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Hall tube with a tunable flux is an important geometry for studying quantum Hall physics, but
its experimental realization in real space is still challenging. Here, we propose to realize a synthetic
Hall tube with tunable flux in a one-dimensional optical lattice with the synthetic ring dimension
defined by atomic hyperfine states. We investigate the effects of the flux on the system topology and
study its quench dynamics. Utilizing the tunable flux, we show how to realize topological charge
pumping. Finally, we show that the recently observed quench dynamics in a synthetic Hall tube
can be explained by the random flux existing in the experiment.

Introduction.—Ultracold atoms are emerging as a
promising platform for the study of condensed matter
physics in a clean and controllable environment [1, 2].
The capability of generating artificial gauge fields and
spin-orbit coupling using light-matter interaction [3–18]
offers new opportunity for exploring topologically non-
trivial states of matter [19–25]. One recent notable
achievement was the realization of Harper-Hofstadter
Hamiltonian, an essential model for quantum Hall
physics, using laser-assisted tunneling for generating ar-
tificial magnetic fields in two-dimensional (2D) optical
lattices [26–28]. Moreover, synthetic lattice dimension
defined by atomic internal states [29–37] provides a new
powerful tool for engineering new high-dimensional quan-
tum states of matter with versatile boundary manipula-
tion [32, 33].

Nontrivial lattice geometries with periodic boundaries
(such as a torus or tube) allow the study of many in-
teresting physics such as the Hofstadter’s butterfly [38]
and Thouless pump [39–44], where the flux through the
torus or tube is crucially important. In a recent exper-
iment [37], a synthetic Hall tube has been realized in a
1D optical lattice and interesting quench dynamics have
been observed, where the flux effect was not considered.
More importantly, the flux through the tube, determined
by the relative phase between Raman lasers, is spatially
non-uniform and random for different iterations of the ex-
periment, yielding major deviation from the theoretical
prediction. The physical significance and experimental
progress raise two natural questions: can the flux in the
synthetic Hall tube be controlled and tuned? If so, can
such controllability lead to the observation of nontrivial
topological phases and dynamics?

In this Letter, we address these important questions by
proposing a simple scheme to realize a controllable flux
Φ through a three-leg synthetic Hall tube and studying
its quench dynamics and topological pumping. Our main
results are:

i) We use three hyperfine ground spin states, each of
which is dressed by one far-detuned Raman laser, to re-
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FIG. 1: (a) Schematic of the experimental setup for tunable
flux through the synthetic Hall tube. Three Raman lasers E1,
E2 and E3 generate the couplings along the synthetic dimen-
sion spanned by atomic hyperfine states. (b,c) Three hyper-
fine ground states and the corresponding two-photon Raman
transitions for alkaline-earth(-like) atoms (b) and for alkali
atoms (c). (d) Synthetic Hall tube with a uniform flux φ0 on
each side plaquette and Φ through the tube.

alize the synthetic ring dimension of the tube. The flux
Φ can be controlled simply by varying the polarizations
of the Raman lasers [11]. The scheme can be applied to
both Alkali (e.g., potassium) [11–15] and Alkaline-earth(-
like) atoms (e.g., strontium, ytterbium) [45].

ii) The three-leg Hall tube is characterized as a 2D
topological insulator with Φ playing the role of the mo-
mentum along the synthetic dimension. The system re-
duces to a 1D topological insulator at Φ = 0 and π,
where the winding number is quantized and protected by
a generalized inversion symmetry.

iii) The tunable Φ allows the experimental observation
of topological charge pumping in the tube geometry.

iv) We study the quench dynamics with a tunable flux
and show that the experimental observed quench dynam-
ics in [37] can be better understood using a random flux
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existing in the experiment.

The model.—We consider an experimental setup with
cold atoms trapped in 1D optical lattices along the x-
direction, where transverse dynamics are suppressed by
deep optical lattices, as shown in Fig. 1a. The bias mag-
netic field is along the z direction to define the quantiza-
tion axis. Three far-detuned Raman laser fields ~Es, prop-
agating in the x-y plane, are used to couple three atomic
hyperfine ground spin states, with each state dressed by
one Raman laser, as shown in Figs. 1b and 1c for alkaline-
earth(-like) (e.g., strontium, ytterbium) and alkali (e.g.,
potassium) atoms, respectively. The three spin states
form three legs of the synthetic tube system as shown in
Fig. 1d, and the tight-binding Hamiltonian is written as

H =
∑
j;s6=s′

Ω̃ss′;jc
†
j,scj,s′ −

∑
j;s

(Jc†j,scj+1,s +H.c.), (1)

where Ω̃ss′;j = Ωss′e
iφj;ss′ , c†j,s is the creation operator

with j, s the site and spin index. J and Ωss′ are the tun-
neling rate and Raman coupling strength, respectively.
For alkaline-earth(-like) atoms, we use three states in the
1S0 ground manifold to define the synthetic dimension.
The long lifetime 3P0 or 3P1 levels are used as the inter-
mediate states for the Raman process (see Fig. 1b) such
that δmF = ±2 Raman process does not suffer the heat-
ing issues [36, 37]. While for alkaline atoms (see Fig. 1c),
we choose three hyperfine spin states |F,mF 〉, |F,mF−1〉
and |F −1,mF 〉 from the ground-state manifold to avoid
δmF = ±2 Raman process, so that far-detuned Raman
lasers can be used to reduce the heating [11, 12].

The laser configuration in Fig. 1a generates a uni-
form magnetic flux penetrating each side plaquette as
well as a tunable flux through the tube. Each Ra-
man laser may contain both z-polarization (responsible
for π transition) and in-plane-polarization (responsible
for σ transition) components, which can be written as
~Es = êπEπs + êσEσs . For alkaline-earth(-like) atoms, we

choose Eπ2 = 0 so that Ω̃12;j ∝ Eσ2 Eπ∗1 , Ω̃23;j ∝ Eπ3 Eσ∗2

and Ω̃31;j ∝ Eσ1 Eσ∗3 . The corresponding Raman coupling
phases are φj;21 = jφ0 + ϕπ1 − ϕσ2 , where ϕπ,σs are the
(π, σ)-component phases of the s-th Raman laser at site
j = 0, and φ0 = kRdx cos(θ) gives rise to the magnetic
flux penetrating the side plaquette of the tube, with kR
the recoil momentum of the Raman lasers and dx the lat-
tice constant. Similarly, we have φj;32 = jφ0 + ϕσ2 − ϕπ3 ,
φj;13 = −2jφ0 +ϕσ3 −ϕσ1 . To obtain a uniform magnetic
flux for each side plaquette of the tube, we choose the
incident angle θ such that φ0 = 2π/3. The phases ϕσ,πs
determine the flux through the tube Φ = ∆ϕ3 − ∆ϕ1,
where ∆ϕs = ϕπs − ϕσs is the phase difference between
two polarization components of the s-th Raman laser.
The phase differences ∆ϕs can be simply controlled and
tuned using wave plates, and they do not depend on the
transverse positions y and z.
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FIG. 2: (a) Band structures in the topological phase. (b)
Phase diagram in the Ω13-δ2 plane, with solid (dashed) lines
the boundary between topological (T) and normal (N) phases
for the upper (lower) gap. (c) and (d) Band structures at
the phase boundary (blue lines) with δ2 = 0 and Ω13 = 1.
Common parameters: Ω = 2 with energy unit J .

For alkali atoms, we choose Eσ2 = 0, yielding Ω̃12;j =

α12Eπ2 Eσ∗1 , Ω̃23;j = α23Eπ3 Eπ∗2 and Ω̃31;j = β31Eσ1 Eπ∗3 +
α31Eπ1 Eσ∗3 , with αs,s′ , βs,s′ determined by the transi-
tion dipole matrix. We further consider (Eπ3 , Eσ1 ) �
(Eσ3 , Eπ1 ) � Eπ2 , thus Ω̃31;j ' α31Eπ1 Eσ∗3 with ampli-
tudes Ω21 ∼ Ω32 ∼ Ω13. Similar as the alkaline-earth(-
like) atoms, we obtain uniform magnetic flux φ0 = 2π/3
for tube side by choosing kRdx cos(θ) = 2π/3. The
flux through the tube becomes Φ = ∆ϕ3 + ∆ϕ1, which
can also be tuned at will through the polarization con-
trol. With proper gauge choice, we can set the tunneling
phases as φj;21 = φj;32 = jφ0 and φj;13 = jφ0 + Φ, as
shown in Fig. 1d.

Phase diagram.— The Bloch Hamiltonian in the basis
[ck,1, ck,2, ck,3]T reads

Hk =

 −2J cos(k − φ0) Ω21 Ω13e
−iΦ

Ω21 −2J cos(k) Ω32

Ω13e
iΦ Ω32 −2J cos(k + φ0)

 ,
(2)

with k the momentum along the real-space lattice. For
Ω21 = Ω32 = Ω13, the above Hamiltonian is nothing
but the Harper-Hofstadter Hamiltonian with Φ the ef-
fective momentum along the synthetic dimension, and
φ0 = 2π/3 is the flux per plaquette. The topology is
characterized by the Chern number [46]

Cn =
i

2π

∫
dkdΦ〈∂Φun|∂k|un〉 − 〈∂kun|∂Φ|un〉, (3)

where |un〉 is the Bloch states of the n-th band, satis-
fying Hk(Φ)|un(Φ, k)〉 = En(Φ, k)|un(Φ, k)〉. In Fig. 2a,
we plot the band structures as a function of Φ with an
open boundary condition along the real-lattice direction.
There are three bands, and two gapless edge states (one
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FIG. 3: (a) Total density distribution during one pump cycle.
Inset shows the non-adiabatic effects on the center-of-mass
shift. (b) Center-of-mass (red line) and the rotated-spin con-
tributions (blue lines) during one pump cycle. The blue lines
are

∑
j jñj,f (t)/N with f = 1, 2, 3 as labeled. (c) Rotated

spin-density distributions during one pump cycle.

at each ends) in each gap. The two edge states cross
only at Φ = 0 and Φ = π, where the tube belongs to a
1D topological insulator with quantized winding number
(Zak phase) [47]

W 0,π
n =

1

π

∮
dk〈un|∂k|un〉

∣∣
Φ=0,π

. (4)

The winding number is protected by a generalized in-
version symmetry IHkI−1 = H−k, where the inversion
symmetry I swaps spin states |1〉 and |3〉 [48].

The Chern number and winding number are still well
defined even when the Raman couplings have detunings
and/or the coupling strength Ωss′ are nonequal. The
changes in these Raman coupling parameters drive the
phase transition from topological to trivial insulators.
The detuning can be introduced by including additional
terms

∑
j;s δsc

†
j,scj,s in the Hamiltonian Eq. 1. Here-

after we will fix Ω21 = Ω32 ≡ Ω and δ1 = δ3 = 0
for simplicity. The phase diagram in the Ω13-δ2 plane
is shown in Fig. 2b. The solid (dashed) lines are the
phase boundaries corresponding to the gap closing be-
tween two lower (upper) bands, with topological phases
between two boundaries. At the phase boundaries, the
corresponding band gaps close at Φ = 0 (Φ = π) for the
two lower (upper) bands, as shown in Fig. 2c. In addi-
tion, for the two lower (upper) bands, the gap closes at
k = 0 and k = π (k = π and k = 0) on the right and
left boundaries, respectively, as shown in Fig. 2d. The
gaps reopen in the trivial phase with the disappearance
of edge states.

Topological pumping.— The three-leg Hall tube is a
minimal Laughlin’s cylinder. When the flux through the
tube is adiabatically changed by 2π, the shift of Wannier-
function center is proportional to the Chern number of

the corresponding band [39–42]. Therefore all particles
are pumped by C site (with C the total Chern number of
the occupied bands) as Φ changes by 2π, i.e., C particles
are pumped from one edge to another. Given the ability
of controlling the flux through the tube, we can mea-
sure the topological Chern number based on topological
pumping by tuning the flux Φ adiabatically (compared
to the band gaps).

Here we consider the Fermi energy in the first gap with
only the lowest C = 1 band occupied, and study the
zero temperature pumping process (the pumped parti-
cle is still well quantized for low temperature compar-
ing to the band gap) [49]. The topological pumping
effect can be identified as the quantized center-of-mass
shift of the atom cloud [49–52] in a weak harmonic trap
Vtrap = 1

2vT j
2. The harmonic trap strength vT = 0.008J

and the atom number N = 36 are chosen such that the
atom cloud has a large insulating region (corresponding
to one atom per unit-cell) at the trap center. For sim-
plicity, we set Ωss′ = J and δs = 0 for all s, s′, choose the
gauge as φj;21 = φj;32 = jφ0, φj;13 = jφ0−Φ, and change
Φ slowly (compared to the band gap) as Φ(t) = 2πt

τp
.

In Figs. 3a and 3b, we plot the total density distribu-
tion nj(t) and the center-of-mass 〈j(t)〉 ≡

∑
j jnj(t)/N

shift during one pumping circle with τp = 40J−1, and
we clearly see the quantization of the pumped atom
〈∆j〉 ≡ 〈j(τp)〉 − 〈j(0)〉 = 1. The atom cloud shifts as
a whole with nj(t) = 1 near the trap center. The in-
set in Fig. 3a shows non-adiabatic effect (finite pumping
duration τp) on the pumped atom.

The atoms are equally distributed on the three spin
states [i.e., nj,s(t) ≡ 〈c†j,scj,s〉 = 1

3nj(t)]. To see the
pumping process more clearly, we can examine the spin
densities in the rotated basis ñj,f (t) ≡ 〈c̃†j,f c̃j,f 〉, with

c̃j,f = 1√
3

∑
s cj,se

is 2fπ−Φ
3 . The Hamiltonian in these ba-

sis reads H =
∑3
f=1Hf , where

Hf = 2J cos(Kj,f,Φ)c̃†j,f c̃j,f + (Jc̃†j,f c̃j,f+1 +H.c.) (5)

is the typical Aubry-André-Harper (AAH) Hamilto-

nian [53, 54] with Kj,f,Φ = 2π(f+j)−Φ
3 . The bulk-atom

flow during the pumping can be clearly seen from the
spin densities ñj,f (t), as shown in Fig. 3c. Each spin
component contributes exactly one third of the quantized
center-of-mass shift (see Fig. 3b). The quantized pump-
ing can also be understood by noticing that the AAH
Hamiltonians Hs are permutated as H1 → H3 → H2 →
H1 after one pump circle. Each Hf returns to itself after
three pump circles with particles pumped by three sites
(since the lattice period of Hf is 3). Therefore, for the
total Hamiltonian H, particles are pumped by one site
after one pump circle. The physics for different values of
Ωss′ and δs are similar, except that the rotated basis c̃j,f
may take different forms.

In the presence of strong interaction, which is long-
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FIG. 4: Quench dynamics for Φ = 0 (solid lines) and aver-
aged over random Φ (dashed lines). Time evolution of spin
populations (a) and averaged momenta (b) with Ω13 = Ω.
Time evolution of spin populations at k = π with Ω13 = 5 in

(c) and Ω13 = 7.5 in (d). nπs = ns(π)∑
s′ ns′ (π)

, τ2 and τ3 cross at

Ωc13 = 5.8. Both gaps are topological in (a) and (b), and only
the upper (lower) gap is topological in (c) [(d)]. Common
parameters: Ω = 6.15, δ2 = −0.2Ω with energy unit J .

range in the synthetic dimension, our scheme offers
an ideal platform for studying exotic fractional quan-
tum Hall phases and topological fractional charge pump-
ing [43].

Quench dynamics.—Besides topological pumping, the
quench dynamics of the system can also be used to
demonstrate the presence of gauge field φ0 and detect
the phase transitions [37]. Here we study how Φ affects
the quench dynamics by considering that all atoms are
initially prepared in state |1〉, then the inter leg couplings
are suddenly activated by turning on the Raman laser
beams. In Figs. 4a and 4b, we show the time evolution
of the fractional spin populations ns = 1

N

∫
dkns(k), as

well as the momenta 〈k〉 =
∑
s〈ks〉 and 〈∆k〉 = 〈k2〉−〈k3〉

(both can be measured by time-of-flight imaging) for Φ =
0, where ns(k) = 〈cs(k)†cs(k)〉 and 〈ks〉 = 1

N

∫
kns(k)dk

with N the total atom number. We find that the time
evolutions show similar oscillating behaviors for different
Φ, but with different frequencies and amplitudes. The
difference between the momenta of atoms transferred to
state |2〉 and |3〉 increase noticeably at early time as a re-
sult of the magnetic flux φ0 penetrating the surface of the
tube [37], which does not depend on the flux Φ through
the tube.

The quench dynamics can also be used to measure the
gap closing at phase boundaries. Similar as Ref. [37], we
introduce two times τ2 and τ3, at which the spin-|2〉 and
spin-|3〉 populations at k = 0 (or k = π) reach their first
maxima, to identify the phase boundary. As we change δ2
or Ω13 across the phase boundary (one gap closes and the
dynamics is characterized by a single frequency), τ2 and
τ3 cross each other. Notice that above discussions only
apply to Φ = 0, π where the gap closing occurs. We find
that τ2 and τ3 are Φ-dependent [55] and would cross each
other even when no gap closing occurs for other values
of Φ, and the crossing point is generally away from the
phase boundaries. Therefore, the measurement of gap
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FIG. 5: (a) Schematic of the experimental setup in [37]. (b)
The three hyperfine ground states and the corresponding two-
photon Raman transitions.

closing based on quench dynamics is possible only if Φ
can be controlled. As an example, we consider Φ = 0 and
plot the time evolution of the spin populations at k = π
with Ω13 around the left phase boundary Ωc13, as shown
in Figs. 4c and 4d.

The ability to lock and control the flux Φ is crucial for
the study of both topological properties and quench dy-
namics. We notice that in the experiment in [37], Φ can-
not be controlled and may vary from one experimental re-
alization to another. It is also different for different tubes
within one experimental realization. The experimental
setup in [37] is shown in Fig. 5a, where three linearly po-
larized Raman lasers are used to couple three hyperfine
spin states of 173Yb atoms (Fig. 5b). It is straightfor-
ward to show that the flux Φ = 3ϕσ1 − 2ϕπ2 − ϕσ3 , which
cannot be controlled since the Raman lasers propagate
along different paths, not to mention that their wave-
lengths are generally not commensurate with the lattice.
Moreover, in realistic experiments, arrays of independent
fermionic synthetic tubes are realized simultaneously due
to the transverse atomic distributions in the y, z direc-
tions [36, 37], and the synthetic tubes at different y would
have different Φ due to the y-dependent ϕσ1 . For the pa-
rameters in Ref. [37], the difference of Φ between neigh-
bor tubes in y direction is about 2π × 0.58.

Due to the randomness of Φ, the dynamics in experi-
ment [37] (averaged over enough samplings) should cor-
respond to results averaged over Φ. In Fig. 4, we plot
the corresponding dynamics averaged over Φ, which show
damped oscillating behaviors (with significant long-time
damping), as observed in the experiment. The above
results still hold for atoms in a weak harmonic trap,
as confirmed by the experiment [37] as well as our nu-
merical simulations [55]. In Fig. 4, we fix Ω = 6.15J
and δ2 = −0.2Ω. The initial temperature is set to be
T/TF = 0.3, with initial Fermi temperature TF given by
the difference between the Fermi energy EF and the ini-
tial band minimum −2J (i.e., TF = EF + 2J) [37]. We
use TF = 2J to get the similar initial filling and Fermi
distribution as those in the experiment (the results are
insensitive to TF ). Moreover, τ2 and τ3, which cross each
other at different values of Ω13 for different Φ with aver-
aged value Ω̄13 = Ω 6= Ωc13, may not be suitable to iden-
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tify the phase boundaries (i.e., gap closings) for a random
flux Φ. Other experimental imperfections such as spin-
selective imaging error may also affect the measured spin
dynamics, and the final observed phase boundary in [37]
is smaller than Ω and Ωc13.

Conclusion.— In summary, we propose a simple
scheme to realize a controllable flux Φ through the syn-
thetic Hall tube that can be tuned at will, and study the
effects of the flux Φ on the system topology and dynam-
ics. The quench dynamics averaged over the random flux
may better explain previous experimental results where
the flux is not locked. Our results provide a new platform
for studying topological physics in a tube geometry with
tunable flux and may be generalized with other synthetic
degrees of freedom, such as momentum states [56–58] and
lattice orbitals [59, 60].
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vT ' 0.0158J . In Fig. S2, we plot the time evolution
of spin populations with all other parameters the same
as in Fig. 3a in the main text. We see that the quench
dynamics are hardly affected by the harmonic trap.
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FIG. S1: (a)-(d) Time evolution of the spin populations at
k = π for different values of Φ. All other parameters are the
same as Fig. 3c in the main text.
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FIG. S2: Quench dynamics in the presence of a harmonic
trap Vtrap = 1

2
vTj

2 with trap strength vT ' 0.0158J . All
other parameters are the same as in Fig. 3a in the main text.
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