analyse this system as a
pseudospin-1/2 BEC [23]. We introduce a normalized complex
valued spinor χ = [χ1(r), χ2(r)]T = [|χ1| eiθ1 , |χ2| eiθ2

]T
,

which satisfies |χ1|2 + |χ2|2 = 1. Then the wavefunctions are
decomposed as ψ j = √

ρT (r)χ j(r). The pseudospin density
is defined as S = χ̄ (r)σχ(r); here, σ is the Pauli matrix. The
pseudospin density is expressed as⎧⎨

⎩
Sx = 2 |χ1| |χ2| cos(θ1 − θ2),

Sy = −2 |χ1| |χ2| sin(θ1 − θ2),

Sz = |χ1|2 − |χ2|2 ,

(24)

and |S| =
√

S2
x + S2

y + S2
z = 1. Projecting the system into a

pseudospin space, the spin of the big component points up, and
the spin of the small component points down. The pseudospin
twists through an angle of π from up to down continuously
between two components. Figure 5 shows the pseudospin
textures about the case of figure 4(a). The corresponding
pseudospin texture is a giant skyrmion. The topological
charge Q of the giant skyrmion is equal to the quantum of
circulation of the giant vortex, where the topological charge is
Q = ∫

drq(r) [24], and the topological charge density q(r) =
1

8π
εi jS · ∂iS × ∂ jS characterizes the spatial distribution of the

skyrmion. In this case, the spatial distribution of the topological
charge density is an annulus, as shown in figure 5(c), which
is located at the interface of the two components. This
spin texture has been observed and studied in a harmonic
potential [18].

In this section, we mainly study another case that the
density profile of the big component is annulus shaped. With
the increase of the angular velocity, e.g. � = 0.6ω⊥, the
density profile of the big component becomes an annulus due to
the strong centrifugal effect, and the density profile of the small
component develops into a disc plus an annulus, as shown in
figure 4(b). The big component forms a density hole which
creates a giant vortex with quantum number 3 of circulation,
and there are nine single quantized vortices distributed in
the annular no-density areas of the small component. In the
pseudospin space, a new spin texture is formed, and we name
it concentric double-annulus skyrmion. The corresponding
pseudospin densities Sx and Sz are presented in figures 6(a)
and (b). The topological charge density is uniformly distributed
at two concentric-annulus regions where the two immiscible
condensates overlap, as shown in figure 6(c). The projected
vectorial plots of (Sx, Sy) are shown in figures 6(d) and (e).
This new spin texture can be regarded as the combination of
two annular (giant) skyrmions.

In the polar coordinates, the phases of two components can
approximately be written as θ j = κ jφ, where κ j = 0, 1, 2, . . .

represents the quantum number of the circulation of the jth
component restricted in a radius r. Then the pseudospin density
can be rewritten as⎧⎨

⎩
Sx =

√
1 − [Sz(r)]2 cos[(κ1 − κ2)φ],

Sy =
√

1 − [Sz(r)]2 sin[(κ1 − κ2)φ],
Sz = Sz(r),

(25)

and the corresponding topological charge density can be
expressed as

q(r) = [κ1 − κ2]

4πr

dSz(r)

dr
. (26)
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(a) (b) (c)

(d) (e) (f)

Figure 5. The pseudospin densities distribution for (a) Sx , (b) Sz with � = 0.1ω⊥. (c) The distribution of the topological charge density
q(r). (d) The vectorial representation of the spin texture projected onto the x–y plane, and (e) an amplified local part of (d). (f) The relative
phase θ1–θ2.

(a) (b) (c)

(d) (e) (f)

Figure 6. The pseudospin densities distribution for (a) Sx , (b) Sz with � = 0.6ω⊥. (c) The distribution of the topological charge density
q(r). The length of the long (short) arrow indicates the outer radius d1 (d2) of the bigger (smaller) annular skyrmion. (d) The vectorial
representation of the spin texture projected onto the x–y plane, and (e) an amplified local part of (d). (f) The relative phase θ1–θ2.

Figure 4(b) shows κ1 = 3, κ2 = 0, when r = d1, and κ1 = 3,

κ2 = 9, when r = d2, where d1 and d2 are the outer radii of two
annular skyrmions, as shown in figure 6(c). So the topological
charges of the skyrmions in figure 6 are

Qi =
∫

(κ1 − κ2)i

4πr

dSz(r)

dr
dr

= (κ1 − κ2)i

2
[Sz(d1) − Sz(0)]

= (κ1 − κ2)i = 3, (27)

Qo = (κ1 − κ2)o

2
[Sz(d2) − Sz(d1)]

= − (κ1 − κ2)o = 6, (28)

Qc = Qi + Qo = 9, (29)

where Qi, Qo and Qc represent the topological charge of the
inner annular skyrmion, that of the outer annular skyrmion and
the total topological charge of the concentric double-annulus
skyrmion, respectively. It can be summarized as follows: the
topological charge of each annular skyrmion is equal to the
absolute value of the difference between the quantum number
of circulation of two components surrounded in this skyrmion,
as shown in figure 6(f), and the topological charge of the
concentric double-annulus skyrmion is the sum of the one of
two annular skyrmions.

As the angular velocity increases further, e.g. � = 1.4ω⊥,

some single quantized vortices appear at the density region
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(a) (b) (c)

(d) (e) (f)

Figure 7. The pseudospin densities distribution for (a) Sx , (b) Sz with � = 1.4ω⊥. (c) The distribution of the topological charge density
q(r). (d) The vectorial representation of the spin texture projected onto the x–y plane, and (e) an amplified local part of (d). (f) The relative
phase θ1–θ2.

(a) (b)

(c) (d) (e)

Figure 8. The density profiles of (a) ψ1 and (b) ψ2 of the real time dynamical evolution at t = 30ω−1
⊥ with the same parameters as figure 4(b).

(c), (d) The corresponding phases of (a) and (b). (e) The pseudospin density distribution of Sx. The rows indicate the rotational direction.

of the big component, and these vortices are filled with
the density of the small component, forming some coreless
vortices without a density dip in the total density, as shown in
figure 4(c). Projecting the system into a pseudospin space,
many skyrmions are embedded in the concentric double-
annulus skyrmion, as shown in figure 7. The topological
charge for each embedded skyrmion is equal to 1. And the
topological charge densities of these embedded skyrmions
are distributed on a ring and show a δ−function distribution.
For the concentric double-annulus skyrmion, the topological
charge of each annular skyrmion is also equal to the absolute
value of the difference between the quantum number of
circulation of two components inside this skyrmion.

4.3. Dynamical behaviours under external disturbances

In this section, we investigate the dynamical behaviours of two
immiscible BECs under an external disturbance. We choose
the ground state obtained in figure 4(c) as an initial value
and perform real time dynamic evolutions of equation (3a)
by introducing a small disturbance such as a Gaussian beam
Vbeam = 0.5e−[(x−4)2+y2]/0.5 for the interval t = [0, 1.5ω−1

⊥ ].
The density profiles, phases and the pseudospin density Sx

at t = 30ω−1
⊥ are shown in figure 8. We can see that the

density profiles and the spin textures are stable and robust.
The vortices in each component generate a collective circular
motion, as shown in figures 8(c) and (d). It is easy to understand
because the Gaussian disturbance brings small amounts of
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energy into the system, and the energy is too small to change
the density distribution of condensates, just generating a small
surface ripples at the boundary of the condensates. But for
the vortices located in the extremely low density regions, the
energy is enough to excite their movement. The pseudospin
density Sx of the inner annular skyrmion rotates clockwise,
and the one of the outer skyrmion rotates anticlockwise, as
shown in figure 8(e), because two components distributed
inside and outside two annular skyrmions are exchanged. The
rotation of Sy is similar to Sx, and Sz is invariable. If we
increase the external disturbance, the bigger energy will drive
two condensates to rotate reversely to conserve the angular
momentum of the system. Finally it should be indicated that
the spin textures presented above are still stable and robust in
a slightly inhomogeneous trap.

5. Conclusion

We have studied analytically and numerically the ground states
of the miscible two-component BECs with or without rotation
based on the TFA. With rotation, we have analytically obtained
the critical angular velocity for a central hole to appear in each
condensate and present the phase diagram which shows three
kinds of density profiles of the ground states by varying the
angular velocities and intra-component interaction strengths.
Without rotation, we have also classified the density profiles
according to different potential barriers. In addition, we have
discussed the immiscible two-components BECs for the case
of N1 � N2 with the TFA. We give the critical angular
velocity for a central hole to appear in the big condensate,
and classify its density profiles according to different angular
velocity. We find that the width of the density annulus of the big
component is unchanged for different rotation angular velocity.
And the density profile of the big component is almost the same
whether the small component exists or not, so the conclusion
of the big component in this situation is still valid for the
single-component BEC. Three kinds of density profiles of the
condensates have been classified according to the competition
among the chemical potentials and the effective potential
barriers.

We have obtained three kinds of spin textures for
the immiscible two-component BECs: annular skyrmion
(giant skyrmion), concentric double-annulus skyrmion and
a concentric double-annulus skyrmion with an embedded
skyrmion ring. The annular skyrmion has been observed
and studied in the harmonic traps but the last two kinds
of spin textures in this paper are new structures and could
not be observed in harmonic trapping potentials. Both of
the last spin textures contain a concentric double-annulus
skyrmion. Its topological charge is the sum of the ones
of two annular skyrmions, and the topological charge of
each annular skyrmion is equal to the absolute value of the
difference between the quantum number of circulation of
two components inside this annular skyrmion. We have also
studied the dynamical behaviours of the condensates under
external disturbance and proved that the spin textures in our
paper are robust under a small external disturbance or a slight
trap inhomogeneity. We have theoretically predicted these new

robust spin textures in the annular trap and expect that these
rich structures would be observed in experiments in the near
future.
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