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Abstract
We study rotating two-component Bose–Einstein condensates with equal particle numbers and
strong intercomponent repulsion located in a harmonic potential by numerically solving
two-dimensional coupled Gross–Pitaevskii equations. The condensates are observed as a
dramatic departure, forming a pair of shells located symmetrically in the trap with a small
spatial overlap. Projecting the system into a pseudospin space, a spin domain wall is formed at
the interface of the two components. The complex and spatial periodic spin texture is formed
on the domain-wall region. We discuss the dependence of the spin texture of the domain wall
on the angular velocity in detail. The relation among the number of the vortices, the
topological charge and the angular momentum, as an extension of Feynman’s rule in the
two-component Bose–Einstein condensates, is given, based on the spin texture carrying the
angular momentum of the condensates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of Bose–Einstein condensation (BEC) in trapped
atomic clouds opened up the exploration of quantum
phenomena in a qualitatively new regime. Since BECs have
been realized experimentally in a dilute bosonic gas [1, 2],
many properties of these systems have been studied
experimentally and theoretically [3]. The quantized vortex
is the most famous topological defect in a single-component
BEC, and the static and dynamic properties of vortices or
vortex lattices have been investigated by a large number
of theoretical and experimental workers [4–6]. Besides,
the quantum turbulence has been extensively researched
theoretically and numerically [7–9] and has been observed
experimentally [10]. Recently, the new progress of two-
component BECs gives us a possibility of constructing totally
new topological objects in condensed matter physics. As the
alkali atoms have hyperfine spin, two-component BECs can
be considered two hyperfine-spin states located in the same
trap [11, 12]. Many kinds of exotic topological defects such
as coreless vortices [13] and skyrmions are excited because of

1 Author to whom any correspondence should be addressed.

the internal spin degrees of freedom [14] of the condensates,
which are not accessible in a single-component condensate
and have been studied recently in considerable detail in atomic
BECs [15–21]2.

Two-component BECs have more interesting patterns of
symmetry and symmetry breaking. The density patterns can
be adjusted by changing the parameters of the system, such
as the trapping frequencies, the relative particle numbers
of two components or the atom–atom interactions. In
particular, the intercomponent interaction determines whether
the phases of the condensates are separated or not [22, 23].
Because the intra- and intercomponent scattering lengths
are arbitrary by changing the s-wave scattering length via
magnetic-field Feshbach resonances, a variety of miscibility or
immiscibility of the two-component BECs have been observed
experimentally [11, 24–26] and studied theoretically [22, 27–
29].

In this paper, we first study the two-component BECs
located in a harmonic trap with an equal number of particles
(N1 = N2) and the same intracomponent s-wave scattering

2 The observation of interlaced square vortex lattices in rotating spinor BECs
has been reported recently in [18].
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lengths (a11 = a22) . We choose the intercomponent s-wave
scattering lengths larger than the intracomponent ones to
satisfy [16, 22]

a2
12 > a11a22,

in order to make the two components spatially separate.
Due to the strong intercomponent repulsion, we observe
that the density distribution of the condensates shows a
dramatic symmetrical departure in the trapping potential
[30]. The two-component BECs can be represented in
terms of the ‘pseudospin’ because of the spinor nature of
the order parameters [14, 21, 31]. The pseudospin of one
component points up and the other points down on both sides,
correspondingly. At the interface of the two components,
the pseudospin of the system twists and forms the spin
domain wall. We study the dependence of spin texture of
the domain wall on the angular velocity in detail. We give
the relationship among the topological charge, the number
of vortices and the angular momentum expectation, which is
the generalized Feynman rule in the two-component Bose–
Einstein condensates.

This paper is organized as follows. In section 2, we
introduce the basic formulation of the problem. In section 3,
the two-component condensates which have equal particle
numbers and the same intracomponent scattering lengths,
with an angular velocity in the isotropic trap, are produced
numerically, and a spin domain wall with complex spin texture
is obtained. In section 4, we discuss the properties of the
condensates by changing the angular velocity and present
the relationship among the topological charge, the number
of the vortices and the angular momentum expectation. In
section 5, the generalization about two condensates with
unbalanced parameters is provided. The conclusions are given
in section 6.

2. Formulation of the problem

The trapped two-component BECs are characterized by the
condensate spatial wavefunctions ψ = (ψ1, ψ2)

T . In the
weak interaction limit, the condensates in the frame rotating
with angular velocity � around the z axis can be well described
by the coupled Gross–Pitaevskii equations (CGPEs)

ih̄
∂ψj

∂t
=

[
−h̄2∇2

2m
+ V +

2∑
k=1

gjk |ψk|2 − �Lz

]
ψj , (1)

where ψj (j = 1 or 2) refers to the macroscopic wavefunction
of the j th component. The parameters gjk = 4πh̄2ajk/m

represent the intracomponent (g11, g22) and intercomponent
(g12, g21) interactions characterized by the s-wave scattering
length (a11, a22) between atoms in the same components and
(a12 = a21) between atoms in the different components. The
wavefunctions are normalized as∫

(|ψ1|2 + |ψ2|2) dr = N1 + N2 = N,

where N1 = ∫ |ψ1|2 dr and N2 = ∫ |ψ2|2 dr are the particle
numbers of the j = 1 and 2 components, respectively,
and the total number of particles in the condensates is N.

Lz = −ih̄(x∂y − y∂x) is the z-component of the angular
momentum operator. The trapping potential is assumed to be

V = 1
2m

(
ω2

⊥(x2 + y2) + ω2
zz

2) .

For simplicity, we consider the situation that the condensate is
tightly confined in the z axial direction

(
λ = ωz

ω⊥
� 1

)
, i.e. it

is a ‘pancake-shaped’ potential [32], so the two-dimensional
(2D) approximation is implemented for the condensates.

In this paper, the scales of length, time, angular
momentum and rotation angular velocity are chosen as a0 =√

h̄/mω⊥, 1/ω⊥, h̄ and ω⊥, respectively. Then we obtain
the two-dimensional (2D) dimensionless coupled Gross–
Pitaevskii equations

i
∂ψj

∂t
=

[
−1

2
∇2 + V +

2∑
k=1

βjk |ψk|2 − �Lz

]
ψj , (2)

where V = 1
2 (x2 + y2), and the interaction coefficients are

defined as

βjk = 2
√

2πλNkajk/a0.

3. Spin texture on the spin domain-wall region

We assume that the two condensates have an equal number
of particles (N1 = N2), and we consider the case when the
condensates have the same intracomponent s-wave scattering
length (a11 = a22). The intra- and intercomponent interactions
of the system are chosen as β11 = β22 = 50, β12 = 300.
A possible experimental case of 87Rb which is condensed
into two different hyperfine states can be considered. The
condensates contain N1 = N2 = 5 × 104 atoms, each
of mass m = 1.4188 × 10−25 kg, and the scattering
lengths are adjusted as a11 = a22 = 16.5a, a12 =
a21 = 99.0a by Feshbach resonances, where a is the Bohr
radius. The trap with frequencies {ω⊥, ωz} = 2π {4.2, 38.6}
Hz. In this section, we consider the condensates with the
rotation angular velocity � = 0.65ω⊥ in the harmonic
trap by solving equation (2). By using the imaginary time
propagation method t → τ = it, the ground state is
obtained. The density profile of the condensates is shown
in figure 1. Due to the strong repulsive interaction between
components, two condensates show dramatic departure and
undergo phase separation with small spatial overlap, forming
a pair of shells located symmetrically in the trap. |1〉
represents the condensate on the left and |2〉 represents
that on the right. Figure 2 shows the effective velocity field of
the two-component condensates, which is defined as

υeff = [j1(r) + j2(r)] /ρT (r), (3)

where jk = h̄
2im

(
ψ∗

k ∇ψk − ψk∇ψ∗
k

)
(k = 1, 2) is the

partial current density [20] and ρT (r) is the total density
of the condensates. We can see that the two condensates
have a total velocity around the trap centre without
any vortices. This phenomenon reminds us that the
condensates allow other topological excitations to carry
angular momentum. We know that the spinor nature of two-
component condensates can be described by the pseudospin-
1/2-order parameters. We introduce a normalized complex-
valued spinor χ = [χ1(r), χ2(r)]T = [|χ1| eiθ1 , |χ2| eiθ2

]T
,

2
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(a) (b)

Figure 1. (a) The density profile of the two-component BECs
consisting of the ψ1 component on the left and the ψ2 component on
the right for β1 = β2 = 50, β12 = 300 and � = 0.65ω⊥. (b) The
cross sections of |ψ1|2 and |ψ2|2 along the x axis at y = 0.
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Figure 2. The vectorial plot of the effective velocity field veff of
equation (3).

which satisfies |χ1|2 + |χ2|2 = 1, and θj are the phases of
the condensate wavefunctions. Then the wavefunctions are
decomposed as ψj = √

ρT (r)χj (r). The pseudospin density
is defined as S = χ̄(r)σχ(r), where σ is the Pauli matrix. So
the pseudospin density is expressed as⎧⎨

⎩
Sx = 2 |χ1| |χ2| cos(θ1 − θ2),

Sy = −2 |χ1| |χ2| sin(θ1 − θ2),

Sz = |χ1|2 − |χ2|2 ,

(4)

and |S| =
√

S2
x + S2

y + S2
z = 1.

We first consider the condensates without rotation, i.e.
� = 0. The pseudospin density distributions for Sz, Sx and Sy

are shown in figures 3(a)–(c), respectively. The |2〉 component
vanishes on the left and the spin points up; the |1〉 component
vanishes on the right and the spin points down. The spin
domains are formed. At the interface of the two condensates,
the spin crosses the spin domain wall and twists through an
angle of π from up to down continuously. It is notable that
the spin on the domain-wall region aligns regularly with no
projection onto the y-axis, i.e. the spin flips in the direction
perpendicular to the domain wall, as shown in figures 3(c) and
(d). We can understand this phenomenon from equation (4),

(a) (b)

(c) (d)

Figure 3. The pseudospin density S = χ̄(r)σχ(r) distribution for
(a) Sz, (b) Sx and (c) Sy for � = 0. (d) The vectorial representation
of the spin texture projected onto the x–y plane.

that is, when � = 0, the two condensate phases satisfy θ1 =
θ2 = constant, so Sx = 2 |χ1| |χ2| cos(θ1 − θ2) = 2 |χ1| |χ2|
and Sy = −2 |χ1| |χ2| sin(θ1 − θ2) = 0.

When the condensates are under an angular velocity, e.g.
� = 0.65ω⊥, the spin on the domain wall has a complex
twist. The spin twists not only in the direction perpendicular
to the domain wall, but also in the direction parallel to the
domain wall, as shown in figure 4. This spin twist gives rise
to a complex and spatial periodic spin texture, and it can be
understood that the rotating two-component condensates tend
to carry angular momentum by exciting this new topological
structure. Moreover, because two components have a relative
motion at the interface, the possible mechanism of this spin
texture excitation is Kelvin–Helmholtz instabilities [10, 33].
Furthermore, from figures 4(b) and (c), we can see that the
chain-like pseudospin density distribution for Sx is even parity
and for Sy is odd parity. The projected vectorial plot of
(Sx, Sy) is shown in figure 5. It is notable that we study this
spin texture in the case of two-dimensional approximation;
in fact, the topological structure is nearly not affected by the
third dimension. But the thickness of the domain wall on the
different cross sections which are parallel to the x–y plane
will be varied because of the impact of the three-dimensional
trapping potential.

It is well known that the topological charge density is
defined as

q(r) = 1

8π
εij S · ∂iS × ∂j S. (5)

As shown in figure 4(d), the topological charge density
concentrated on the domain-wall region is elongated. Q =∫

drq(r) is called a topological charge or the Pontryagian
index [34]. After numerical calculation, we find that the
topological charge is fractional in our situation. It is different
from those of previous papers which show that the topological
charge is an integer [19, 20]. We discuss the reason why Q is
fractional in our situation in the following section.
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(a) (b)

(c) (d)

Figure 4. The pseudospin density S = χ̄ (r)σχ(r) distribution for
(a) Sz, (b) Sx and (c) Sy for � = 0.65ω⊥. (d) The distribution of the
topological charge density q(r) of equation (5).

4. Dependence

In this section, we research the properties of the condensates
with different �. Figure 6 shows the density and pseudospin
density of the condensates with different �. As � increases,
the particle distribution of condensates expands away from the
trap centre due to the centrifugal effect. The space occupancy
of the condensates expands along the direction which
is parallel to the direction of the domain wall, but
keeps approximately constant along the direction which is
perpendicular to the direction of the domain wall until � =
�c = 0.78ω⊥, as shown in figures 6(a) and 7. When
� = �c, a pair of vortices appear in the condensates, and
the vortex lattices appear in the condensates when � increases
further. The space occupancy of the condensates expands
not only along the direction parallel to the domain wall,
but also along the direction perpendicular to the domain
wall when � � �c. With increasing �, a longer periodic
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Figure 5. (a) The vectorial representation of the spin texture projected onto the x–y plane in the region [−4 � x, y � +4] for � = 0.65ω⊥.
(b) An amplification of the local part of (a).

(a) (b) (c)

Figure 6. (a) The total density distributions ρT of the condensates
for different rotating velocities: � = 0.2ω⊥, � = 0.4ω⊥,
� = 0.78ω⊥, � = 0.85ω⊥, � = 0.9ω⊥, respectively. (b) The
pseudospin density distributions for (b)Sx and (c) Sy corresponding
to (a).

spin texture with bigger topological charge is formed in order
to carry more angular momentum, as shown in figures 6(b)
and (c). The chain-like density distribution of Sx and Sy at
both ends of the domain wall increases and squeezes into the
interface of the two condensates gradually. It is notable that
the complete periodic structure corresponds to the integral
topological charge; moreover, the periodic and the topological
charges are of the same value, but the incomplete structure

4
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Figure 7. (a) The cross sections of the total density ρT along the x axis at y = 0. (b) The cross sections of the total density ρT along the y
axis at x = 0.

at both ends of the domain wall corresponds to the fractional
topological charge.

The dependence of the topological charge Q on the
rotating frequency � is shown in figure 8(a). We can see that
the topological charge increases gradually and continuously
with � until a drop occurs at �c = 0.78ω⊥. When � = �c,

a pair of vortices appear in the condensates as shown in
figure 6(a). At the same time, the vortices share the angular
momentum with the spin texture on the domain-wall region,
so the topological charge decreases abruptly. In addition,
we also find that, for � < �c, Q increases linearly, and for
� � �c, Q increases exponentially. It can be interpreted
that the condensates expand slowly along the direction of the
domain wall as � increases, but expand rapidly when the
vortices appear.

Figure 8(b) shows the dependence of the sum of the
topological charge Q and the number of vortices Nv on
the angular velocity �/ω⊥, and the angular momentum
expectation per atom,

〈Lz/h̄〉 =
∑

j

∫
ψ∗

j (r) (Lz/h̄) ψj (r) dr. (6)

Comparing figure 8(b) with figure 8(a), we can find that
� = 0.78ω⊥ is still a breakpoint. The difference between
the two figures at this point is that the value of 〈Lz/h̄〉 makes a
jump but the topological charge Q makes a drop. The angular
momentum expectation increases linearly for � < �c and
increases exponentially for � � �c. It may be associated
with the fact that when � < �c, the angular momentum is
carried only by the spin texture, and the spin texture is only
formed on the domain-wall region. But when � � �c, the
angular momentum is carried not only by the spin texture but
also by the vortices, and the vortices are formed in the whole
region of the condensates.

From figure 8, we find that the topological charge, the
number of the vortices and the angular momentum expectation
satisfy the relation

〈Lz/h̄〉 = Q + Nv

2
, (7)

where Nv is the total number of the vortices in the condensates.
For the case of � < �c, there is no vortices in the condensates,

(a)

(b)

Figure 8. (a) The topological charge for several values of the
rotation velocity �. (b) The sum of the topological charge and the
number of the vortices for several values of the rotation velocity � ,
and the angular momentum per atom for different �.

i.e. Nv = 0, so 〈Lz/h̄〉 = Q

2 . This is understood by the simple
model in which the rotating condensate with a spin domain
wall is considered as a rigid-body rotation. Although the two
components depart from each other in the trap, the total density
profile has the same shape with the trap. Then the mean angular
momentum per atom at r =

√
x2 + y2 is Lz/h̄ = m�r2/h̄,

where m is the mass of the atom. The average of the angular
momentum per atom averaged over the whole condensates is
given by

〈Lz/h̄〉 =
∑

j

∫
ψ∗

j (Lz/h̄) ψj dr∑
j

∫ |ψj |2 dr
. (8)

5
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Assuming the spatially homogeneous total density, we obtain

〈Lz/h̄〉 = m�R2

2h̄
, (9)

with the typical radius R of the condensates. The topological
charge density and the effective velocity satisfy the relationship
[19, 35]

q(r) = 1

8π
εij S · ∂iS × ∂j S = m

2πh̄
(∇ × υeff)z . (10)

So the topological charge can be obtained by an integral,

Q =
∫

m

2πh̄
(∇ × υeff)z dr

= m

2πh̄

∫
(∇ × � × r) dr,

yielding

Q = m�R2

h̄
. (11)

We obtain

〈Lz/h̄〉 = Q

2
. (12)

For the case of � � �c, the angular momentum is carried by
both the spin domain wall and the vortices, so∫

(∇ × υeff)z dr = h̄

m
2π (Q + Nv) , (13)

where we used Feynman’s rule
∮
l
υ·dl = h̄

m
2πNv which

is obtained from a single-component BEC. Similarly,
approximating equation (13) with rigid-body rotation, we
obtain equation (7). As we know, in a single-component BEC,
assuming the spatially homogeneous density, the condensate
with a dense vortex lattice should be regarded as a rigid-body
rotation [36], Feynman’s rule can be expressed as

〈
Lz

h̄

〉 = Nv

2
[32], which gives the relationship of the total number of
vortices and the angular momentum. In our case, the spin
texture also carries angular momentum like the vortices.
Therefore, with the topological charge included, Feynman’s
rule is extended to the form of equation (7) in the two-
component BECs, and is in good agreement with the numerical
results. Furthermore, due to the topological charge which in
our case is fractional, as long as the angular velocity is not
equal to 0, there is a non-zero angular momentum and non-
zero topological charge even if the angular velocity is small.
It is different from the case of the single-component BEC that
there is a non-zero angular momentum only if the angular
velocity exceeds the critical value.

5. Generalization

In this paper, we mainly study two condensates that have
an equal number of particles and the same intracomponent
s-wave scattering length. For generalized cases, if two
components have an equal number of particles, but slightly
different intracomponent s-wave scattering lengths, e.g. N1 =
N2 = 5 × 104, a11 = 16.5a, a22 = 26.4a; or the same
intracomponent s-wave scattering length, but a small
imbalance particle number, e.g. N1 = 4.9 × 104, N2 =

(a) (b)

(c) (d)

Figure 9. (a) The density profile of the two-component BECs for
β11 = 50, β22 = 60, β12 = β21 = 300 and � = 0.65ω⊥. The
corresponding pseudospin density distribution for (b) Sx and (c) Sy .
(d) The distribution of the topological charge density q(r).

5.1 × 104, a11 = a22 = 16.5a, the intracomponent mean-
field interaction coefficients (β11, β22) are unequal, and the
intercomponent interaction coefficients (β21, β12) may be
unequal. Without loss of generality, we discuss the case
when condensates have equal particle numbers but different
intracomponent scattering lengths. The symmetry of the
density distribution of two components is broken, so the
interface of two components becomes curved, as shown in
figure 9(a), and the component with strong interaction curves
towards the one with weak interaction. The pseudospin density
distributions for Sx and Sy are shown in figures 9(b) and
(c). At the spin domain-wall region, the similar topological
structure is formed. The distribution of the topological charge
density is curved rather than straight, just like a crescent moon,
as shown in figure 9(d), which is different from the case
discussed in section 3. Increasing the rotating frequency,
a more curved spin texture with more topological charge
appears. Besides, if two components are respectively located
in slightly different traps which are isotropic and have the
same symmetry axis, a curved spin texture also appears, and
the component which is tightly trapped will curve towards the
loose one. We find that, for the two condensates, with slight
inequality in intracomponent interactions or small imbalance
in particle number, or located in slightly different traps, the
similar topological spin texture is excited, and equation (7) is
still valid. When the above-mentioned parameters are quite
different, different topological structure will appear, e.g. the
big skyrmion [20]. Due to the emergence of a giant vortex,
equation (7) is invalid.

6. Conclusion

In conclusion, we have discussed the two-component
condensates with the strong intercomponent repulsion and
their corresponding pseudospin textures in a rotating harmonic
potential. At the interface of the two components, the non-
zero pseudospin projection on the x–y plane shows that the

6
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pseudospin twists from up to down through an angle of π.

A complex and spatial periodic spin texture is formed on the
domain-wall region. As the angular velocity increases, in order
to carry more angular momentum, the spin texture with more
periods becomes longer gradually and the topological charge
becomes bigger correspondingly. Both of the topological
charge and the angular momentum expectation per atom
increase linearly until the angular velocity exceeds the critical
value, and then increase exponentially. Considering the
angular momentum shared by the spin texture and the vortices,
we extend Feynman’s rule to the two-component condensates
with the topological charge included.
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