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a b s t r a c t

The spin-1 Bose–Einstein condensates trapped in a standing light wave can be described by

three coupled Gross–Pitaevskii equations with a periodic potential. In this paper, nine families

of stationary solutions without phase structures in the form of Jacobi elliptic functions are

proposed, and their stabilities are analyzed by both linear stability analysis and dynamical

evolutions. Taking the ferromagnetic 87Rb atoms and antiferromagnetic (polar) 23Na atoms as

examples, we investigate the stability regions of the nine stationary solutions, which are given

in term of elliptic modulus k. It is shown that for the same stationary solution the stability

regions of condensates with antiferromagnetic (polar) spin-dependent interactions are larger

than that of the condensates with ferromagnetic ones. The dn-dn-dn stationary solution is the

most stable solution among the nine families of stationary solutions. Moreover, in the same

standing light wave, the spin-1 Bose–Einstein condensates are more stable than the scalar

Bose–Einstein condensate.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The experimental realization of spinor condensates [1,2] opened the possibility to observe various phenomena which are

not seen in a single-component Bose–Einstein condensate (BEC). Spinor condensates are distinguished by an additional internal

degree of freedom represented by the spin of the atoms. In the case of spin-1 BECs, the dynamics is described by three spin

degrees of freedom with mF = 1, 0,−1 of the F = 1 atomic hyperfine state. Theoretically, the spin-1 BECs were first studied by

Ho [3] through generalizing the three coupled Gross–Pitaevskii (GP) equations under the restriction of gauge and spin-rotation

symmetry. Moreover, within the mean-field theory, Ho [3] and Ohmi and Machida [4] predicted a rich set of novel phenomena

such as spin textures and topological excitations. Recent years, much work [5–11] has focused on the soliton solutions, dynamics

and novel quantum states of spin-1 BECs.

Most BEC experiments use the harmonic confinement, but it is known that BEC loaded into optical lattices shows a wide range

of interesting physical properties and complex nonlinear dynamics. Optical lattices [12–17] can be employed to investigate many

important physical phenomena of atomic physics and have attracted much attention. A large diversity of remarkable effects in
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optical lattices has already been observed experimentally. Among them we stress on the Bloch oscillations of BECs [18], instability

of nonlinear matter waves [19], Landau–Zener tunneling [20], superfluid to Mott-insulator phase transition [21] and gap matter

solitons [22]. Carr et al. studied the one dimensional (1D) BEC in quasi-1D confinement in a standing light wave by using the

periodic potential V (x) = −V0sn2(x, k) where sn(x, k) denotes the Jacobian elliptic sine function [23] with elliptic modulus 0 ≤ k

≤ 1, and presented a family of exact stationary solutions to the corresponding GP equation, which is actually a cubic nonlinear

Schrödinger equation with an elliptic function potential. Subsequently, researchers [23–26] obtained many exact solutions of

other one-component BEC systems and multi-component BEC systems [27–30] in periodic potentials. However, up to now there

are few studies on the exact stationary solutions of the spin-1 BECs in periodic potentials.

In this paper, we consider the dynamics and stability of stationary states for BECs of alkali atoms in the F = 1 hyperfine

states confined in a standing light wave [23]. In the framework of mean-field theory, the dynamics of the spinor condensates is

described by the three component GP equations with periodic potential as

i
∂�0

∂t
= [H0+c2(|�+1|2+|�−1|2)]�0+2c2�

∗
0�+1�−1, (1a)

i
∂�±1

∂t
= [H0+c2(|�±1|2+|�0|2−|�∓1|2)]�±1+c2�

∗
∓1�

2
0 , (1b)

where H0 = − 1
2 ∇2 + V (r) + c0(|�−1|2 + |�0|2 + |�+1|2) and the external potential V (r) = 1

2 ω2
⊥(y2 + z2) + VOL(x), with ω⊥ be-

ing the trapping frequency in the direction perpendicular to the lattice. The function VOL(x) = V0sn2(dx, k) is a periodic potential,

where V0 is the depth of the optical lattice, d is the wave number of the laser lights that generate the optical lattice and k is the

elliptic modulus with 0 ≤ k ≤ 1. Note that when k = 0 the 1D potential is sinusoidal and thus VOL(x) = V0sin2(dx) is exactly a

standing light wave. For most intermediate values of k (e.g. 0 < k < 0.9) the potential is virtually indistinguishable from a si-

nusoidal potential and thus can be well approximated by the standing light wave potential generated experimentally. For the

case k → 1−, the 1D optical lattice becomes an array of well separated hyperbolic secant potential barriers or wells. Any elliptic

function sn(dx, k) can be expanded as infinite series of trigonometric functions by the well known formula [31]

sn(dx, k) = 2π

kK(k2)

∞∑
n=0

qn+1/2

1 − q2n+1
sin

(2n + 1)πdx

2K(k2)
,

where q = exp{−π [K(1 − k2)/K(k2)]} and K(k2) is a complete elliptic integral of the first kind [31]. From this formula, one can

find that even for relatively large elliptic modulus, such as k2
0

= 0.9, one obtains q ≈ 0.084 which means that

sn(dx, k) ≈ 2π2q

k2K2(k2)(1 − q)2

[
1 − cos

πdx

K(k2)
+ 2q

1 + q + q2

(
cos

πdx

K(k2)
− cos

2πdx

K(k2)

)]
,

for k < k0. This potential can be produced by using only two laser beams, and the elliptic function potential sn(dx, k) is approxi-

mated with accuracy higher than 99%. The accuracy of the approximation increases as k decreases. Anyway, for most values of k,

the elliptic function potential sn 2(dx, k) can be well approximated by only a few laser beams in real experiments [29,30].

The wave functions Eq. (1) are normalized to the number of atoms as
∫ |� j|2dr = Nj, where j = ±1, 0, and N = N1 + N2 + N3

is the total number of atoms in the condensate. The units for length, time and energy are a⊥ = (h̄/Mω⊥)1/2,ω−1
⊥ and �ω⊥,

respectively. Moreover, the parameters c0 and c2 describing binary elastic collisions of spin-1 atoms in the combined symmetric

channel of total spin 0 and 2, are expressed as c0 = 2(a0 + 2a2)/(3a⊥) and c2 = 2(a2 − a0)/(3a⊥) with a0, a2 being the s-wave

scattering lengths. Note that the F = 1 spinor condensates may be either ferromagnetic (such as the 87Rb atoms), characterized

by c2 < 0 [32], or polar (such as the 23Na atoms), with c2 > 0 [33]. For 87Rb atoms [32], the scattering lengths a0 = 101.8aB

and a2 = 100.4aB (aB is Bohr radius) are nearly equal, and the dimensionless 1D coupling constants are c0 = 1.49 × 10−2 and

c2 = −6.94 × 10−5, indicating that the spin-dependent mean-field energy c2n, are very small for density n compared with both

the scalar mean field c0n. For 23Na atoms [33], the scattering lengths are a0 = 50aB and a2 = 55aB, and the dimensionless 1D

coupling constants are c0 = 4.08 × 10−3 and c2 = 1.28 × 10−4.

In the limit of highly elongated traps, the tight confinement ensures that no excited states are available in the trans-

verse direction and thus the dynamics takes place along the axial direction. By introducing separable wave functions � j(r) =
ψ j(x, t)ψ⊥(y, z) with the transverse components ψ⊥(y, z) determined by the ground state of the tight harmonic trap, and inte-

grating 3D GP equations (1) over the transverse directions {y, z}, the model for the spinor condensate is reduced to the quasi-

one-dimensional three-component GP equations for ψ j(x) as

i
∂ψ0

∂t
= [L+c2(|ψ+1|2+|ψ−1|2)]ψ0+2c2ψ

∗
0ψ+1ψ−1, (2a)

i
∂ψ±1

∂t
= [L+c2(|ψ±1|2+|ψ0|2−|ψ∓1|2)]ψ±1+c2ψ

∗
∓1ψ

2
0 , (2b)

where L = − 1
2

∂2

2 +V0sn2(dx, k)+c0(|ψ−1|2+|ψ0|2+|ψ+1|2).

∂x
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2. Stationary solutions and linear stability analysis

2.1. Exact stationary solutions of three-component GP equations

In this subsection, we present the stationary solutions of the quasi-one-dimensional three-component GP equations (2) in

closed form and study their stabilities numerically. For simplicity, we fix the parameter d = 1 in the 1D periodic potential. We

begin by constructing stationary solutions with trivial phase to Eq. (2) in the following forms

ψm = φmexp[i(kmt + ωm)], m = +1, 0,−1, (3)

where φm are real functions of x, and parameters km and ωm are constants.

Substituting (3) in (2) and setting parameters k0 = k1/2 + k−1/2 and ω0 = ω−1/2 + ω1/2, we obtain the following three sta-

tionary equations of φ1, φ0 and φ−1 as

L1φ1 =n0φ1+c2

(
φ3

1 −φ2
−1φ1+φ1φ

2
0 +φ−1φ

2
0

)
, (4a)

L0φ0 =n0φ0+c2

(
2 φ0φ1φ−1+φ0φ

2
1 +φ0φ

2
−1

)
, (4b)

L−1φ−1 =n0φ−1+c2

(
φ3

−1−φ2
1φ−1+φ−1φ

2
0 +φ1φ

2
0

)
, (4c)

where L1 = 1
2

∂2

∂x2 − V0sn2(x, k) + n0 − k1,L−1 = 1
2

∂2

∂x2 − V0sn2(x, k) + n0 − k−1,L0 = 1
2

∂2

∂x2 − V0sn2(x, k) + n0 − (k1 + k−1)/2

and n0 = φ2
−1

+ φ2
0

+ φ2
1
.

Based on the approach in [23], we obtain nine closed form solutions for the stationary equations (4), and then get nine families

of exact solutions of the three-component GP Eq. (2) as follows:

Solution 1. If k2 − 2 c0a1
2 − V0 > 0, we have

ψ1 =a1sn(x, k)e−i[(1+k2)t−2 ω1]/2, (5a)

ψ0 =
√

(k2−2 c0a1
2−V0)/c0sn(x, k)ei[ω0−( 1

2+k2

2 )t], (5b)

ψ−1 =−a1sn(x, k)e−i[(1+k2)t−2 ω−1]/2. (5c)

Solution 2. If V0 − k2 − 2 c0a1
2 > 0, we have

ψ1 =a1cn(x, k)ei[(2 k2−1−2V0)t+2 ω1]/2, (6a)

ψ0 =
√

(V0−k2−2 c0a1
2)/c0cn(x, k)ei[(k2−1

2−V0)t+ω0], (6b)

ψ−1 =−a1cn(x, k)ei[(2 k2−1−2V0)t+2 ω−1]/2. (6c)

Solution 3. If V0 − k2 − 2 c0a1
2k2 > 0, we have

ψ1 =a1dn(x, k)ei[(2−k2−2V0/k2)t+2 ω1]/2, (7a)

ψ0 =
√

(V0−k2−2 c0a1
2k2)/c0

k
dn(x, k)e

i[(1−k2

2 −V0
k2 )t+ω0]

, (7b)

ψ−1 =−a1dn(x, k)ei[(2−k2−2V0/k2)t+2 ω−1]/2. (7c)

Solution 4. If c2 > 0 and V0 = k2(c2−c0)
2c2

, we have

ψ1 = −γ1

2c2

sn(x, k)e− i
2 [(1+k2)t+γ2+a1t+4 c0a2

1t−2 ω1], (8a)

ψ0 =
√

c2a1γ1

c2

cn(x, k)e
i[ω0−(2 c0a1

2+
√

2c0a1k√
c2

+1
2 )t]

, (8b)

ψ−1 =a1sn(x, k)e
i
2 [(k2−1)t+γ2−a1t−4 c0a2

1t+2 ω−1], (8c)

where γ1 = 2 c2a1 +
√

2c2k and γ2± = 2
√

2c2k ± 2
√

2c0k√
c2

.

Solution 5. If c2 > 0 and V0 = k2(c2−c0)
2c2

, we have

ψ1 =a1sn(x, k)e
i
2 [(1−k2)t+2

√
2(c2−c0 )a1t√

c2k
−4 a1

2c0t

k2 +2 ω1]
, (9a)

ψ0 =
√

c2a1γ3

c2k
dn(x, k)e

i[ω0−(
2 c0a2

1
k2 +

√
2a1c0

k
√

c2
+ k2

2 )t]
, (9b)

ψ−1 =− γ3

2c2

sn(x, k)e
i
2 [2 ω−1−(1+k2)t−2

√
2(c2+c0 )a1t√

c2k
−4 a1

2c0t

k2 ]
, (9c)

where γ3 = 2 c2a1 +
√

2c2k.
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Solution 6. If c2 < 0 and V0 = k2(c2−c0)
2c2

, we have

ψ1 =a1cn(x, k)e
− i

2 [(1−c0k2

c2
+k2)t+γ5−t+4 a2

1c0t−2 ω1]
, (10a)

ψ0 =
√

c2a1γ4

c2

sn(x, k)e
i[(

c0k2

2c2
−2 c0a1

2−a1c0k
√−2 c2
c2

−1
2 )t+ω0]

, (10b)

ψ−1 =− γ4

2c2

cn(x, k)e
− i

2 [(1−k2−c0k2

c2
)t+γ5+t+4 a1

2c0t−2 ω−1]
, (10c)

where γ4 =2 a1c2+
√

−2 c2k and γ5± =2 k
√

−2 c2(
c0
c2

±1)a1.

Solution 7. If c2 < 0 and V0 = k2(c2−c0)
2c2

, we have

ψ1 =a1dn(x, k)e
− i

2 [(1+k2− c0
c2

)t+γ7−t+4 a2
1c0t−2 ω1]

, (11a)

ψ0 =

√√
−2c2a1γ6k
√−c2

sn(x, k)e
i[(

c0
2c2

−2 c0a2
1−a1

√−2c2c0
c2

−k2

2 )t+ω0]
, (11b)

ψ−1 =
√

−2c2γ6

2c2

dn(x, k)e
− i

2 [(k2− c0
c2

−1)t+γ7+t+4 a2
1c0t−2 ω−1]

, (11c)

where γ6 =a1

√
−2 c2 − 1 and γ7± = 2

√
−2 c2a1
c2

(c0 ± c2).

Solution 8. If c2 < 0 and V0 = k2(c2−c0)
2c2

, we have

ψ1 =a1dn(x, k)e
i
2 [γ9+t+4 c0(k2−1)a1

2t+2 ω1], (12a)

ψ0 = ã0cn(x, k)e
i{[a1c0(k2−1)(2 a1−

√−2 c2
c2

)+ c0
2c2

]t+ω0}, (12b)

ψ−1 =
√

−2 c2γ8

2c2

dn(x, k)e− i
2 [γ9−t−4 c0(k2−1)a2

1t−2 ω−1], (12c)

where γ8 = a1

√
−2 c2 + 1, ã0 =

√
−2

√
−2 c2a1γ8k√
−2 c2

and γ9± = k2c2±c0−c2
c2

+ 2
√

−2 c2(k2−1)(c2∓c0)a1
c2

.

Solution 9. If c2 < 0 and V0 = k2(c2−c0)
2c2

, we have

ψ1 =a1cn(x, k)e
i
2 [γ12−t− 4 c0 (k2−1)a2

1
t

k2 +2 ω1]
, (13a)

ψ0 =
√

c2γ10a1

c2k
dn(x, k)e

i[(γ11−a1

√−2 c2c0
c2k

−2 c0a1
2 (k2−1)

k2 )t+ω0]
, (13b)

ψ−1 = γ10

2c2

cn(x, k)e
i
2 [γ12+t− 4 c0 (k2−1)a2

1
t

k2 +2 ω−1]
. (13c)

where γ10 = k
√

−2 c2 − 2 c2a1, γ11 = c0k(2 a1

√
−2 c2+k)

2c2
and γ12± = k2c0±k2c2∓c2

c2
± 2

√
−2 c2(k2−1)(c2±c0)a1

c2k
.

2.2. Linear stability analysis

In the above subsection, nine families of stationary solutions to the governing Eq. (2) have been found. It is known that only

solutions that are stable can be observed in real experiments. Thus it is important to investigate the stability regions of these

stationary solutions. In this subsection, we first consider the linear stability of the nine families of stationary solutions. To do so,

we consider an infinitesimally small perturbation [23] of the exact solution as

ψm = (φm(x) + ϕm(x, t))exp[i(kmt + ωm)], m = 0,±1, (14)

where φm(x)exp[i(kmt + ωm)] is the stationary solution presented previously and ϕm(x, t) � 1 is a small perturbation to the

exact solution. Decomposing perturbation term ϕm(x, t) into real and imaginary parts as ϕm(x, t) = Um(x, t) + iVm(x, t) and sub-

stituting (14) into (2), we have

dV
dt

= MV, (15)
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Fig. 1. Linear stability phase diagrams as functions of the depth of optical lattice V0 and the square of elliptic modulus k2 for the stationary solution 1 in Eq. (5)

with parameters ω1 = ω0 = ω−1 = 0 and a1 = 1. The left plot is for 23Na condensates and the right one is for 87Rb atom, where we have taken the logarithm for

eigenvalue λ. The blue color stands for linear stability region and the red color stands for linear instability region. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article).
where V = (U1,V1,U0,V0,U−1,V−1)
′

with ′ denoting transpose and matrix M is

M=

⎛
⎜⎜⎜⎜⎝

0 T +L1 0 K1 0 K2

−T −L2 0 M1 0 M2 0
0 K1 0 T +L3 0 K3

M1 0 −T −L4 0 M3 0
0 K2 0 K3 0 T +L5

M2 0 M3 0 −T −L6 0

⎞
⎟⎟⎟⎟⎠

with T =− 1
2 ∂2

x , K1 =2 c2φ−1φ0, K2 =−c2φ0
2
, K3 =2c2φ1 φ0 and

L1 = c0n0 + c2(φ1
2 + φ0

2 − φ−1
2
) + V0sn2(x, k) + k1,

L2 = c0(n0+2 φ1
2
)+c2(3 φ1

2+φ0
2−φ−1

2
)+V0sn2(x, k)+k1,

L3 = c0n0 + c2(φ1 − φ−1)
2 + V0sn2(x, k) + 1

2
(k1 + k−1),

L4 = c0(n0+2 φ0
2
)+c2(φ1+φ−1)

2+V0sn2(x, k)+ 1

2
(k1+k−1),

L5 = c0n0 + c2(φ0
2 − φ1

2 + φ−1
2
) + V0sn2(x, k) + k−1,

L6 = c0(n0+2 φ−1
2
)+c2(φ0

2−φ1
2+3 φ−1

2
)+V0sn2(x, k)+k−1,

M1 = −2 c0φ1φ0 − 2(φ1 + φ−1)φ0c2,

M2 = −2 c0φ1φ−1 + (2 φ1φ−1 − φ0
2
)c2,

M3 = −2 c0φ−1φ0 − 2(φ1 + φ−1)φ0c2.

Separating the time-space dependent functions U1,V1,U0,V0,U−1 and V−1 from the spatial variations as

⎛
⎜⎜⎜⎜⎝

U1

V1

U0

V0

U−1

V−1

⎞
⎟⎟⎟⎟⎠ = eλt

⎛
⎜⎜⎜⎜⎝

u1

v1

u0

v0

u−1

v−1

⎞
⎟⎟⎟⎟⎠, (16)
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Fig. 2. Dynamical evolutions of the density distributions |ψm|2 of the 23Na condensate described by stationary solution 1 in Eq. (5) with k2 = 0.8 and parameter

a1 = 1,ωm = 0(m = 0,±1). The left column denotes the stationary solution 1 is dynamically stable for V0 = 0.75, and the right column denotes it is dynamically

unstable for V0 = 0.25, which is consistent with the linear stability analysis in Fig. 1(a).
where u1, v1, u0, v0, u−1 and v−1 are functions of x, we get the following eigenvalue problem from Eq. (15)

M

⎛
⎜⎜⎜⎜⎝

u1

v1

u0

v0

u−1

v−1

⎞
⎟⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎜⎝

u1

v1

u0

v0

u−1

v−1

⎞
⎟⎟⎟⎟⎠. (17)

If all eigenvalues λ in Eq. (17) are purely imaginary or only have negative real parts, the exact stationary solutions from (5) to

(13) are linearly stable. In contrast, if there is at least one eigenvalue with positive real part, then instability results. The linear

stability of the nine stationary solutions from (5) to (13) can be examined by numerically solving the eigenvalue problem (17).

3. Dynamics and Stability

In this section, we examine the dynamics and stability of the nine stationary solutions in Eqs. (5)–(13) of the three-component

GP equations (2) numerically. Specifically, we consider the spinor BEC clouds with either ferromagnetic or antiferromagnetic

(polar) spin-dependent interactions. It is known that ferromagnetic or antiferromagnetic type of the spinor condensate is de-

pendent on the sign of the coefficient c2 (c0 is always positive for condensates with repulsive interactions, such as the 23Na and
87Rb considered here). Thus the dynamics and stability of the nine stationary solutions in Eqs. (5)–(13) should be examined by

considering c2 < 0 and c2 > 0, respectively. In the following analysis, we adopt the experimental data of 23Na and 87Rb atoms in

Table 1, where the dimensionless 1D coupling constants c0 is always positive.

3.1. Dynamics and stability of the stationary solutions 1–3

We first analyze the dynamics and stability of the exact stationary solutions 1–3 in Eqs. (5)–(7). In our framework, the di-

mensionless 1D coupling constants c0 > 0, thus the restriction on stationary solution 1 in Eq. (5) is k2 − 2 c0a1
2 − V0 > 0, on

stationary solution 2 in Eq. (6) is V0 − k2 − 2 c0a1
2 > 0 and on stationary solution 3 in Eq. (7) is V0 − k2 − 2 c0a1

2k2 > 0, where

there are no any restrictions on the coupling constants c2. Thus the exact stationary solutions (5)–(7) exist for any choices of

the coupling constants c . Note that the stability of these solutions is affected by both the depth V of the optical lattice and the
2 0
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Fig. 3. Dynamical evolutions of the density distributions |ψm|2 of the 87Rb condensate described by stationary solution 1 in Eq. (5) with k2 = 0.8 and param-

eter a1 = 1,ωm = 0(m = 0,±1). The left column indicates the stationary solution 1 is dynamically stable for V0 = 0.75, and the right column indicates it is

dynamically unstable for V0 = 0.25. These are consistent with the linear stability analysis in Fig. 1(b).

Fig. 4. Linear stability phase diagrams as functions of the depth of optical lattice V0 and the square of elliptic modulus k2 for the stationary solution 2 in Eq. (6)

with parameters ω1 = ω0 = ω−1 = 0 and a1 = 1. The left is for 23Na and the right is for 87Rb atom, where we have taken the logarithm for eigenvalue λ. The blue

color stands for linear stability region and the red color stands for linear instability region. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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Fig. 5. Linear stability phase diagrams as functions of the depth of optical lattice V0 and the square of elliptic modulus k2 for the stationary solution 3 in Eq.

(7) with parameters ω1 = ω0 = ω−1 = 0 and a1 = 1. The left is for 23Na and the right is for 87Rb atom, where we have taken the logarithm for eigenvalue λ. The

blue stands for linear stability region and the purple stands for weak linear stability region. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).

Fig. 6. Real parts of maximal linear eigenvalues versus the elliptic modulus k for the stationary solutions 4 in Eq. (8) with parameters a1 = 1,ωm = 0(m = 0,±1)

and the spin-dependent interaction parameters c0, c2 for 23Na atoms.

Table 1

Experimental data of scattering lengths a0, a2 given in units of the

Bohr radius aB , and the dimensionless 1D coupling constants c0 and

c2 for 23Na and 87Rb atoms, respectively.

a0 a2 c0 c2

23Na 50aB 55aB 4.08 × 10−3 1.28 × 10−4

87Rb 101.8aB 100.4aB 1.49 × 10−2 −6.94 × 10−5
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Fig. 7. Dynamical evolutions of the density distributions and phases of the 23Na condensate described by stationary solution 4 in Eq. (8) with elliptic modulus

k = 0.001 and parameter a1 = 1,ωm = 0(m = 0,±1).
elliptic modulus k in the solutions. Thus we need to study the phase diagrams of V0 and k to reveal the linear stability regions by

solving the eigenvalue problem (17) numerically. From Eq. (16) it is seen that the stationary solutions are linearly stable if all the

real parts of eigenvalues λ are non-positive.

In Fig. 1, numerical experiments demonstrate the linear stability phase diagrams as functions of the depth of optical lattice

V0 and the square of elliptic modulus k2 for solution 1 in Eq. (5) with parameter a1 = 1 and ω1 = ω0 = ω−1 = 0 for 23Na and
87Rb atoms, respectively. Here and in Figs. 4 and 5, we have taken the logarithm for eigenvalue λ. The blue region corresponds
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Fig. 8. Dynamical evolutions of the density distributions and phases of the 23Na condensate described by stationary solution 4 in Eq. (8) with elliptic modulus

k = 0.999 and parameter a1 = 1,ωm = 0(m = 0,±1).
eigenvalue λ approaching to zero, which is the linear stability region, and the red region is the linear instability region. Fig. 2

shows the dynamics of the density distributions |ψm|2 of the 23Na condensate described by stationary solution 1 in Eq. (5) with

elliptic modulus k2 = 0.8 and the parameters in Fig. 1(a). It is seen that the stationary solution 1 is dynamically unstable for

the depth of optical lattice V0 = 0.25 (the right column), and it is dynamically stable for V0 = 0.75 (the left column), which is

consistent with the linear stability analysis in Fig. 1(a). Fig. 3 shows the dynamics of the density distributions |ψm|2 of the 87Rb

condensate described by stationary solution 1 in Eq. (5) with elliptic modulus k2 = 0.8 and the parameters in Fig. 1(b). For 87Rb
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Fig. 9. Maximal real parts of the linear eigenvalues versus the elliptic modulus k for the stationary solutions 6–9 in Eq. (10)–(13) with parameters a1 = 1,ωm =
0(m = 0,±1) and the spin-dependent interaction parameters c0, c2 for 87Rb atoms.
condensate, the right column of Fig. 3 indicates that the stationary solution 1 is dynamically unstable for the depth of optical

lattice V0 = 0.25, and the left column indicates that it is dynamically stable for V0 = 0.75, which is also consistent with the linear

stability analysis in Fig. 1(b).

Figs. 4 and 5 show the linear stability phase diagrams as functions of the depth of optical lattice V0 and the square of elliptic

modulus k2 for solution 2 and solution 3 in Eqs. (6) and (7), respectively. The other parameters are the same as the parameters

in Fig. 1. It is seen from Fig. 4 that in the framework of solution 2 in Eq. (6), the linear stability regions (blue regions) of both
23Na and 87Rb condensates are less than the linear instability regions (red regions); with increasing values of the depth of optical

lattice V0 and the square of elliptic modulus k2, the linear stability regions of both 23Na and 87Rb condensates become narrower

and narrower. It is found from Fig. 5 that the linear stability regions of solution 3 are larger than that of the solutions 1 and 2.

In fact, the dn-dn-dn stationary solution 3 in Eq. (7) is the most stable among the nine stationary solutions in Eqs. (5)–(13). In

addition, with the same parameters, the linear stability regions of 23Na condensate are larger than that of the 87Rb condensate.

The results of dynamical stability analysis for solution 2 and solution 3 in Eqs. (6) and (7) are consistent with that of the linear

stability analysis in Figs. 4 and 5.

It is remarked that Bronski et al. [23] pointed out that the trivial phase dn(x, k) solution for one-component repulsive BEC in

standing waves is dynamically and linearly stable, while the trivial phase sn(x, k) and cn(x, k) solutions are unstable. Moreover,

Bronski et al. [24] also found that for the one-component attractive BEC in standing waves the trivial phase dn(x, k) solution is

unstable but the trivial phase sn(x, k) and cn(x, k) solutions have stability regions. In our case, we consider the trivial phase sta-

tionary solutions of two types of spinor F = 1 BEC, namely the ferromagnetic 87Rb condensate and the polar (antiferromagnetic)
23Na condensate, where the spin-dependent interactions are, respectively, attractive and repulsive. It is seen from Figs. 1,–5
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Fig. 10. Maximal real parts of the linear eigenvalues versus the elliptic modulus k for the stationary solutions 7 in Eq. (11) with parameters a1 = 1,ωm = 0(m =
0,±1) and the spin-dependent interaction parameters c0, c2 for 87Rb atoms for different k, i.e. k ∈ (0, 0.5], k ∈ [0.5, 0.95] and k ∈ [0.95, 1), respectively.
that the stability regions of the stationary solutions for the spinor F = 1 BEC are larger than one-component BEC in [23] and

[24]. Moreover, in the spinor F = 1 BEC, the three components form stable coexistence states [34] composed of Jacobian elliptic

functions.

3.2. Stability of the stationary solutions 4–5

The exact stationary solutions 4–5 in Eqs. (8)–(9) solve the quasi-one-dimensional three component GP Eqs. (2) only when the

spin-dependent interaction parameter c2 > 0 and V0 = k2(c2 − c0)/(2c2), so they can only describe the dynamics and quantum

properties of the polar condensate like 23Na atom. Fig. 6 depicts the real parts of maximal linear eigenvalues versus the elliptic

modulus k for the stationary solution 4 in Eq. (8). The spin-dependent interaction parameters c0 and c2 are chosen from 23Na

atoms and the other parameters are ω1 = ω0 = ω−1 = 0, a1 = 1. It is observed that the stationary solution 4 in Eq. (8) is linearly

stable only when the elliptic modulus k sufficiently approaches 0 (see Fig. 6(a)), and for most of the elliptic modulus k it is linearly

unstable (see Fig. 6(b)). Figs. 7 and 8 display the time evolutions of the density distributions |ψm|2(m = 0,±1) and phases of the
23Na condensate described by the stationary solution 4 in Eq. (8) for elliptic modulus k = 0.001 and k = 0.999, respectively. It

is seen that the stationary solution 4 is dynamical stable for elliptic modulus k = 0.001 but is dynamical unstable for elliptic

modulus k = 0.999, which consistent with the result of linear stability analysis in Fig. 6. In the same way, numerical simulations

show that the exact stationary solutions 5 in Eq. (9) is both linearly and dynamically unstable.

3.3. Stability of the stationary solutions 6–9

Finally, we analyze the stability of the stationary solutions 6–9 in (10)–(13) numerically. These stationary solutions solve the

quasi-one-dimensional three component GP equations (2) only when c2 < 0 and V0 = k2(c2 − c0)/(2c2), so they can describe

the dynamics and quantum properties of ferromagnetic condensate like 87Rb condensate. Fig. 9(a)–(d) show the maximal real
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parts of the linear eigenvalues versus the elliptic modulus k for the stationary solutions 6–9 in Eq. (10)–(13), respectively. It

is shown that the stationary solutions 6 and 9 are linearly unstable for most elliptic modulus k, but the stationary solutions

7 and 8 are linearly unstable for only certain regions. Fig. 10(a)–(c) are the separate pictures of the maximal real parts of the

linear eigenvalues versus the elliptic modulus k for the stationary solutions 7, which gives the location of the instability regions.

Dynamical stability analysis for the stationary solutions 6–9 in (10)–(13) displays the same results as linear stability analysis in

Figs. 9 and 10.

4. Conclusions

In conclusion, we have derived nine families of stationary solutions of the three-component GP equations arising from spin-1

Bose–Einstein condensates trapped in a standing light wave in a quasi-1D geometry. The stability of these stationary solutions is

analyzed by both linear stability analysis and dynamical evolutions. We demonstrate that in the framework of the same stationary

solution the stability regions of condensates with antiferromagnetic spin-dependent interactions are larger than that of the

condensates with ferromagnetic ones. The stability regions of the stationary solutions for the spinor F = 1 BEC in a standing light

wave are larger than that in the one-component BEC in the same standing light wave. Our results suggest that such stationary

states are experimentally observable and that a sufficiently large number of condensed spin-1 atoms are required to form a stable,

periodic condensate. The experimental developments [35] allow us for direct investigation of the present theoretical results.
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