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The positivity of the partial transpose is in general only a necessary condition for separability. There exist
quantum states that are not separable, but nevertheless are positive under the partial transpose. States of this type
are known as bound entangled states, meaning that these states are entangled but they do not allow distillation
of pure entanglement by means of local operations and classical communication. We present a parametrization
of a class of 2 × 2 bound entangled Gaussian states for bipartite continuous-variable quantum systems with two
modes on each side. We propose an experimental protocol for preparing a particular bound entangled state in
quantum optics. We then discuss the robustness properties of this protocol with respect to the occupation number
of thermal inputs and the degrees of squeezing.
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I. INTRODUCTION

Entanglement is a striking property of quantum mechanics,
being central in most quantum information technologies. One
of the most fundamental problems in quantum information
is to determine whether a quantum state is entangled or
not. During the past three decades, considerable effort has
been devoted to solving this problem. Though it has not yet
been completely solved, a great deal of progress has been
made. One critical advance is the development of an elegant
criterion, known as partial transpose, for studying separability
[1,2]. The partial transpose corresponds physically to a local
time-reversal operation [3]. The positivity of the partial trans-
pose provides a necessary condition for separability. In some
restricted cases, this criterion turns out to also be sufficient.
To be specific, for discrete-variable quantum systems, the
positive partial transpose (PPT) criterion is necessary and
sufficient for separability of (2 × 2)- and (2 × 3)-dimensional
systems [1,2]. However, for higher-dimensional systems, e.g.,
(3 × 3)- and (2 × 4)-dimensional cases, this criterion fails
to be sufficient for separability [4]. For continuous-variable
quantum systems, the PPT criterion is necessary and sufficient
for separability of continuous-variable systems of 1 × n os-
cillators in a joint Gaussian state [5–7]. However, for higher
dimensions, e.g., a continuous-variable system of 2 × 2 oscil-
lators in a Gaussian state, this criterion fails to be sufficient
for separability [5]. For some very special classes of n × m
Gaussian states, e.g., bisymmetric Gaussian states [8] and
isotropic Gaussian states [9–12], the PPT criterion is also
necessary and sufficient for separability.

The PPT criterion is in general not a sufficient condition for
separability. There exist nonseparable (entangled) states with
a positive partial transpose. These states are known as bound
entangled states, meaning that these states are entangled, but
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their entanglement cannot be distilled into maximally entan-
gled states via local operations and classical communication
[3]. Examples of bound entangled states have been found
for discrete-variable quantum systems [4,13], as well as for
continuous-variable quantum systems [5,14]. A great deal
of effort has gone into the analysis and detection of bound
entanglement [15–23], as well as their applications in steer-
ing [24], metrology [25], entanglement activation [26,27],
quantum key distribution [28,29], and nonlocality [30]. In
particular, the reservoir-induced effects on the entanglement
of a bipartite bound entangled state, i.e., the two-photon bound
state, in waveguide QED systems have been studied using
an entanglement-preserving analytical approach [31] and a
first-principles computational approach [32]. It has also been
shown recently that there exist bound entangled states that
can be used for steering [24] and that can even violate a Bell
inequality [30] for discrete-variable systems. These results
disprove a longstanding conjecture known as the Peres conjec-
ture, which states that bound entangled states cannot violate
any Bell inequality [33,34]. For the continuous-variable case,
it has been shown that bound entangled Gaussian states cannot
display steering under Gaussian measurements [35,36]. How-
ever, it is still an open question whether there exist bound en-
tangled Gaussian states that can violate a Bell inequality and
thus can display steering when non-Gaussian measurements
are involved.

We consider continuous-variable entanglement with
Gaussian states which serve as key resources for Gaussian
quantum information processing [37,38]. Gaussian states arise
naturally in quantum optics and are completely characterized
by the first and second moments of canonical operators.
The first moments, i.e., mean, contain no information about
entanglement and can be shifted to zero by local unitaries,
and thus are irrelevant for our purpose. All the information
about entanglement of Gaussian states is contained in the
second moments, i.e., covariance matrix. In this work, we
parametrize a class of 2 × 2 bound entangled Gaussian
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states by characterizing their covariance matrices. Our
parametrization result provides a simple and accurate way to
obtain examples of bound entangled states. It does not rely on
numerical computation that may be significantly affected by
rounding errors. In addition, for a particular bound entangled
state, we propose an experimental protocol for preparing it in
quantum optics. We also investigate the robustness properties
of this protocol with respect to the occupation number of
thermal inputs and the parameters of squeezing components.
Though we consider the preparation of only one particular
state in this work, the method we use here can be applied
to any other bound entangled Gaussian state to obtain a
corresponding preparation scheme.

The experimental preparation and verification of
continuous-variable bound entanglement has been conducted
in quantum optics [18]. It is known that continuous-variable
bound entanglement is a rare phenomenon [39]. It is possible
that a bound entangled state has both free entangled and
separable states very nearby. The experimental preparation
of bound entanglement generally requires a high-precision
control over the system parameters and hence is difficult
to implement. On the other hand, the verification of bound
entanglement in the laboratory is also a challenging task
since the entanglement and PPT tests are sometimes very
sensitive to experimental errors and certification requires
a very careful analysis of the experimental data. Different
from the generating scheme introduced in Ref. [18], we study
the preparation of bound entanglement using an analytical
method. We first perform some decompositions (specifically,
thermal decomposition of a covariance matrix [40] and
Euler decomposition of a canonical unitary [41,42]) on a
particular bound entangled state. These decompositions are
then translated into an optical network with input fields such
that the target bound entangled state is generated. All of these
procedures are completed analytically. This purely analytical
treatment allows us to have a more precise understanding
of how bound entanglement is generated in quantum optics.
In addition, the scheme presented in this work allows us
to further investigate the robustness of bound entanglement
preparation by varying some parameters in the optical system
and pinpoint a region in the parameter space such that bound
entanglement can exist.

II. BOUND ENTANGLED GAUSSIAN STATES

Let us consider a bosonic system of n modes. Each
mode is characterized by a pair of quadrature field oper-
ators {q̂k, p̂k}n

k=1 (position and momentum operators). We
arrange the operators q̂k and p̂k in a vector of operators X̂ =
(q̂1, p̂1, . . . , q̂n, p̂n)T . The canonical commutation relations
for X̂k take the form (with h̄ = 1)

[X̂ j, X̂k] = iσ jk, (1)

where σ jk is the generic entry of the 2n × 2n symplectic ma-
trix σ = ⊕n

k=1 ( 0 1
−1 0). We introduce the Weyl displacement

operator Wξ = exp(iX̂ T σξ ), with ξ ∈ R2n. Then an arbitrary
continuous-variable quantum state ρ can be fully described
in terms of its symmetrically ordered characteristic function
χ defined by χ (ξ ) = tr(ρWξ ). Gaussian states are bosonic

states with a Gaussian characteristic function. Gaussian states
are completely characterized by the first two moments of the
canonical operators X̂k . The first moment is called the mean
value, which is defined as the vector X̄ := 〈X̂ 〉 with X̄k =
tr(ρX̂k ). The second moment is called the covariance matrix
γ , whose arbitrary element is defined by γ jk = 〈�X̂ j�X̂k +
�X̂k�X̂ j〉, where �X̂ j := X̂ j − 〈X̂ j〉. The covariance matrix γ

is a 2n × 2n real and symmetric matrix which must satisfy the
uncertainty principle [43]

γ + iσ � 0. (2)

This matrix inequality is also a sufficient condition for a real
symmetric matrix γ to represent the covariance matrix of a
Gaussian state. That is, for every real symmetric matrix γ

satisfying the inequality (2), there exists a Gaussian state with
just this γ as its covariance matrix. The matrix inequality (2)
implies γ > 0.

Suppose we have two bosonic systems A with n modes and
B with m modes and the quantum state of the global bipartite
system A + B is in a Gaussian state. By definition, a quantum
state of a bipartite system is separable if its total density
operator can be expressed as a convex sum of product states
ρ = ∑

k ηkρk,A ⊗ ρk,B, where ηk � 0 and
∑

k ηk = 1 [44]. A
state is called entangled if it is not separable. For Gaussian
states, all of the entanglement properties are contained in
the covariance matrices γ . It was shown in Ref. [5] that a
Gaussian state is separable if and only if there exist two real
symmetric matrices γA � iσA and γB � iσB such that

γ � γA ⊕ γB. (3)

The necessary and sufficient condition (3) can be further
simplified as γ � γA ⊕ iσB [12]. Although the condition (3)
is very useful in demonstrating that some particular quantum
states are entangled [5,45,46], it cannot be directly applied to
an arbitrary state, since the analytical determination of γA,B is
in general not possible.

In Ref. [5] it was also shown that a Gaussian state has a
positive partial transpose if and only if

γ + iσ̃ � 0, (4)

where σ̃ = (−σA)
⊕

σB. Recall that the PPT criterion pro-
vides a necessary condition for separability. If a Gaussian
state is separable, then it must have a PPT covariance matrix
γ satisfying (4). However, the converse is in general not
true. There exist nonseparable Gaussian states with a PPT
covariance matrix. This type of Gaussian state is known as
a bound entangled Gaussian state. For continuous-variable
quantum systems, the 2 × 2 case is the simplest case in which
bound entanglement exists. A particular example of a 2 × 2
bound entangled Gaussian state can be found in Ref. [5].
Now we attempt to generalize this example and provide a
parametrization of a class of 2 × 2 bound entangled Gaussian
states [45].

In order to identify a bound entangled state, we have to
analyze its PPT property and its inseparability. In general,
the PPT property is easy to evaluate since we only need to
check if the inequality (4) holds. The inseparability is a little
more involved to evaluate, though there exist some useful
techniques to determine whether a given state is separable or
not (see, e.g., Refs. [45,46]). In this paper, following Ref. [5],
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we focus on the special class of so-called minimal PPT
covariance matrices. This type of covariance matrix has a nice
property: As long as γ is non-block-diagonal, it is guaranteed
to be entangled. Thus our main task is to construct a class of
minimal PPT covariance matrices that are not block diagonal.
Such covariance matrices satisfy the PPT criterion but are
entangled, and hence correspond to bound entangled states.
A more detailed analysis is given below. First combining the
conditions (2) and (4), we see that a real symmetric matrix
γ is a PPT covariance matrix if and only if γ + iσ � 0 and
γ + iσ̃ � 0. By definition, a PPT covariance matrix γ is said
to be minimal if any PPT covariance matrix γ ′ satisfying
γ ′ � γ must be equal to γ [5]. Furthermore, if a minimal PPT
covariance matrix γ is separable, then we have γ � γA ⊕ γB

using the condition (3). Since γ is already minimal as we
assumed, γ = γA ⊕ γB. On the other hand, if a minimal PPT
covariance matrix γ has the form of a direct sum γ = γA ⊕
γB, then it must be separable using the condition (3). Thus we
conclude that a minimal PPT covariance matrix γ is separable
if and only if it is a direct sum, i.e., γ = γA ⊕ γB, where γA

and γB correspond to pure states. In the following, we aim
to construct a class of minimal PPT covariance matrices that
are not block diagonal. As discussed above, such covariance
matrices satisfy the PPT criterion but are entangled, and hence
correspond to bound entangled states. We note that a PPT
covariance matrix γ is minimal if and only if γ + iσ and
γ + iσ̃ do not majorize a common nonzero real symmetric
positive-semidefinite matrix; that is, there is no real vector
ζ 	= 0 that is in the column space of both matrices: γ + iσ
and γ + iσ̃ . This is the case if and only if the PPT covariance
matrix γ satisfies range(γ + σγ −1σ ) ∩ range(γ + σ̃ γ −1σ̃ )
= {0}.

Motivated by the bound entangled state example proposed
in Ref. [5], we consider a covariance matrix of the form

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ11 0 0 0 γ15 0 0 0
0 γ22 0 0 0 0 0 γ28

0 0 γ33 0 0 0 γ37 0
0 0 0 γ44 0 γ46 0 0

γ15 0 0 0 γ55 0 0 0
0 0 0 γ46 0 γ66 0 0
0 0 γ37 0 0 0 γ77 0
0 γ28 0 0 0 0 0 γ88

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

This matrix γ has a relatively simple form with no cor-
relations between position and momentum operators, but it
still can exhibit bound entanglement as we will show. A
direct calculation shows that any matrix γ of the form (5)
commutes with a diagonal matrix 	 with diagonal elements
(1, 1,−1,−1, 1,−1,−1, 1), that is, 	γ = γ	, as well as
	σ = −σ̃	. Thus γ + iσ and γ − iσ̃ = 	(γ + iσ )	 are
unitarily similar. In this case, γ is a PPT covariance matrix
if and only if γ + iσ � 0, which is equivalent to the positive

semidefiniteness of ( γ σ

σ� γ
) � 0. By the Schur complement,

this is further equivalent to γ > 0 and γ + σγ −1σ � 0. To
simplify analysis, it is useful to introduce a permutation

matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using P as a permutation matrix, we find that σ ′ := PσPT =
( 0 I
−I 0

) and γ ′ := Pγ PT = γ ′
1 ⊕ γ ′

2, where

γ ′
1 =

⎛
⎜⎝

γ11 0 γ15 0
0 γ33 0 γ37

γ15 0 γ55 0
0 γ37 0 γ77

⎞
⎟⎠,

γ ′
2 =

⎛
⎜⎝

γ22 0 0 γ28

0 γ44 γ46 0
0 γ46 γ66 0

γ28 0 0 γ88

⎞
⎟⎠.

Thus, it suffices to check γ ′ > 0 and γ ′ + σ ′γ ′−1σ ′ � 0. This
happens if and only if γ ′

2 > 0 and γ ′
1 − γ ′−1

2 � 0.
On the other hand, we want γ to be a minimal PPT covari-

ance matrix. This happens if range(γ + σγ −1σ ) ∩ range(γ +
σ̃ γ −1σ̃ ) = {0}. Further analysis shows that γ is a minimal
PPT covariance matrix if rank(γ + σγ −1σ, γ + σ̃ γ −1σ̃ ) =
rank(γ + σγ −1σ ) + rank(γ + σ̃ γ −1σ̃ ) [47]. In order for γ to
correspond to an entangled state, we assume γ15 	= 0, γ28 	= 0,
γ37 	= 0, and γ46 	= 0 such that γ is of a non-block-diagonal
form. In this case, it can be shown that rank(γ + σγ −1σ, γ +
σ̃ γ −1σ̃ ) = 8. Since

rank(γ + σγ −1σ ) = rank

[(
γ σ

σ� γ

)]
− 8

= 2 rank(γ+iσ )−8

= 2 rank(γ+iσ̃ )−8

= rank

[(
γ σ̃

σ̃� γ

)]
− 8

= rank(γ + σ̃ γ −1σ̃ ),

we obtain rank(γ + σγ −1σ ) = rank(γ + σ̃ γ −1σ̃ ) = 4. It
follows that rank(γ ′ + σ ′γ ′−1σ ′) = 4, that is, rank(γ ′

1 −
γ ′−1

2 ) + rank(γ ′
2 − γ ′−1

1 ) = 4. Since γ ′
2 − γ ′−1

1 = γ ′
2(γ ′

1 −
γ ′−1

2 )γ ′−1
1 , we have rank(γ ′

2 − γ ′−1
1 ) = rank(γ ′

1 − γ ′−1
2 ) = 2.

Since γ ′
1 − γ ′−1

2 � 0, we take

γ ′
1 − γ ′−1

2 =

⎛
⎜⎝

γ11 0 γ15 0
0 γ33 0 γ37

γ15 0 γ55 0
0 γ37 0 γ77

⎞
⎟⎠

−

⎛
⎜⎝

d11 0 0 d14

0 d22 d23 0
0 d23 d33 0

d14 0 0 d44

⎞
⎟⎠

=

⎛
⎜⎝

β1α1 α1

α2 −β1α2

β2α3 α3

α4 −β2α4

⎞
⎟⎠

⎛
⎜⎝

β1α1 α1

α2 −β1α2

β2α3 α3

α4 −β2α4

⎞
⎟⎠

T

.
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We take d14 = (β2 − β1)α1α4, d23 = (β1 − β2)α2α3, d11 =
α5, d22 = α6, d33 = (β1 − β2)2α2

2α
2
3 (1 + α7)/α6, and d44 =

(β2 − β1)2α2
1α

2
4 (1 + α8)/α5. Here, in order for γ to be posi-

tive definite, we require β1 	= β2, β1β2 	= −1, α1 	= 0, α2 	= 0,
α3 	= 0, α4 	= 0, α5 > 0, α6 > 0, α7 > 0, and α8 > 0. Then a
direct calculation yields

γ11 = α5 + (
1 + β2

1

)
α2

1, (6)

γ22 = 1 + α8

α5α8
, (7)

γ33 = α6 + (
1 + β2

1

)
α2

2, (8)

γ44 = 1 + α7

α6α7
, (9)

γ55 = (β1 − β2)2α2
2α

2
3 (1 + α7)/α6 + (

1 + β2
2

)
α2

3, (10)

γ66 = α6

α7(β1 − β2)2α2
2α

2
3

, (11)

γ77 = (β2 − β1)2α2
1α

2
4 (1 + α8)/α5 + (

1 + β2
2

)
α2

4, (12)

γ88 = α5

α8(β2 − β1)2α2
1α

2
4

, (13)

γ15 = (1 + β1β2)α1α3, (14)

γ28 = 1

(β1 − β2)α1α4α8
, (15)

γ37 = (1 + β1β2)α2α4, (16)

γ46 = 1

(β2 − β1)α2α3α7
. (17)

Theorem 1. For any real β1 	= β2, β1β2 	= −1, α1 	= 0,
α2 	= 0, α3 	= 0, α4 	= 0, α5 > 0, α6 > 0, α7 > 0, and α8 > 0,
a matrix of the form (5) with entries determined by Eqs. (6)–
(17) always corresponds to a 2 × 2 bound entangled Gaussian
state.

A. Examples of bound entangled states

We construct four examples of 2 × 2 bound entangled
Gaussian states according to the parametrization described in
Theorem 1. The first example is already shown in Ref. [5].
It is demonstrated that this bound entangled state can also be
obtained using the parametrization above.

1. Example 1

Choosing β1 = 1, β2 = 2, α1 = −α2 = α3 = α4 =
√

3
3 ,

α5 = α6 = 4
3 , and α7 = α8 = 3, the resulting covariance ma-

trix calculated from Eqs. (6)–(17) is

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 1 0 0 0
0 1 0 0 0 0 0 −1
0 0 2 0 0 0 −1 0
0 0 0 1 0 −1 0 0
1 0 0 0 2 0 0 0
0 0 0 −1 0 4 0 0
0 0 −1 0 0 0 2 0
0 −1 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

2. Example 2

Choosing β1 = 1, β2 = 3, α1 = α2 = α3 = α4 =
√

2
2 , and

α5 = α6 = α7 = α8 = 1, the resulting covariance matrix cal-
culated from Eqs. (6)–(17) is

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 2 0 0 0
0 2 0 0 0 0 0 −1
0 0 2 0 0 0 2 0
0 0 0 2 0 1 0 0
2 0 0 0 7 0 0 0
0 0 0 1 0 1 0 0
0 0 2 0 0 0 7 0
0 −1 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

3. Example 3

Choosing β1 = 1
3 , β2 = 1

2 , α1 = α2 = 3
2 , α3 = α4 = 4, and

α5 = α6 = α7 = α8 = 1
2 , the resulting covariance matrix cal-

culated from Eqs. (6)–(17) is

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 7 0 0 0
0 6 0 0 0 0 0 −2
0 0 3 0 0 0 7 0
0 0 0 6 0 2 0 0
7 0 0 0 23 0 0 0
0 0 0 2 0 1 0 0
0 0 7 0 0 0 23 0
0 −2 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

4. Example 4

Choosing β1 = −√
2, β2 = 2

√
2, α1 = 1

2 , α2 = −
√

2
2 ,

α3 = 1
3 , α4 = −

√
2

2 , α5 = 1, α6 = 3, α7 = 2, and α8 = 2
9 , the

resulting covariance matrix calculated from Eqs. (6)–(17) is

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
4 0 0 0 − 1

2 0 0 0
0 11

2 0 0 0 0 0 3
0 0 9

2 0 0 0 − 3
2 0

0 0 0 1
2 0 − 1

2 0 0
− 1

2 0 0 0 2 0 0 0
0 0 0 − 1

2 0 3
2 0 0

0 0 − 3
2 0 0 0 29

4 0
0 3 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

The covariance matrices (18)–(21) are all 2 × 2 bound entan-
gled states. In particular, the covariance matrix (21) cannot
be constructed using the method developed in Ref. [5]. This
is because the matrix (21) does not commutate with the
skew symmetric matrix R with R13 = R24 = R75 = R86 = 1
and zero remaining entries as defined in Ref. [5].

B. Preparation of the bound entangled state (18)

We propose an experimental protocol for generating the
bound entangled state with covariance matrix (18). According
to Williamson’s theorem [40], the covariance matrix (18) can
be diagonalized through a symplectic transformation. It is
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found that γ = SDST , where D = diag(1, 1, 1, 1, 3, 3, 3, 3) contains the symplectic eigenvalues of γ and the symplectic matrix
S satisfies SσST = σ and is given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 s12 0 s14 0 s16 0 s18

s21 0 s23 0 s25 0 s27 0
0 s14 0 −s12 0 s18 0 −s16

s23 0 −s21 0 s27 0 −s25 0
0 s52 0 s54 0 s56 0 s58

s83 0 −s81 0 s87 0 −s85 0
0 −s54 0 s52 0 −s58 0 s56

s81 0 s83 0 s85 0 s87 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

with

s12 = (−√
13 − 3)

√
5 + √

13 + (3 − √
13)

√
5 − √

13

8
√

13
,

s14 = (
√

39 + 4
√

3)
√

5 + √
13 + (

√
39 − 4

√
3)

√
5 − √

13

12
√

13
,

s16 = (
√

39 + 3
√

3)
√

5 + √
13 + (

√
39 − 3

√
3)

√
5 − √

13

8
√

7
√

13
,

s18 = (4 − √
13)

√
5 + √

13 − (4 + √
13)

√
5 − √

13

4
√

7
√

13
,

s21 = (
√

39 − 3
√

3)
√

5 + √
13 + (

√
39 + 3

√
3)

√
5 − √

13

8
√

13
,

s23 = (4 − √
13)

√
5 + √

13 − (4 + √
13)

√
5 − √

13

4
√

13
,

s25 = (3 − √
13)

√
5 + √

13 − (3 + √
13)

√
5 − √

13

8
√

7
√

13
,

s27 = (
√

13 + 4)
√

5 + √
13 + (

√
13 − 4)

√
5 − √

13

4
√

3
√

7
√

13
,

s52 = (
√

39 + √
3)

√
5 + √

13 + (
√

39 − √
3)

√
5 − √

13

24
√

13
,

s54 =
√

5 + √
13 −

√
5 − √

13

4
√

13
,

s56 = (7
√

13 − 25)
√

5 + √
13 + (7

√
13 + 25)

√
5 − √

13

8
√

7
√

13
,

s58 = −√
3
√

5 + √
13 + √

3
√

5 − √
13

4
√

7
√

13
,

s81 = −√
3
√

5 + √
13 + √

3
√

5 − √
13

4
√

13
,

s83 = (−1 + √
13)

√
5 + √

13 + (1 + √
13)

√
5 − √

13

−8
√

13
,

s85 =
√

5 + √
13 −

√
5 − √

13

4
√

7
√

13
,

s87 = (−25 − 7
√

13)
√

5 + √
13 + (25 − 7

√
13)

√
5 − √

13

8
√

3
√

7
√

13
.

Here the symplectic eigenvalues of γ can also be computed
from the standard eigenspectrum of the matrix iσγ . Using
the Euler decomposition [41,42], the symplectic matrix S in
Eq. (22) can be further decomposed as

S = K

[
4⊕

k=1

S(rk )

]
L, (23)

where K and L are symplectic and orthogonal matrices that
correspond to passive canonical unitaries, i.e., the ones that
preserve the average photon number of the input state, while
S(r1), . . . , S(r4) is a set of one-mode squeezing matrices. We
find

S(r1) = S(r2) = S(r3) = S(r4) =
(√

17+1
4 0

0
√

17−1
4

)
. (24)

The values of the matrices K and L can be found in Ap-
pendix A. Therefore, the bound entangled Gaussian state γ

in Eq. (18) can be decomposed as

γ = K

[
4⊕

k=1

S(rk )

]
LDLT

[
4⊕

k=1

S(rk )

]
KT . (25)

Thus the bound entangled Gaussian state (18) can be prepared
beginning with an initial product state corresponding to the di-
agonal matrix D and then applying a multiport interferometer
L, a parallel set of single-mode squeezers S(rk ), and finally
a multiport interferometer K . The transformations described
by the multiport interferometers L and K can be implemented
using a network of beam splitters and phase shifters [48,49]
(see Appendix B for details).

Combining the above analysis, the experimental protocol
for preparing the bound entangled Gaussian state (18) is
depicted in Fig. 1. The input fields â1 and â2 are in the vacuum
state, while other two input fields â3 and â4 are in the thermal
state with covariance matrix 3I , i.e., the average photon
number is n̄ = 1. By applying a multiport interferometer L,
a parallel set of single-mode squeezers S(rk ), and finally a
multiport interferometer K , the Gaussian state obtained at the
output (d̂1, . . . , d̂4) has the covariance matrix (18) and is a
bound entangled state with respect to the bipartite splitting
such that Alice possesses modes {d̂1, d̂2} and Bob possesses
modes {d̂3, d̂4}.

C. Bound entanglement region

Consider the optical system depicted in Fig. 1. We fix
the passive unitaries L and K , i.e., the corresponding beam
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FIG. 1. Diagram for preparation of the bound entangled
Gaussian state (18). The initial states â1 and â2 are in a vacuum state
while the other two optical modes â3 and â4 are in a thermal state
with covariance matrix 3I (i.e., the average photon number of the
thermal field is n̄ = 1). The unitary multiport interferometers L and
K are realized via a network of beam splitters and phase shifters. The
transmittance and reflectance of the beam splitters A1, . . . , A4 and
B1, . . . , B4 are determined by the corresponding unitary transforma-
tions (see Appendix B for details). The box labeled −π/2 (π/2) rep-
resents the relative phase shift â → iâ (−iâ). Here S(r1), . . . , S(r4)
is a set of single-mode squeezers as described by Eq. (24). The
output Gaussian state (d̂1, . . . , d̂4) has the covariance matrix (18)
and is a bound entangled state with respect to the bipartite splitting
such that Alice possesses modes {d̂1, d̂2} and Bob possesses modes
{d̂3, d̂4}.

splitters and phase shifters implementing L and K remain
unchanged. Also, we fix the optical inputs â1 and â2 which
remain in the vacuum. Suppose the other optical inputs â3

and â4 are in the same thermal state with covariance matrix
(2n̄ + 1)I , where n̄ is the average photon number. Suppose the
squeezers S(r1), . . . , S(r4) between L and K realize the same
symplectic transformation, that is, S(r1) = S(r2) = S(r3) =
S(r4) = (e−r 0

0 er ), where r ∈ R is the squeezing parameter.

As discussed before, if κ := 2n̄ + 1 = 3 and τ := e−r =
(
√

17 + 1)/4, the state produced at the output has the co-
variance matrix (18) and is bound entangled with respect to
the bipartition {{{{d̂1, d̂2}, {d̂3, d̂4}}}}. Now we vary the thermal
inputs n̄ and the squeezing parameter r such that we can
obtain different Gaussian states at the output. The entan-
glement properties of these output states can be determined
from their covariance matrices via solving a semidefinite
programming problem. The results are shown in Fig. 2. As
can be seen in Fig. 2, without the presence of squeezing, no
entanglement can be generated. If we add a small amount
of squeezing, the output state should be bound entangled.
However, if we continue to increase the amount of squeezing,
the output state should eventually enter a region of free
entanglement.

III. CONCLUSION

We have parametrized a class of 2 × 2 bound entangled
Gaussian states. For a particular bound entangled state, we
have presented an experimental protocol for generating it in
quantum optics. Though we have discussed the preparation
of the bound entangled state in only Eq. (18), the method

1 2 3 4 5 61.5 2.5 3.5 4.5 5.5

1.1

1.2

1.3

1.4

1.5

1.1079

1.1837
1.2389

1.3134
1.33961.3610

1.37891.3940
1.4070

Bound entanglement

Free entanglement

1

1.6 1.5770

FIG. 2. Bound entanglement region obtained from the system
described in Fig. 1 by varying the thermal inputs and the squeezing
components. The shaded region corresponds to the bound entangled
states with respect to the bipartition {{{{d̂1, d̂2}, {d̂3, d̂4}}}}. The point
marked with a red star corresponds to the bound entangled state
(18) which is generated when κ = 3 and τ = (

√
17 + 1)/4. It lies

on the boundary between bound and free entangled states. As the
average photon number n̄ increases, the boundary curve between
the bound and free entanglement regions approaches a horizontal
asymptote τ = 1.5770 (marked by a dotted blue line). Thus, when
the squeezing parameter r satisfies e−r > 1.5770, we will always
obtain free entanglement at the output no matter how large the value
of n̄.

we have used can be applied to any other bound entangled
state to obtain a corresponding experimental protocol. Our
method involves performing some decompositions on the
covariance matrix γ . Then these decomposition results are
translated into an optical network of beam splitters and single-
mode squeezers such that the target state can be generated.
Clearly, for different bound entangled states, the correspond-
ing experimental protocols may involve a different number
of beam splitters and squeezers, and the parameters of these
components can also be different. It is interesting to extend
the result developed in this paper to continuous-variable
multipartite bound entangled states, which may serve as a
useful resource for multiparty quantum communication such
as remote information concentration [50], secure quantum
key distribution [28,29], and superactivation [51]. We be-
lieve the results we present here may contribute to a deeper
understanding of entanglement in the continuous-variable
domain.
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APPENDIX A: MATRICES K AND L

The unitary matrices K and L appearing in Eq. (23) are given, respectively, by

K = 1√
17 − 3

√
17

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 −
√

17−3
2 0 −

√
17−3
2

0 2 0 0
√

17−3
2 0

√
17−3
2 0

0 0 2 0 0 −
√

17−3
2 0

√
17−3
2

0 0 0 2
√

17−3
2 0 −

√
17−3
2 0√

17−3
2 0

√
17−3
2 0 0 2 0 0

0
√

17−3
2 0

√
17−3
2 −2 0 0 0√

17−3
2 0 −

√
17−3
2 0 0 0 0 2

0
√

17−3
2 0 −

√
17−3
2 0 0 −2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L = 1√
17 − 3

√
17

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 l12 0 l14 0 l16 0 l18

−l12 0 −l14 0 −l16 0 −l18 0
0 l14 0 −l12 0 l18 0 −l16

−l14 0 l12 0 −l18 0 l16 0
l51 0 l53 0 l55 0 l57 0
0 l51 0 l53 0 l55 0 l57

−l53 0 l51 0 −l57 0 l55 0
0 −l53 0 l51 0 −l57 0 l55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

l12 = [−(21 + 3
√

17) + 3(1 − √
17)

√
13 + (5 − √

17)
√

39 + (5 − √
17)

√
3]

√
5 + √

13

48
√

13

+ [(21 + 3
√

17) + 3(1 − √
17)

√
13 + (5 − √

17)
√

39 − (5 − √
17)

√
3]

√
5 − √

13

48
√

13
,

l14 = [(30 − 6
√

17) + (3 + √
17)

√
39 + (7

√
17 − 3)

√
3]

√
5 + √

13

48
√

13

+ [−(30 − 6
√

17) + (3 + √
17)

√
39 − (7

√
17 − 3)

√
3]

√
5 − √

13

48
√

13
,

l16 = [(35 − 7
√

17)
√

13 − (125 − 25
√

17) + (
√

17 − 1)
√

39 + (7 + √
17)

√
3]

√
5 + √

13

16
√

7
√

13

+ [(35 − 7
√

17)
√

13 + (125 − 25
√

17) + (
√

17 − 1)
√

39 − (7 + √
17)

√
3]

√
5 − √

13

16
√

7
√

13
,

l18 = [(37 − 9
√

17)
√

13 + (33
√

17 − 133) + (2
√

17 − 10)
√

3]
√

5 + √
13

16
√

7
√

13

+ [(37 − 9
√

17)
√

13 + (133 − 33
√

17) + (10 − 2
√

17)
√

3]
√

5 − √
13

16
√

7
√

13
,

l51 = [(4
√

17 − 12)
√

39 + (10
√

17 − 54)
√

3 + (63 − 9
√

17) + (21 − 3
√

17)
√

13]
√

5 + √
13

96
√

13

+ [(4
√

17 − 12)
√

39 − (10
√

17 − 54)
√

3 − (63 − 9
√

17) + (21 − 3
√

17)
√

13]
√

5 − √
13

96
√

13
,

l53 = [(21
√

17 − 51) + (3
√

17 − 21)
√

13 + (2
√

17 − 14)
√

39 + (8
√

17 − 56)
√

3]
√

5 + √
13

96
√

13

+ [(−21
√

17 + 51) + (3
√

17 − 21)
√

13 + (2
√

17 − 14)
√

39 − (8
√

17 − 56)
√

3]
√

5 − √
13

96
√

13
,
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l55 = [−(106 + 42
√

17) + (12
√

17 + 28)
√

13 + (
√

17 − 7)
√

39 + (3
√

17 − 21)
√

3]
√

5 + √
13

32
√

7
√

13

+ [(106 + 42
√

17) + (28 + 12
√

17)
√

13 + (21 − 3
√

17)
√

3 + (
√

17 − 7)
√

39]
√

5 − √
13

32
√

7
√

13
,

l57 = [(−56 + 8
√

17) + (14 − 2
√

17)
√

13 + (7 − √
17)

√
39 + (17 − 7

√
17)

√
3]

√
5 + √

13

32
√

7
√

13

+ [(56 − 8
√

17) + (14 − 2
√

17)
√

13 + (7 − √
17)

√
39 − (17 − 7

√
17)

√
3]

√
5 − √

13

32
√

7
√

13
.

APPENDIX B: REALIZATION OF THE TRANSFORMATIONS L AND K

The input-output relations described by L and K can be written, respectively, as

⎛
⎜⎜⎝

b̂1

b̂2

b̂3

b̂4

⎞
⎟⎟⎠ = 1√

17 − 3
√

17

⎛
⎜⎝

−il12 −il14 −il16 −il18

−il14 il12 −il18 il16

l51 l53 l55 l57

−l53 l51 −l57 l55

⎞
⎟⎠

⎛
⎜⎝

â1

â2

â3

â4

⎞
⎟⎠,

⎛
⎜⎜⎝

d̂1

d̂2

d̂3

d̂4

⎞
⎟⎟⎠ = 1√

17 − 3
√

17

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0
√

17−3
2 i

√
17−3
2 i

0 2
√

17−3
2 i −

√
17−3
2 i

√
17−3
2

√
17−3
2 −2i 0

√
17−3
2 −

√
17−3
2 0 −2i

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ĉ1

ĉ2

ĉ3

ĉ4

⎞
⎟⎟⎟⎠.

Realization of the multiport interferometer L. By direct calculation, we find

1√
17 − 3

√
17

⎛
⎜⎝

−il12 −il14 −il16 −il18

−il14 il12 −il18 il16

l51 l53 l55 l57

−l53 l51 −l57 l55

⎞
⎟⎠ = A4A3A2A1A0

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠,

where

A0 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 l51l55+l57l53√

(l2
51+l2

53 )(l2
55+l2

57 )

l57l51−l53l55√
(l2

51+l2
53 )(l2

55+l2
57 )

0 0 l53l55−l57l51√
(l2

51+l2
53 )(l2

55+l2
57 )

l51l55+l53l57√
(l2

51+l2
53 )(l2

55+l2
57 )

⎞
⎟⎟⎟⎟⎠, (B1)

A1 = 1√
17 − 3

√
17

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 −i
√

l2
12 + l2

14 0 −i
√

l2
51 + l2

53

0 0 1 0

0 −
√

l2
51 + l2

53 0
√

l2
12 + l2

14

⎞
⎟⎟⎟⎟⎠, (B2)

A2 = 1√
17 − 3

√
17

⎛
⎜⎜⎜⎜⎝

−i
√

l2
12 + l2

14 0 i
√

l2
51 + l2

53 0

0 1 0 0√
l2
51 + l2

53 0
√

l2
12 + l2

14 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (B3)

A3 =

⎛
⎜⎜⎜⎜⎝

l12√
l2
12+l2

14

− l14√
l2
12+l2

14

0 0

l14√
l2
12+l2

14

l12√
l2
12+l2

14

0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠, A4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 l51√

l2
51+l2

53

l53√
l2
51+l2

53

0 0 − l53√
l2
51+l2

53

l51√
l2
51+l2

53

⎞
⎟⎟⎟⎟⎠ (B4)
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are Bogoliubov transformations and can be realized using beam splitters. The matrix⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

implements a π phase shift onto the optical input â2. However, this π phase shift is not relevant in our case since the optical
input field â2 is in the vacuum. Also, the beam splitter A0 is not relevant in our case since it acts on two identical thermal inputs
â3 and â4. It makes no difference whether these two components (the π phase shifter and the beam splitter A0) are added to the
quantum system or not. Therefore, they are removed and do not appear in Fig. 1.

Realization of the multiport interferometer K. By direct calculation we find

1√
17 − 3

√
17

⎛
⎜⎜⎜⎜⎜⎝

2 0
√

17−3
2 i

√
17−3
2 i

0 2
√

17−3
2 i −

√
17−3
2 i

√
17−3
2

√
17−3
2 −2i 0

√
17−3
2 −

√
17−3
2 0 −2i

⎞
⎟⎟⎟⎟⎟⎠ = B4B3B2B1

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎠,

where

B1 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 −
√

2
2

√
2

2

0 0 −
√

2
2 −

√
2

2

⎞
⎟⎟⎟⎠, B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 2√
17−3

√
17

0 −(
√

17−3)√
2
√

17−3
√

17

0 0 1 0

0 (
√

17−3)√
2
√

17−3
√

17
0 2√

17−3
√

17

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B5)

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2√
17−3

√
17

0 −(
√

17−3)√
2
√

17−3
√

17
0

0 1 0 0
(
√

17−3)√
2
√

17−3
√

17
0 2√

17−3
√

17
0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, B4 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0
√

2
2

√
2

2

0 0
√

2
2 −

√
2

2

⎞
⎟⎟⎟⎠ (B6)

are Bogoliubov transformations and can be realized using beam splitters.
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