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Abstract
The fidelity of the gate operation and the coherence time of neutral atoms trapped in an optical
dipole trap are figures of merit for the applications. The motion of the trapped atom is one of the
key factors which influences the gate fidelity and coherence time. The motion has been considered
as a classical oscillator in analyzing the influence. Here we treat the motion of the atom as a
quantum oscillator. The population on the vibrational states of the atom are considered in
analyzing the gate fidelity and decoherence. We show that the fidelity of a coherent rotation gate is
dramatically limited by the temperature of a thermally trapped atom. We also show that the
dephasing between the two hyperfine states due to the thermal motion of the atom could rephase
naturally if the differential frequency shift is stable and the vibrational states do not change. The
decoherence due to the fluctuations of the trap laser intensity is also discussed. Both the gate
fidelity and coherence time can be dramatically enhanced by cooling the atom into vibrational
ground states and/or by using a blue-detuned trap. More importantly, we propose a ‘magic’
trapping condition by preparing the atom into specific vibrational states.

1. Introduction

Neutral atoms, with long-lived internal electronic states, trapped in optical dipole trap (ODT) are one of
the basic systems for quantum metrologies [1, 2], quantum simulations [3–5], and quantum information
processing [6, 7]. The fidelity of a coherent rotation gate and the coherence time between two fiducial states
are figures of merit for these applications. The fiducial states are usually chosen from the Zeeman states in
the ground hyperfine levels. Both the gate fidelity and the coherence time are assumed to be limited by the
variance of the differential frequency shift (DFS) due to the motion of the atom and the noise of the trap
laser. For the optically trapped atoms, the energies of these sublevels are subject to the fluctuations of the
trap beam and the surrounding magnetic fields. The gate operation will be deteriorated due to the variance
of the detuning between the driving field and the atomic transition. The evolution of the states will dephase
to each other due to the resulting fluctuations on the energy levels. In order to suppressing the DFS, a series
of ‘magic’ trapping conditions, where the differential energy shift between the fiducial states is immune to
the fluctuations, are proposed and experimentally tested [8–17]. The infidelity of the gate operation can be
suppressed from 0.01 [18] to 0.5 × 10−5 [19]. Over one second of coherence time T2 has also been realized
either in the red-detuned trap [20] or the blue-detuned trap [21, 22].

In the preceding works [23–25] on analyzing the differential light shift (DLS) and the corresponding
dephasing mechanics, people usually treated the motion of the atom inside the ODT as a classical harmonic
oscillator. The inhomogeneous and homogeneous dephasing factors are classified. The inhomogeneous
dephasing is mainly caused by the DLS associated with the motion of the atom and can be recovered by the
spin-echo technique [26–28]. The homogeneous dephasing is from the fluctuations of DLS induced by the
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Figure 1. The comparison of DFS versus the light intensity at the trap bottom with and without considering the vibrational
quantum states for a cesium atom trapped in a red-detuned ODT. The parameters used for the simulation: trap wavelength
λT = 1064 nm, trap size (beam waist radius) w0 = 2.1 μm, η = 1.68 × 10−4 for cesium atom.

noises on magnetic field and ODT beam, e.g., the noises on the power, the frequency, and the pointing
direction etc. However, we know the motion of the atom in an ODT is actually a quantum oscillator and the
atom occupies a serial of vibrational quantum states depending on the temperature. In this sense, the DFS
depends not only on the trap potential itself but also on the vibrational quantum states for a given atomic
distribution on the vibrational states. Thus, the former views should be reconsidered.

Here in this paper we provide theoretical analysis on the operating errors of the coherent π/2 rotation
gate and the dephasings of an atom in ODT in the context of a quantum oscillator. In the new picture, the
overall DFS will contain a new term which is directly connected to the vibrational quantum number. As
shown in figure 1, the DFS with the atom prepared in specific vibrational quantum states shows a nonlinear
dependence on the trap intensity, which is totally different from the linear dependence without considering
the vibrational states. The new term will bring several new findings on the gate fidelity and the coherence
time. (1) The gate fidelity is dramatically influenced by the vibrational state distribution (the temperature)
of the atom. Thus, the fidelity can be enhanced by squeezing the state distribution, e.g., cooling the atom to
a lower temperature. (2) Remarkably, we found that the thermal motion of the atom (Bose distribution on
the vibrational states) would not make the fiducial states lose their phase during the free evolution. The
fringe visibility of the Ramsey interference drops in short time scale due to the overlap of a series of
interfering signals with different frequencies, which are determined by the DLS associated with the
vibrational states. The fringe will naturally recover as long as the DLS is stable and the vibrational states do
not change. However, the fluctuation of DLS and the heating of the atom is inevitable in real system, the
recovery of the fringe will be inhibited. Consequently, the fringe will only be recovered by the spin-echo
process in a relatively shorter time. (3) The dephasing due to the fluctuation of the DLS, which is mainly
induced by the trap intensity noise, in both the red-detuned and blue-detuned ODTs are revisited. Because
of the intrinsic advantages of small DFS and low parametric heating rate in blue-detuned ODT, the longer
coherence time will be expected. (4) The new term in the DLS also inspire a new kind of ‘magic’ trapping
condition by prepare the atom in specific vibrational quantum states. We discussed a series of ‘magic’
conditions in both the red-detuned and blue-detuned ODTs.

The remaining part of the paper is organized as follows. In section 2 the DFS between two hyperfine
ground states of trapped atom in a red-detuned optical trap is revisited by treating the trapped atom as a
quantum oscillator. The fidelity of coherent rotation gate is analyzed with a trapped thermal atom in
section 3. Then, the dephasing processes of a trapped thermal atom are discussed in section 4. Next, in
section 5, a new ‘magic’ trapping condition is presented. Finally, a conclusion is given in section 6.

2. DLS distribution of an atom in ODT

An ODT is formed by the spatial-dependent light shift of ground state when the atom interacts with a
far-off-resonant laser beam. For a two-level atom, the light shift of the ground state reads [29]

ΔE =
3πc2

2ω3
0

Γ

Δ
I, (1)

where c is the velocity of light; ω0 is the resonant frequency of the atom transition; Γ is the decay rate of the
excited state; Δ is the detuning of the light frequency to the atomic transition; and I is the intensity of the
laser beam. A trap is formed when there exists maxima or minima in the spatial distribution of the laser
intensity. The sign of the trapping potential depends on the detuning Δ. Thus, the atom populated on the
electronic ground state can be trapped locally in the light field.
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Figure 2. (a) A conceptual energy level scheme of the interaction between atom with two ground hyperfine states and the light
field of an ODT. (b) The comparison of the vibrational quantum states for the atom in two ground states at the bottom of the
ODT. Due to the difference of one-photon detuning there is energy frequency shifts (n + 1/2)δ with δ the differential oscillation
frequency shift for vibrational state n. (c) An example of population distribution for thermal atom on vibrational state.

Usually, two electronic ground states in different hyperfine levels are adopted as the fiducial states for the
applications. The light shifts for the two ground states are unequal to each other due to the additional
hyperfine splitting ωhps between the two states. According to equation (1), the different frequency detuning
between the corresponding atomic transitions and the trapping laser field will give a differential DLS
between the two ground states. Then, the phase between the two electronic ground states will be disturbed
when the DLS is fluctuating because of the movement of trapped thermal atom (inhomogeneous dephasing
factor) in the trap and the intensity noise of the laser beam (homogeneous dephasing factor). These
dephasing processes have been analyzed as the atom motion being treated classically [23, 28]. However, this
treatment is not appropriate in a typical used ODT for single atoms, where a small trap volume is pursued
in order to enhance the light-assisted two-body loss rate [30]. The atom in the ODT behaves actually as a
quantum oscillator. When the trapped atom is cooled by optical molasses, the energy follows a thermal
Boltzmann distribution and the atom occupies a series of separate vibrational states.

We first consider a typical trap by focusing a red-detuned Gaussian laser beam. So, the trap potential is
negative and the atom is trapped in the potential minima where the laser intensity is a maximum. As shown
in figure 2(a), the two fiducial states are |F1〉 and |F2〉, which are two Zeeman sublevels belong to two
hyperfine states, and ωhfs is the hyperfine frequency splitting. The corresponding potential depths induced
by a far-detuned ODT laser beam, which has one-photon detuning Δ to atomic transition |F2〉 ↔ |e〉, are
U1 = |ΔEmax

1 | and U2 = |ΔEmax
2 |, respectively. ΔEmax

1(2) is the maximum light shift for the electronic ground

state. By using equation (1) we have U1
U2

= Δ
Δ−ωhfs

. Supposing the waist radius of the trapping beam is w0,

the Rayleigh length on the laser propagating direction (z-axis) is then Lf =
πw2

0
λ with λ the laser wavelength.

The temperature of the trapped atom is usually much lower than the trap depth. Therefore, the trap
potentials can be approximated by parabolic functions. The atom behaves as a three-dimensional (3D)
quantum oscillator, and the oscillation frequencies on transverse and longitudinal directions are
read as [31]

ωr,1(2) = ωx(y),1(2) =
2

w0

√
U1(2)

m
(2)

and

ωz,1(2) =

√
2

Lf

√
U1(2)

m
, (3)

where m is the mass of the trapped atom. The difference between two oscillation frequencies on one axis
with atom in states |F1〉 and |F2〉 is then

δq = ωq,2 − ωq,1, (4)

where q = x, y, or z.
For simplicity, we first deal with a one-dimensional trap. Thus, the subscripts representing the axis

number in equations (2)–(4) can be omitted. The DFS between two electronic states with the atom on the
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same vibrational state |n〉 is then

ΔDFS
n = −(U2 − U1)/�+

(
n +

1

2

)
δ. (5)

The first term on the right-hand side (rhs) is the DLS induced by the trap depth and the second term is the
additional shifts due to the unequal vibrational frequencies, which depends on the vibrational quantum
number n. In a far-off-resonant trap, Δ � ωhfs, we define U0 = U1 ≈ U2. Equation (5) can be
approximated by

ΔDFS
n = −η

U0

�
+

(
n +

1

2

)
δ (6)

with η =
∣∣ωhfs

Δ

∣∣. Figure 2(b) gives a conceptual drawing to explain the DFS induced by the difference in
oscillation frequencies when the atom is in different fiducial state.

In a 3D trap the DFS between the two atomic states is then

ΔDFS = −η
U0

�
+

∑
q=x,y,z

(
nq +

1

2

)
δq, (7)

where q represents the three oscillation axes of the trap. Thus, nq and δq are the vibrational quantum
(phonon) number and the difference of the oscillation frequencies on the corresponding axis. For the case

with a trap formed by a red-detuned laser beam, we also have δx = δy =
∣∣ωhfs
Δ

∣∣ 1
w0

√
U0
m = η

2ωr,0 and

δz =
∣∣ωhfs
Δ

∣∣ 1√
2Lf

√
U0
m = η

2ωz,0 from equations (2) and (3).

Consider an atom is directly loaded from a magneto-optical trap, where the energy of the atom follows
the Boltzmann distribution. The trapped atom in the dipole trap has a thermal distribution on the
vibrational states. Suppose the temperature of the trapped atom is T, the average vibrational quantum
number on each direction for the atom is 〈nq〉 = kBT

2�ωq
with kB the Boltzmann’s constant, � the Planck’s

constant, and ωq the oscillation frequency on the corresponding axis. The population of the atom on the
vibrational state n follows the Bose distribution

Pn =
〈nq〉n(

〈nq〉+ 1
)(n+1) (8)

on each oscillating direction. Here we see that the population on the ground state with n = 0 is most, and
the population on higher state is gradually reduced along with the quantum number n (see figure 2(c)).

3. Gate operating error

The coherent rotation of the atomic states is usually achieved by driving the atom with a resonant
microwave or Raman lasers. However, due to the thermal distribution of the atom on the vibrational states
and the variances of nq-dependent DFS, the driven field would not be resonant with all the atomic
transitions between |F1〉 ⊗ |nq〉 and |F2〉 ⊗ |nq〉. This will cause errors in the rotating operations. We will
analyze the operating errors of a π/2-pulse (Hadamard gate) in the following.

We use the Bloch equations [32] to describe the rotation process. Suppose the rotation Rabi frequency
is Ω. When frequency detuning Δ′ exists, the Bloch equations to describe the rotating process are

u̇ = Δ′v, (9a)

v̇ = −Δ′u +Ωw, (9b)

ẇ = −Ωv, (9c)

where u and v are the real and imaginary parts of the atomic density matrix; w is the population difference
between the two fiducial states. The Bloch equations can also be expressed by vector equation

Ṙ = R×W, (10)

with the state vectors R = (u, v, w)T and driving vector W = (Ω, 0,Δ′)T, where the superscript T means the
transposition. The evolution of the state vector R can be seen as rotation around vector W. The states |F1〉
and |F2〉 can be represented by vectors (0, 0,−1)T and (0, 0, 1)T, respectively. The application of a π/2 pulse

4
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Figure 3. The simulation of the error (the infidelity 1 − F) for a π/2 pulse between the two ground hyperfine states versus the
Rabi frequency when the atom has thermal temperature of 5 μK (blue triangles), 15 μK (red squares), and 50 μK (black circles).
The parameters used for the simulation: trap wavelength λT = 1064 nm, trap size (beam waist radius) w0 = 2.1 μm, trap depth
U0 = 1.0 mK, η = 1.68 × 10−4 for cesium atom.

usually represents a rotation with angle π/2 around the driving vector on the Bloch sphere. If Δ′ = 0, the
π/2-rotation can be described by a matrix

Θπ/2 =

⎛
⎝1 0 0

0 0 1
0 −1 0

⎞
⎠. (11)

The state after the application of a π/2 pulse on an initial state R(t0) is then

R(tπ/2) = Θπ/2R(t0). (12)

However, as we discussed before, the trapped thermal atom has a population on different vibrational
states and population on the ground vibrational state is most. So, we assume the driven field is resonant
with the atomic transitions with vibrational quantum number nq = 0 and the Rabi frequency is Ω0. The
time duration of a π/2 pulse is defined by tπ/2 = π/(2Ω0). The atomic transitions on higher vibrational
states are then off-resonant and the frequency detuning is Δ′ =

∑
q=x,y,z nqδq. The Rabi frequencies for

these transitions are then Ωnx ,ny ,nz =
√
Δ′2 +Ω2

0. The application of the driven field with same duration

time tπ/2 = π/(2Ω0) will result a rotation angle θ = π
2

Ωnx ,ny ,nz

Ω0
= π

2

√
Δ′2+Ω2

0
Ω0

on Bloch sphere around vector

W = (Ω0, 0,Δ′)T. The rotation can be expressed by matrix

Θ′
π/2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω2
0 +Δ′2 cos θ

Ω2
0 +Δ′2 − Δ′ sin θ√

Ω2
0 +Δ′2

Ω0Δ
′(1 − cos θ)

Ω2
0 +Δ′2

Δ′ sin θ√
Ω2

0 +Δ′2
cos θ

Ω0 sin θ√
Ω2

0 +Δ′2

Ω0Δ
′(1 − cos θ)

Ω2
0 +Δ′2 − Ω0 sin θ√

Ω2
0 +Δ′2

Ω2
0 cos θ +Δ′2

Ω2
0 +Δ′2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

The fidelity of the π/2-rotation can be obtained by

F = RTΘ′T
π/2Θπ/2R (14)

with R an arbitrary Bloch vector. Without losing the generality, we use three typical Bloch vectors (1, 0, 0)T,
(0, 1, 0)T, and (0, 0, 1)T to evaluate the Fidelity F. Then, we get

F =
1

3

[( π

2θ

)2
(1 − cos θ) + cos θ +

π

θ
sin θ

]
. (15)

The overall π/2-rotation fidelity for the trapped thermal atom is the average over all the vibrational states

F =
∑

nx ,ny ,nz

Pnx Pny Pnz F. (16)

Figure 3 shows a simulation of the infidelity, defined by 1 − F, for a π/2-rotation versus the Rabi
frequency when the atom has different thermal temperatures in a red-detuned ODT. It is obvious that
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lower temperature and faster rotation give a higher fidelity. If the trapped atom can be cooled to the
vibrational ground state, the deteriorating factor on the gate fidelity due to the thermal energy distribution
can be totally suppressed.

4. Dephasing of the atom

4.1. Dephasing due to the thermal distribution on vibrational states
Besides the gate operating error, the thermal distribution on the vibrational states will also induce
dephasing due to the variances of energy shift along with different vibrational states. This dephasing
mechanism has been classified as inhomogeneous before since that, in a classical point of view, every single
atom possesses different energy and then experience different DLS. Here we show that this mechanism, in a
quantum point of view, is actually homogeneous and the mechanism does not induce the dephasing during
the state evolution indeed.

Usually, the dephasing time can be measured by the Ramsey interference process. If we only consider the
dephasing of an atomic coherent superposition state with specific vibrational quantum number nx, ny, and
nz, the Ramsey signal will be [23]

wRmsy
n = cos δnt (17)

with δn the frequency difference between driven field and the atomic transitions and t the free precession
time. We have the relation δn = δ0 +

∑
q=x,y,z nqδq with δ0 denotes the frequency difference between driven

field and the atomic transition on the ground vibrational state nq = 0. For a trapped atom with thermal
energy distribution, the overall Ramsey signal will be the overlap of all the Ramsey signal with the
distribution on all the vibrational states:

wRmsy =
∑

nx ,ny ,nz

Pnx Pny Pnz wRmsy
n . (18)

After some algebras, we arrive in

wRmsy = Re

[
eiδ0t∏

q=x,y,z

(
〈nq〉+ 1 − 〈nq〉eiδqt

)
]

(19)

with Re means the real part. A typical plot of the Ramsey signal versus time delay is shown in figure 4. We
can see that the amplitude of the Ramsey fringe is not constant. If there is no other homogeneous dephasing
factor, the interference will recover at time delay t = n × 2π/δGCF (n = 1, 2, 3 . . .) with δGCF the greatest
common factor (GCF) of δx, δy, and δz. On short time scale, the amplitude of the fringe drops severely due
to the overlap of the interference signal with atom populating on different vibrational states.

Usually, we have the condition δq � δ0 in a red-detuned ODT. Thus, we only consider the time scale
t � 1/δq, equation (19) can be approximated by

wRmsy =
cos

[
(δ0 + 〈nx〉δx + 〈ny〉δy + 〈nz〉δz)t

]
1 +

(
〈nx〉δxt

)2
+
(
〈ny〉δyt

)2
+
(
〈nz〉δzt

)2 (20a)

=
cos

[
(δ0 + 〈nx〉δx + 〈ny〉δy + 〈nz〉δz)t

]
1 + 3

(
ηkBT

4�

)2
t2

. (20b)

The comparison of equations (19) and (20b) under the same parameters are shown in figure 4(b). We can
see equation (20b) has included the key features of the Ramsey interference fringe in the short time scale.
The dephasing time can be characterized by

T∗
2 = 2

√
(e − 1)/3

2�

ηkBT
= 1.51

2�

ηkBT
, (21)

in which the dephasing time is defined by the time delay with 1/e of the fringe amplitude.
Here we can see that the ‘inhomogeneous dephasing mechanism’ due to the thermal motion of the atom

in an ODT is actually homogeneous, since every single atom experiences the same process. The Ramsey
fringe will recover naturally for a long time.

However, the vibrational quantum number will increase due to the heating of the atom by the intensity
noise [33, 34]. The heating is random for atom in either of the two fiducial states, and the interference will
be eliminated once the original vibrational quantum number is altered stochastically. Due to that the
rephasing of a thermal atom populated in different vibrational states usually takes a very long time and the

6
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Figure 4. (a) The simulation of Ramsey fringe of a thermal atom with temperature 15 μK by equation (19) with other
parameters same as figure 3. (b) The zoomed Ramsey fringe within short time delay with blue curve by equation (19) and red
curve by equation (20a). (c) The zoomed Ramsey fringe after long time delay where the fringe is fully recovered in the case that
no homogeneous dephasing is concerned.

vibrational quantum number would be already changed by the heating process. Thus, the rephasing is hard
to be observed in practice.

The observed ‘dephasing’ in short time is actually an overlap of the interference signals with a series of
different interfere frequencies. Of course, the interference signal can be recovered at any time by using the
spin-echo technique to reverse the spin precession direction. By squeezing the atomic distribution on
the vibrational state, e.g., cooling the atom into the ground vibrational states, will dramatically suppress the
‘dephasing’ since only one frequency would exist in the interference fringes for the ground vibrational state.

4.2. Dephasing due to the intensity noise of the ODT beam
Next, we will consider the dephasing due to the intensity noise of trap laser. The intensity noise induces the
fluctuation of DFS and causes the dephasing. Assuming there is a small change in trap depth δU0 due to the
small fluctuation of intensity, we have the variance of the DFS

δΔDFS = −η
δU0

�

⎡
⎣1 −

∑
q=x,y,z

(
nq +

1
2

)
�ωq

2U0

⎤
⎦ (22)

from equation (7). Usually, the kinetic energy of trapped atom is much lower than the trap depth, so we
have (nq +

1
2 )�ωq � U0. Equation (22) can be reduced to

δΔDFS = −η
δU0

�
∝ δI, (23)

which means that all the trapped atoms take the same dephasing process due to the intensity fluctuations of
the trap laser in a red-detuned trap. A Gaussian distribution of fluctuation on trap intensity will also give a

Gaussian distribution of DFS. The mean fluctuation of the intensity is δΔDFS = 0 and we have a standard
deviation σDFS = ησU0/� with σU0 the standard deviation of the trap depth. Then, the theoretical
homogeneous dephasing time is

7
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T ′
2 =

√
2

σDFS
, (24)

which is same to the analysis with the atom motion being treated classically [23].

4.3. Dephasing of atom in a blue-detuned trap
In a blue-detuned trap, the atom is trapped in regions with intensity minima which is surrounded by high
potential barriers. A typical trap is the blue-detuned optical lattice (BDOL) by interfering laser beams. The

oscillation frequency on one axis for a 3D BDOL is ωq =
√

2π
dq

√
Uq

m with dq the trap period, Uq the height of

trap barrier, and q = x, y, or z representing the corresponding axis. If we assume the residual potential at
trap site is U0, the overall DFS of the trapped atom still has the form of equation (7) except that

δq =
∣∣ωhfs

Δ

∣∣√2π
2dq

√
Uq

m = η
2ωq in the second term. The ‘inhomogeneous dephasing’, roots from the thermal

distribution on the vibrational states, and the Ramsey fringe and the dephasing time T∗
2 are similar to the

scenario in red-detuned trap and with forms as shown in equations (19)–(21). However, the homogeneous
dephasing is very different due to the small residual potential U0 at the trap sites. In a perfectly aligned
lattice, we have U0 = 0, thus the fluctuation of DFS only depends on the height of trap barriers by

δΔDFS = η
∑

q=x,y,z

δUq

�

(
nq +

1
2

)
�ωq

2Uq
, (25)

which is much smaller than the fluctuations of trap barrier δUq. The dephasing time is then much longer
than that in a red-detuned trap. This has been proven by our previous experiment [35].

5. ‘Magic’ trapping depth (intensity)

For a strongly focused red-detuned ODT as discussed in section 2, we check equation (7) again. The first
term on the rhs is always negative and proportional to U0, whereas the second term is always positive and
proportional to

√
U0. The overall DFS has a quadric dependence on

√
U0 (see figure 5) and would have a

maxima at special value of U(M)
0 (the dashed line), where ∂ΔDFS/∂U0 = 0. That also means that the

first-order dependence of DFS on U0 will be cancelled at this point. We therefore have

U(M)
0 = A2 �

2

4m
(26)

from equation (7) with A = nx+1/2
wx

+
ny+1/2

wy
+ nz+1/2√

2Lf
. If the trap depth is set at this point, the residual

variance of DLS due to the noise on trap depth (intensity) would be dramatically suppressed. That defined
as a ‘magic’ point for the trap.

However, when the atom is cooled to the vibrational ground states with nx = ny = nz = 0 the
corresponding ‘magic’ trap depth would be 2.3 × 10−7 mK for the trap parameters used in figure 3. The
trap is too shallow to trap the atom. If the vibrational quantum number can be enhanced to nx = ny = 300
and nz = 2000, the ‘magic’ trap depth can also be boosted to 0.14 mK. This is deep enough for trapping the
atom, but those quantum vibrational states are hard to be precisely prepared.

This dilemma in the red-detuned ODT can be resolved by prepare the fiducial states on different
vibrational quantum states. The quantum rotation between the two states can be realized by using the
Raman lasers with different wave vectors or shifting the spatial coordinate as being adopted in the Raman
sideband cooling [36–39]. We assume that the atom has been prepared into the ground vibrational states.
The two fiducial states are chosen as |F1〉 ⊗ |nx = 0〉 and |F2〉 ⊗ |nx = 1〉, thus the DFS is

ΔDFS = −η
U0

�
+

1

2
(δx + δy + δz) + ωx, (27)

where an extra term ωx representing the one phonon energy on x axis appears. From the abovementioned
discussion in section 1 we have δq � ωx with q = x, y or z and δq can be omitted, so equation (27) can be
approximated as

ΔDFS = −η
U0

�
+ ωx (28a)

= −η
U0

�
+

2

w0

√
U0

m
. (28b)
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Figure 5. The DFS between |F1〉 and |F2〉 in a red-detuned trap as a function of trap depth for the atom prepared in vibrational
states with nx = ny = 300 and nz = 2000. The ‘magic’ trap depth U (M)

0 can be found at 0.14 mK.

Then, the new ‘magic’ trap depth can be obtained as

U(M)
0 =

�
2

mη2w2
0

. (29)

For the red-detuned trap used in reference [38] for rubidium-87, an 852 nm ODT with trap size
w0 = 0.76 μm is used. If |F1 = 1〉 ⊗ |nx = 0〉 and |F2 = 2〉 ⊗ |nx = 1〉 are adopted, the estimated ‘magic’
trap depth is U(M)

0 = 182 mK which is unpractical for a real trap.
Nevertheless, if the quantum state on z axis is considered, the ‘magic’ trap depth would be decreased. So,

we assume that |F1〉 ⊗ |nz = 0〉 and |F2〉 ⊗ |nz = 1〉 are adopt, the ‘magic’ trap depth is then

U(M)
0 =

�
2

2mη2z2
R

. (30)

The ‘magic’ trap depth U(M)
0 = 11.6 mK can be found for the trap used in reference [38]. The trap is still

too deep for practically using. However, if the trap size can be increase to w0 = 1.4 μm, the ‘magic’ trap
depth would be decreased to a practical value with U(M)

0 = 1.0 mK.
The ‘magic’ trapping depth can also be found in the blue-detuned ODT. Here a trap potential U0 is

assumed in the trapping spot, and the potential barriers on the three directions are Uq = αqU0

(q = x, y or z), where αq is the ratio between the barrier height and trap bottom potential with αq > 1. We
still consider the BDOL discussed in section 4 with the atom being prepared in the vibrational ground state.
The DFS between |F1〉 and |F2〉 is then

ΔDFS = −η
U0

�
+

ηπ

2

√
U0

2m

∑
q

√
αq

dq
. (31)

The ‘magic’ trap depth is then

U(M)
0 =

π2
�

2

32m
B2 (32)

with B =
∑

q

√
αq

dq
. To give an estimation of the number, we use the trap parameters in reference [40],

where a 3D 847.78-nm lattice is used to trap single cesium atoms with trap spacing dx = dy = dz = 5 μm.
If we still assume αx = αy = αz = 400, the corresponding ‘magic’ potential at the trap bottom is

U(M)
0 = 0.16 μK. The height of the trap barrier is then Uq = αqU0 = 65 μK, which is deep enough to

trap single atoms.
Here we see that by preparing the atom in special vibrational states, especially in the ground states, a

‘magic’ trapping depth could be found. At the ‘magic’ point, the DFS is independent from the first-order of
trap depth. The residual higher-order terms play minor roles and the dephasing between two fiducial states
can be dramatically suppressed. The ‘magic’ condition found here is free from the wavelengths and
polarization of the trapping beams. Moreover, the magic condition of magnetic field can be applied
independently, thus the ‘doubly magic’ conditions for both the trap beam and magnetic field are promised.
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6. Conclusion

In this paper we have analyzed the fidelity of coherent rotating gate and the dephasing between two
hyperfine states of a thermal atom trapped in ODT. We treat the atom as a quantum oscillator, instead of a
classical oscillator. For a thermal trapped atom, due to the thermal distribution on the vibrational quantum
states, the fidelity of a gate is limited by the temperature. The dephasing of the fiducial states is also revised.
The dephasing due to the thermal motion of the atom, which has been thought to be inhomogeneous
before, is actually homogeneous because that each atom has same distribution on the vibrational states.
Moreover, the Ramsey fringe would recover after a longer time due to the rephasing as long as the DLS is
stable and the vibrational quantum states are not altered.

However, in a longer time scale, the atom would be heated up due to the intensity noise of the ODT
beam. The stochastic alternation of the vibrational quantum states will destroy the recovery of the fringe. In
addition, the variance of DFS due to the intensity fluctuation of trap beam also induces the dephasing and
prevents the recovery of the fringe. In a red-detuned ODT, the atom is trapped at the position with local
intensity maxima, where the heating of the atom and the fluctuation of DFS are dominated by the local
intensity noise. Whereas, in an ideal blue-detuned ODT, the atom is trapped in the spot with zero intensity
and the local intensity noise is also eliminated intrinsically. The heating of the atom and the fluctuations of
the DFS can be dramatically suppressed. Therefore, the atom in blue-detuned ODT naturally possesses
longer coherence time. Significantly, the variance of DFS can also be suppressed by preparing the atom in
vibrational ground states and give a long coherence time.

In addition, the two different DFS mechanisms, which are due to the local trap depth and the unequal
phonon energy between two fiducial states, give two terms with different dependance of the DFS on the trap
depth. Thus, the ‘magic’ trap depth, in which the first-order dependance of DLS on trap depth (intensity of
ODT beam) is removed, is found. We gave several solutions to get the ‘magic’ trap depth for both the
red-detuned and blue-detuned ODTs. These conditions have no further requirements on the wavelengths
and the polarization ODT beams. The ‘magic’ condition of magnetic field can be applied independently.

Here in this paper, we focused the DFS between two electronic ground hyperfine states, which are
usually used to store a qubit. To proceed the quantum information, the atom is excited to Rydberg states
where the long-range interaction can be harnessed to create a two-qubit gate. Due to the positive
polarizability of the Rydberg atom to the light field, the Rydberg atom always experience a positive
potential. So, it cannot be trapped in a red-detuned ODT. To execute a two-qubit gate, the red-detuned
ODT will be switched off for a short time. However, the recent progress on trapping the Rydberg atoms
with ponderomotive bottle beam traps (BBTs) [41] makes it possible that the two-qubit gate can be
executed without switching the trap off. In such a BBT, the ponderomotive energy shift for Rydberg atom
with n ∼ 100 is about 200 μK [41, 42], which is much larger than the light shift of the ground state (∼0) in
BBT. The DFS between the Rydberg and ground state is dominated by the first term on the rhs of
equation (7), and the second term related to the vibrational state can be omitted. Whereas, it is possible to
compensate the trap induced shift at the trap center by adding an additional constant background field
[42]. In this case, the magnitude of the first term on the rhs of equation (7) can be tuned to be comparable
to the second term, and the ‘magic’ condition to eliminate first-order dependence of the Rydberg-ground
DFS to the noise on the trap intensity is possible. Then, the coherence between Rydberg and ground states
can be improved, and the fidelity of the two-qubit gate may also be enhanced.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grans Nos.
2021YFA1402002 and 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos.
U21A6006, U21A20433, 11974223, 11974225, 12104277, and 12104278), and the Fund for Shanxi 1331
Project Key Subjects Construction.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

10



New J. Phys. 24 (2022) 083028 P Yang et al

ORCID iDs

Gang Li https://orcid.org/0000-0003-0249-5230
Pengfei Zhang https://orcid.org/0000-0001-8668-8923

References

[1] Ye J, Kimble H J and Katori H 2008 Quantum state engineering and precision metrology using state-insensitive light traps Science
320 1734

[2] Derevianko A and Katori H 2011 Colloquium: Physics of optical lattice clocks Rev. Mod. Phys. 83 331
[3] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys. 80 885
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