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We present and demonstrate a high-efficiency and compact
scheme for generating Gaussian-modulated Einstein–
Podolsky–Rosen (EPR) entangled optical fields by injecting
a modulated signal field into a non-degenerate optical para-
metric amplifier (NOPA). We perform a quantum analysis
of the scheme and derive the variance of the output signal
(idler) mode and the quantum entanglement between the
signal and idler modes from the NOPA. An experimental
study is presented with different Gaussian modulation
depths, showing that the modulation of the injected signal
field successfully enlarges the distribution of the field quad-
ratures of the EPR source in phase space and has a negli-
gible effect on the entanglement quality. The experimental
observations have good agreement with the theoretical
analysis. Our scheme can be used readily in continuous var-
iable quantum key distribution protocol. © 2019 Optical
Society of America

https://doi.org/10.1364/OL.44.003613

Quantum key distribution (QKD) promises the information
theoretical security of the sharing key between legitimate parties,
when combined with one-time-pad encryption, providing a
powerful solution to the issues of secure communication.
QKD encodes key information on the quantum state, and its
security relies on the fundamental laws of quantum mechanics;
thus, any eavesdropping, in principle, can be detected. Since the
invention of the first QKD protocol, the BB84 protocol, great
progress has been made on both the theoretical and experimental
fronts, and the various field tests have also been implemented
[1,2]. The continuous variable (CV) QKD technique [3–9]
can exploit standard telecommunication technology and has a
high secret key rate at the metropolitan area due to the encoding
on the multi-photon and high-dimensional quantum state.

In conventional coherent-state CV-QKD, the excess noise
level severely limits the performance of the system [10].
Recently, it has been shown that the modulated entangled-state
protocol can significantly enhance the system’s robustness to
the excess noise and, hence, improve the transmission distance

and secret rate [11,12]. To realize this protocol, the preparation
of Gaussian-modulated Einstein–Podolsky–Rosen (EPR) en-
tangled states is an essential prerequisite. The straightforward
way of modulating the states is to modulate one beam of the
EPR state directly using an amplitude modulator (AM) and a
phase modulator (PM). However, this approach will inevitably
deteriorate the entanglement characteristics of the EPR states
due to the inserted loss of the modulator, which can be over
4 dB for typical waveguide electro-optic modulators currently
widely used in the high-speed optical communication field. To
overcome this limit, one can alternatively interfere one beam of
the entangled fields with an auxiliary modulated beam at a
highly non-symmetrical beam splitter [12]. In this case, the
entanglement quality remains almost intact at the expense of
a complex phase-locking technique and extra equipment.

In this Letter, we present the use of a signal-field-injected
non-degenerate optical parametric amplifier (NOPA) to pre-
pare the Gaussian-modulated EPR entangled states, in which
the modulation signals are directly applied to the injected signal
field. Compared with previous works, our scheme does not re-
quire ancilla beams and sophisticated equipment for phase
locking; moreover, the inserted losses are eliminated essentially.

The schematic of our scheme is depicted in Fig. 1. The
NOPA system consists of three cavity modes that interact

Fig. 1. Conceptual diagram of Gaussian-modulated entangled states
protocol. a0, a1 (a2), and b are the pump, signal (idler), and vacuum
fields, respectively. c1 denotes the modulation signal. γ0, γt1 � γl1, and
γt2 � γl2 represent the dissipation rates of the cavity modes, i.e., the
pump, signal, and idler fields, respectively. Subscript t (l ) denotes the
dissipation arising from the output coupler (intracavity losses).
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inside the nonlinear media, pump mode a0, signal mode a1,
and idler mode a1 with angular frequencies of ω0, ω1, and
ω2, respectively. We assume that the pump field ain0 is a strong
coherent field, and a weak signal field ain1 with Gaussian modu-
lation c1 is injected into the NOPA. Without loss of generality,
the pump field ain0 is treated as real, and the injected signal field
has a relative phase shift φ so that ain1 � jain1 jeiφ. Assuming all
three fields are resonant with the cavity, the corresponding
quantum Langevin equations can be written as

da0∕d t � −γ0a0 − χa1a2 �
ffiffiffiffiffiffiffi
2γ0

p
ain0 ,

da1∕d t � −γ1a1 � χa0a
†
2 �

ffiffiffiffiffiffiffiffi
2γt1

p
�ain1 � c1� �

ffiffiffiffiffiffiffiffi
2γl1

p
b1,

da2∕d t � −γ2a2 � χa0a
†
1 �

ffiffiffiffiffiffiffiffi
2γt2

p
bin2 �

ffiffiffiffiffiffiffiffi
2γl2

p
b2, (1)

where γj � γtj � γl j�j � 0, 1, 2� represent the dissipation rates
of the cavity modes, and subscript t (l ) denotes the dissipation
arising from the output coupler (intracavity losses); χ denotes
the nonlinear coupling constant; ain1 (b

in
2 ) represents the input

mode of the signal (idler, vacuum state hereafter); b1 (b2) rep-
resents the intracavity loss of the signal (idler) mode; and c1 is
the classical modulation signal.

We introduce the fluctuation quadrature operators for the
pump, signal, and idler modes as

δX j � �e−iθjδaj � eiθjδa†j �, δY j � i�eiθjδa†j − e−iθjδaj�,
(2)

where θ0 � 0, θ1 � φ and θ2 � −φ. δX j and δY j are the fluc-
tuation of the amplitude and phase quadrature, respectively.
With standard linearization and applying Fourier transforma-
tion to Eq. (1), the linearized quantum Langevin equations for
the fluctuation quadrature operators can be obtained:

δX 1�Ω��−

(
�γ2�iΩ�� ffiffiffiffiffiffiffiffi

2γt1
p �δX c1�δX a1in��

ffiffiffiffiffiffiffiffi
2γl1

p
δX b1

�
�χα0

� ffiffiffiffiffiffiffiffi
2γt2

p
δX b2in�

ffiffiffiffiffiffiffiffi
2γl2

p
δX b2

�
)

×�α20χ2−�γ1�iΩ��γ2�iΩ��−1,

δY 1�Ω��−

(
�γ2�iΩ�� ffiffiffiffiffiffiffiffi

2γt1
p �δY c1�δY a1in��

ffiffiffiffiffiffiffiffi
2γl1

p
δY b1

�
−χα0

� ffiffiffiffiffiffiffiffi
2γt2

p
δY b2in�

ffiffiffiffiffiffiffiffi
2γl2

p
δY b2

�
)

×�α20χ2−�γ1�iΩ��γ2�iΩ��−1,

δX 2�Ω��−

(
�γ1�iΩ�� ffiffiffiffiffiffiffiffi

2γt2
p

δX b2in�
ffiffiffiffiffiffiffiffi
2γl2

p
δX b2

�
�χα0

� ffiffiffiffiffiffiffiffi
2γt1

p �δX c1�δX a1in��
ffiffiffiffiffiffiffiffi
2γl1

p
δX b1

�
)

×�α20χ2−�γ1�iΩ��γ2�iΩ��−1,

δY 2�Ω��−

(
�γ2�iΩ�� ffiffiffiffiffiffiffiffi

2γt2
p

δY b2in�
ffiffiffiffiffiffiffiffi
2γl2

p
δY b2�−

χα0�
ffiffiffiffiffiffiffiffi
2γt1

p �δY c1�δY a1in��
ffiffiffiffiffiffiffiffi
2γl1

p
δY b1�

)

×�α20χ2−�γ1�iΩ��γ2�iΩ��−1: (3)

To derive Eq. (3), the strong pump is treated as a perfect
monochromatic field with a constant amplitude.

To make a comparison between theoretical predictions and
experimental observations, the fluctuation field operators out-
putted from the cavity should be calculated. We assume that
the seed field is injected from the output coupler of the NOPA.
In this case, using the input-output relations, the output fields
are given by

δX out
1 �Y out

1 ��Ω� �
ffiffiffiffiffiffiffiffi
2γt1

p
δX 1�Y 1��Ω� − δX c1�Y c1��Ω�

� δX b1�Y b1��Ω�,
δX out

2 �Y out
2 ��Ω� �

ffiffiffiffiffiffiffiffi
2γt2

p
δX 2�Y 2��Ω� − δX b2�Y b2��Ω�: (4)

The noise power spectrum of the output field quadratures is
defined as

V X out
j �Y out

j ��Ω� � hδX out
j �Y out

j ��Ω�δX out
j �Y out

j ��−Ω�i: (5)

Taking the detection efficiency of the system into account, the
measured variance of the amplitude (phase) quadrature of the
output fields can be expressed as

V out
X j
�V out

Y j
��Ω� � ηjV X out

j �Y out
j ��Ω� � 1 − ηj, (6)

where ηj � ηj,t × ηj,vis × ηj,pd × ηj,e , ηt is the propagation effi-
ciency, ηvis is the interference efficiency, ηpd is the quantum
efficiency of the photodiodes, and ηe denotes the equivalent
efficiency induced by the electronic noises of the measurement
apparatus.

To characterize the quantum entanglement, we define two
combined field quadratures of the signal and idler modes or,
more precisely, the quantum correlations of the amplitude
quadrature difference δX out

− and the phase quadrature sum
δY out

� :

δX out
− �Ω� � �δX out

1 �Ω� − δX out
2 �Ω��∕

ffiffiffi
2

p
,

δY out
� �Ω� � �δY out

1 �Ω� � δY out
2 �Ω��∕

ffiffiffi
2

p
: (7)

The corresponding quantum correlation spectra of the
combined field quadratures are expressed as

V X out
−
�Ω� � η1γt1V out

X 1
�Ω� � η2γt2V out

X 2
�Ω� � 1� V AM

2
η1

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1η2γt1γt2

p �hδX 1�Ω�δX 2�−Ω�i
� hδX 2�Ω�δX 1�−Ω�i�,

V Y out
� �Ω� � η1γt1V out

Y 1
�Ω� � η2γt2V out

Y 2
�Ω� � 1� V PM

2
η1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1η2γt1γt2

p �hδY 1�Ω�δY 2�−Ω�i
� hδY 2�Ω�δY 1�−Ω�i�: (8)

To derive the variance of the output fields, the quantum cor-
relation spectrum of the input field quadratures that character-
ize the input modulation signal, the input signal (idler) field,
and the vacuum fields induced by the intracavity losses are
required and given by

V X c1
�Ω� � V AM, V Y c1

�Ω� � V PM,

V X ,a1in�Ω� � V Y ,b2in�Ω� � 1: (9)

In our experiment, the entanglement of the signal and idler
optical fields is quantified in terms of the EPR criterion
[13,14], which is a sufficient condition to discriminate quan-
tum entanglement and can be related to the levels of quantum
correlations. The EPR criterion is described by the product of
conditional variances of the conjugate quadratures (X , Y )
between the two optical fields:

V X
2j1V

Y
2j1 < 1, (10)

where V O
2j1 � V O

2 − jhδO2δO1ij2∕V O
1 and O � �X ,Y �.

The experimental setup for generating the Gaussian-modu-
lated entangled states is shown in Fig. 2. A single-frequency
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532 nm laser pumps a ring nonlinear resonator from opposite
directions [15]. The two-color downconverted fields (1550 nm
signal, 810 nm idler) generated above (below) the threshold di-
rection serve as the local oscillator (LO) (signal). The output
fields from the NOPA are separated by two dichroic beam split-
ters, and the resulting 810 nm idler and its LO are detected by a
free-space balanced homodyne detector (BHD). The 1550 nm
signal and its LO are coupled into a single-mode polarization-
maintaining fiber pigtailed 50:50 beam splitter for homodyne
detection, which are anti-reflection-coated at 1550 nm to min-
imize the Fresnel reflection. One portion of the 1550 nm LO is
split and modulated by an AM and a PM, which are driven by
two independent white noises at a sideband frequency of
3.5 MHz with a bandwidth of 500 kHz. The sideband white
noises are generated digitally by mixing 500 kHz bandwidth
white noises with a 3.5 MHz carrier signal and the outputs from
a two-channel data-acquisition card (DAQ). The modulated
beam is then injected into the NOPA to act as the modulated
seed field. The temporal width of each quantum state is 2 μs,
which is determined by the modulation rate of the white noises.

The amplitude (phase) quadratures of the signal and idler
fields are simultaneously detected using their BHDs by setting
the relative phases between the quantum fields and the corre-
sponding LO at 0 (π∕2). The measured two-output electronic
signals are mixed with the 3.5 MHz carrier and filtered using a
low-pass filter with a bandwidth of 500 kHz. The resulting fil-
tered signals are sampled using a two-channel DAQ with sam-
pling rates of 10 MHz/s. For each quantum state, 20 data
points are sampled, which are summed to obtain the quadra-
tures of each quantum state. To keep the measured quadratures
and the modulation signals in phase and synchronized, a radio-
frequency power splitter splits the 3.5 MHz carrier signal into
four identical output carriers, of which two are employed for
the signal modulation, and the rest are used to demodulate the
homodyne signals; meanwhile, all three DAQs share one clock
signal.

Figure 4 shows the observed experimental data of the
amplitude and phase quadratures of the Gaussian-modulated

EPR states. To plot Figs. 4(a) and 4(b), 200,000 quadrature
pairs are used, and the measured quadratures have been nor-
malized to shot noise units (SNUs). It can be seen that positive
correlations between the amplitude quadratures of the EPR
beams exist, whereas negative correlations appear between
the phase quadratures, which is consistent with the features
of the EPR states generated from a NOPA. It is clear that
the Gaussian modulation of the injected seed field significantly
enlarges the variances of the quadratures for each EPR beam,
which confirms the validity of our scheme.

To gain insight into the entanglement characteristics of the
Gaussian-modulated EPR states in Fig. 3, we list the relevant
parameters of the EPR source in Table 1. Here (X , Y ) and
(XM

j , Y M
j ) denote the quadratures of EPR states without

and with the Gaussian modulation, respectively, and V 1 and
V 2 are the variances of the quadratures for the signal and idler
fields, respectively. C21 � hδO2δO1i∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V O

1 V
O
2

p
, O � �X , Y �

denote the quantum correlation coefficients; V 2j1 are the
conditional variances of the field quadratures; and V sq denotes
two-mode squeezing between the signal and idler fields, which
is given by

V sq � 10 log10

�
V 2∕2� V 1∕2 − jC21j

ffiffiffiffiffiffiffiffiffiffiffiffi
V 2V 1

p �
: (11)

When no modulation exists, each of the output signal and idler
fields from the NOPA has a quadrature variance of ∼8 SNUs;
in addition, they are two-mode squeezed with a squeezing level
of 4.9 dB. The inferred product of conditional variances of the
conjugate quadratures is V X

2j1V
Y
2j1 � 0.44, which satisfies the

EPR criterion defined in Eq. (10) and indicates the existence of
the quadrature entanglement. When the signal modulation is
switched on, the quadrature variances increase to approximately
19 SNUs. The two-mode squeezing is reduced to 4.3 dB, and

Fig. 2. Schematic of the experimental setup. NOPA, non-degener-
ate optical parametric amplifier; DBS, dichroic beam splitter; PZT,
piezoelectric transducer; LO, local oscillator; PM, phase modulator;
AM, amplitude modulator; BHD, balanced homodyne detection;
and DAQ, data-acquisition card.

Fig. 3. Observed quadrature correlations. (a) Amplitude quadra-
tures. (b) Phase quadratures. The black points represent the correla-
tions of vacuum states. The blue and red points represent the
quadrature correlations of original and Gaussian-modulated EPR
states, respectively. The quadrature data are normalized to SNUs.

Table 1. Parameters of the EPR Source With and
Without Modulation

V 2 V 1 C 21 V sq V 2j1
X 7.7 8.4 0.96 −4.9 0.67
Y 7.5 8.2 −0.96 −4.9 0.66
XM 18.4 18.7 0.98 −4.3 0.74
Y M 19.3 19.3 −0.98 −4.4 0.73
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the value of V X
2j1V

Y
2j1 increases slightly to 0.54, which indicates

that sufficient quantum entanglement is still maintained.
To analyze the effect of the modulation power on the quality

of the quantum entanglement, the quadratures of the signal and
idler fields are measured by varying the power of the electro-
optic modulation of the seed field. Using the recorded quad-
ratures, the corresponding variances, conditional variances, and
two-mode squeezing are determined straightforwardly, as
shown in Fig. 4. As a comparison, the theoretical predictions
are also plotted using the following experimental parameters:
linewidth of NOPA cavity, 17 MHz; sideband frequency,
3.5 MHz; detection efficiency of signal (idler), 0.81 (0.85); ra-
tio of pump power and threshold power, 0.6; and escape effi-
ciency of signal (idler), 0.86 (0.9). The experimental outcomes
agree well with the theoretical predictions.

From Fig. 4, the observed variance of each EPR beam in-
creases linearly with the modulation power, from the original
case of no modulation of ∼8 to ∼30 SNUs with modulation.
The conditional variance of the quadrature that indicates the
EPR entanglement also increases to some extent, from 0.67
to 0.77. (The two-mode squeezing decreases accordingly.)
This manifests that the EPR entanglement is degraded slightly
with the increasing variances of the quadratures. This is because
the modulation is applied only on the injected signal field,
which results in a slight imbalance of the quadrature fluctua-
tions between the signal and idler. This imbalance degrades the
quantum correlation and, further, the EPR quantum entangle-
ment. Note that this degradation is caused intrinsically by the
imbalance of the classical modulation signal on the EPR beams,
which can be recovered by adding the Gaussian modulation

signal to the measured quadratures of the idler with an appro-
priate weight factor, i.e., X 2 → X 2 � gX c . In our experiment,
the optimal value of g for recovering the initial EPR entangle-
ment is found to be approximately −0.1.

In conclusion, we have analyzed the effects of the modulated
injecting signal field on the quantum behaviors of the output
fields from a NOPA. Our analysis shows that the modulation
can significantly enlarge the distribution of the original EPR
state in phase space, whereas it has a negligible influence on
the entanglement quality. Such phenomena were also verified
by the experiment. The presented scheme and device are
promising candidates for quantum information processing
tasks, e.g., CV QKD, in which high efficiency and a compact
EPR source with signal modulation are desired. We anticipate
combining the current system with the techniques of fiber de-
vices [16] and on-chip integration [17] in the future, which will
further improve the compactness and size of the current system.
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