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Abstract: We focus on the generation of mechanical squeezing by using periodically amplitude-
modulated laser to drive an active-passive-coupled double-cavity optomechanical system, where
the coupled gain cavity and loss cavity can form into a parity-time (PT )-symmetry system. The
numerical analysis of the system stability shows that the system is more likely to be stable in
the unbroken-PT -symmetry regime than in the broken-PT -symmetry regime. The mechanical
squeezing in the active-passive system exhibits stronger robustness against the thermal noise
than that in the passive-passive system, and the so-called 3 dB limit can be broken in the
resolved-sideband regime. Furthermore, it is also found that the mechanical squeezing obtained
in the unbroken-PT -symmetry region is stronger than that in the broken-PT -symmetry region.
This work may be meaningful for the quantum state engineering in the gain-loss quantum system
that contributes to the study of PT -symmetric physics in the quantum regime.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Due to the rapid development of microfabrication and nanotechnology, cavity optomechanics has
become an ideal platform for studying macroscopic quantum phenomena and quantum information
processing, and many significant progresses relying on cavity optomechanics platform in both
experiment and theory have been made. So far, ground-state cooling of single or multiple
mechanical oscillators [1–4], quantum entanglement (including optomechanical entanglement
and mechanical-mechanical entanglement) [5–14], mechanical squeezing [5–7,15–20], and
macroscopic quantum superposition [21] have been deeply studied. Wherein the generation
of mechanical squeezing has been a significantly important goal in both fundamental studies
and numerous potential applications related to quantum computation, quantum communication,
and high-precision metrology [22–25], etc. Various schemes [5–7,15–20] have been proposed
to realize the mechanical squeezing, even strong mechanical squeezing, i.e., the steady-state
squeezing by a factor of 1/2 below the zero-point level (the so-called 3 dB limit). Parallel
to theoretical research, much progress has been made in experiment. For example, different
experimental schemes for generating mechanical squeezing has been achieved in microwave
optomechanical systems [26–28]. Especially, the mechanical squeezing of a micron-scale
mechanical oscillator breaking the 3 dB limit has been observed by using the reservoir engineering
technique based on two-tone driving [29].

On the other hand, non-Hermitian systems with PT symmetry have attracted considerable
attention since the pioneering work of Bender and Boettcher in 1998 [30]. If the Hamiltonian
H of a system satisfies the commutation relation [H, P̂T̂] = 0 with the PT operator P̂T̂ , its
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eigenvalues can be real. Moreover, a phase transition between the unbroken-PT -symmetry
and broken-PT -symmetry will occur at the exceptional point (EP), where the eigenvalues
and the corresponding eigenvectors coalesce and some novel physical phenomena may appear.
Therefore, PT -symmetry physics has become an active research area [31–35]. The experimental
demonstrations of the PT -symmetry and EP have been performed in various physical systems
[36–39]. The engineering of EP has been extensively studied theoretically [40–45], and many
amazing applications of PT symmetry have been realized experimentally, such as unidirectional
transmission [38,46], single-mode lasers [47,48], and enhanced sensitivity [49,50]. Particularly,
Jing et al. combined PT -symmetry physics and optomechanics to initiate the field of PT

optomechanics [51]. Based on PT -symmetry optomechanics, various important phenomena
have been predicted, such as phonon lasers [51–53], emergency of chaos at low-power threshold
[54], enhanced ground-state cooling of mechanical oscillator [2,3,55], enhanced optomechanical
entanglement [8], and so on.

Inspired by these works above, we here focus on the mechanical squeezing in the typical
PT -symmetric optomechanical system consisting of an active (gain) cavity to a passive (loss)
optomechanical cavity driven by an amplitude-modulated laser field. The coupled-double-cavity
system can form the PT -symmetry structure. Firstly, the stability analysis of such system shows
that the steady region are mostly located in the unbroken-PT -symmetry regime. Then, it is found
that the mechanical squeezing can be obtained, when a driving laser is blue-detuned, in both
the unresolved-sideband and the resolved-sideband regime. Compared with the passive-passive
double-cavity optomechanical system, the mechanical squeezing in the active-passive system is
more robust against the mechanical thermal noise.

The rest of this paper is organized as follows. In Sec. 2, we describe the three-mode cavity
optomechanical system and give the linearized Hamiltonian. In Sec. 3, we derive the dynamics of
the system and analyze the stability of the system in the unresolved-sideband regime. Mechanical
squeezing in both the unresolved-sideband and resolved-sideband regime are presented in Sec. 4.
Finally, we conclude this work in Sec. 4.

2. Model and linearized Hamiltonian of the system

As schematically shown in Fig. 1, the three-mode system consists of an active optical cavity
coupled to a passive cavity which is driven by an amplitude-modulated laser field with frequency
ωl and time-dependent amplitude E(t). The amplitude of the external laser E(t) is periodically
modulated with the period τ (E(t) = E(t + τ)). The active optical cavity is described by the
bosonic annihilation (creation) operator a1 (a†1), whose frequency and gain are represented by
ωc and κ, respectively. a2(a†2) is the annihilation (creation) operator of the passive cavity with
frequency ωc and decay rate γ, respectively. The cavity-cavity coupling strength is J. The
mechanical resonator, with the resonance frequency ωm and the decay rate γm, is described by
the dimensionless position q and momentum p operators. g is the single-photon optomechanical
coupling coefficient.

Therefore, the Hamiltonian of the whole system (in the unit of ℏ = 1) can be written as

H1 =ωca†1a1 + ωca†2a2 +
ωm

2
(q2 + p2) − ga†2a2q

+ J(a†1a2 + a1a†2) + i[E(t)a†2e−iωlt − E∗(t)a2eiωlt].
(1)

In the frame rotating at the driving frequency ωl, the Hamiltonian (1) becomes

H2 = − ∆a†1a1 − ∆a†2a2 +
ωm

2
(q2 + p2) − ga†2a2q

+ J(a†1a2 + a1a†2) + i[E(t)a†2−E∗(t)a2].
(2)

where ∆ = ωl − ωc is the detuning of each cavity respecting to the driving laser.
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Fig. 1. Schematic diagram of the active-passive-coupled double-cavity optomechanics
system. An active cavity (a1) with gain rate κ is directly coupled to a passive cavity (a2) with
decay rate γ driven by an external laser with frequency ωl and time-dependent amplitude
E(t). The frequencies of both cavities are ωc. J is the cavity-cavity coupling strength. The
mechanical oscillator (b) with frequency ωm and decay rate γm is coupled to the passive
cavity with optomechanical coupling strength g.

Taking mechanical damping, cavity decay (gain), and the environment noises into account, the
dynamics of the system is completely described by the following nonlinear quantum Langevin
equations (QLEs) [56]

q̇ =ωmp,

ṗ = − ωmq + ga†2a2 − γmp + ξ(t),

ȧ1 =(i∆ + κ)a1 − iJa2 +
√

2κain
1 (t),

ȧ2 =(i∆ − γ)a2 + iga2q − iJa1 + E(t) +
√︁

2γain
2 (t).

(3)

Here ain
1 (t) and ain

2 (t) are the corresponding zero-mean noise operators of two cavities with the
nonzero correlation functions [56]

⟨ain
j (t)a

in†
j (t

′

)⟩ = (naj + 1)δ(t − t
′

),

⟨ain†
j (t)ain

j (t
′

)⟩ = najδ(t − t
′

),
(4)

where naj = [exp(ℏωc/kBT) − 1]−1 (j = 1, 2) is the mean bath photon number when the
environmental temperature is T , and kB is the Boltzmann constant. ξ(t) is the zero-mean Brownian
motion noise operator describing the dissipative friction forces acting on the mechanical oscillator,
whose non-Markovian correlation function [57,58]

⟨ξ(t)ξ(t
′

)⟩ =
γm

2πωm

∫ [︃
coth

(︃
ℏω

2kBT
+ 1

)︃]︃
ωe−iω(t−t′ )dω. (5)

For a mechanical oscillator with high quality factor Q = ωm/γm ≫ 1, the above correlation
function of ξ(t) can be described by Markovian approximation as

⟨ξ(t)ξ(t
′

) + ξ(t
′

)ξ(t)⟩/2 ≃ γm(2nm + 1)δ(t − t
′

), (6)

where nm = [exp(ℏωm/kBT) − 1]−1 is the mean thermal phonon number.
Generally, it is difficult to solve the QLEs in Eq. (3) directly. Nevertheless, for the strong-driving

regime, our physical model can be simplified by a linearization procedure. Then, we can rewrite
each Heisenberg operator as the sum of the steady-state average and the quantum fluctuation:
O = ⟨O⟩ + δO (O = q, p, a1, a†1, a2, a†2). Therefore, by replacing the Heisenberg operators in



Research Article Vol. 30, No. 26 / 19 Dec 2022 / Optics Express 47073

Eq. (3) with the above summation form and applying the standard linearization technique, we can
obtain the equations of motion for the classical first moments

⟨q̇(t)⟩ = ωm⟨p(t)⟩,

⟨ṗ(t)⟩ = −ωm⟨q(t)⟩ + g|⟨a2(t)⟩|2 − γm⟨p(t)⟩,
⟨ȧ1(t)⟩ = (i∆ + κ)⟨a1(t)⟩ − iJ⟨a2(t)⟩,
⟨ȧ2(t)⟩ = (i∆ − γ)⟨a2(t)⟩ + ig⟨a2(t)⟩⟨q(t)⟩ − iJ⟨a1(t)⟩ + E(t),

(7)

and the linearized QLEs of the quantum fluctuation operator (hereafter we drop the notation δ for
all the fluctuation operators for the sake of simplicity, like δa1 → a1)

dq
dt
= ωmp,

dp
dt
= −ωmq + g⟨a2(t)⟩∗a2 + g⟨a2(t)⟩a†2−γmp + ξ(t),

da1
dt
= (i∆ + κ)a1 − iJa2 +

√
2κain

1 (t),

da2
dt
= (i∆ − γ)a2 + ig⟨a2(t)⟩q + ig⟨q(t)⟩a2 − iJa1 +

√︁
2γain

2 (t).

(8)

The linearized Hamiltonian corresponding to the linearized QLEs above reads

H3 = − ∆a†1a1 − (∆ + g⟨q(t)⟩)a†2a2 +
ωm

2
(q2 + p2)

+ J(a†2a1 + a2a†1) − g[⟨a2(t)⟩∗a2 + ⟨a2(t)⟩a†2]q.
(9)

In order to introduce the PT -symmetric double-cavity structure clearly, we temporarily
consider only the optical modes including the optical gain and loss and ignore the mechanical
mode [38,39], then the non-Hermitian Hamiltonian can be written as

H4 = (−∆ + iκ)a†1a1 + (−∆ − iγ)a†2a2 + J(a†2a1 + a2a†1). (10)

Obviously, for the cavities with the balanced gain and loss, the above Hamiltonian commutes
with the PT operator and is a PT -symmetric Hamiltonian. In fact, the PT symmetry can be
generalized to the case where the gain rate κ and the decay rate γ is not exactly balanced. The
complex eigenvalues of the above non-Hermitian Hamiltonian is

ω± = −∆ −
i(γ − κ)

2
±

√︁
4J2 − (γ + κ)2

2
, (11)

where the real and imaginary parts correspond to the eigenfrequencies and linewidths of the two
supermodes, respectively. For a strong cavity-cavity coupling, i.e., J>(γ + κ)/2, the eigenvalues
have two different real parts and an identical imaginary part, that is, the two supermodes have
different frequencies −∆ ±

√︁
4J2 − (γ + κ)2/2 and an identical linewidth (γ − κ)/2, and the

system is in the unbroken-PT -symmetry regime. However, for the weak cavity-cavity coupling,
i.e., J<(γ + κ)/2, the two supermodes coalesce and have the identical frequency and different
linewidths, thus the system is in the broken-PT -symmetry regime. The phase transition between
the two regimes takes place around the critical point J = (γ + κ)/2 that is called an exceptional
point (EP) corresponding to a spectral degeneracy of a non-Hermitian Hamiltonian.

3. Dynamics of the system and stability analysis

In order to generate the mechanical squeezing, it is very necessary to solve the dynamics of the
quantum fluctuations in Eq. (8). To this end, we introduce the quadrature operators of the two
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cavity modes and the corresponding input noise operators

Xj =
aj + a†j
√

2
, Yj =

aj − a†j
i
√

2
,

Xin
j =

ain
1 + ain†

1
√

2
, Y in

j =
ain

1 − ain†
1

i
√

2
,

(12)

where j = 1, 2. We define the vector of the quadrature fluctuation operators and the vectors of
corresponding noise operators

R(t) = [q, p, X1, Y1, X2, Y2]
T ,

N(t) = [0, ξ(t),
√︁

2κ1Xin
1 (t),

√︁
2κ1Y in

1 (t),
√︁

2κ2Xin
2 (t),

√︁
2κ2Y in

2 (t)]T .
(13)

Then, the linearized QLEs in Eq. (8) governing the dynamics of the quantum fluctuations can
be written in a compact form

dR
dt
= A(t)R + N(t), (14)

where A(t) is a 6 × 6 time-dependent matrix

A(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ωm 0 0 0 0

−ωm −γm 0 0 Gx(t) Gy(t)

0 0 κ −∆ 0 J

0 0 ∆ κ −J 0

−Gy(t) 0 0 J −γ −∆̃

Gx(t) 0 −J 0 ∆̃ −γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

in which ∆̃ = ∆ + g⟨q(t)⟩; Gx(t) and Gy(t) are the real and imaginary parts of the effective
coupling strength G(t) =

√
2g⟨a2(t)⟩, respectively. The formal solution of Eq. (13) is

R(t) = L(t)R(0) + L(t)
∫ t

0
L−1(τ)N(τ)dτ, (16)

here L(t) = T exp
[︂∫ t

0 A(τ)dτ
]︂

L(0) and T represents the time-ordering operator.
Due to the linearized dynamics of the quantum fluctuations and the zero-mean Gaussian

nature of the quantum noises, the time evolution of the quantum fluctuations can be completely
described by the 6 × 6 covariance matrix (CM) V(t) whose matrix element is defined as

Vk,l = ⟨Rk(t)Rl(t) + Rl(t)Rk(t)⟩/2. (17)

We can derive the motion equation of the CM V(t) according to Eqs. (13), (15), and (16)

dV
dt
= A(t)V(t) + V(t)AT (t) + D (18)

where AT (t) denotes the transpose of A(t); the diffusion matrix D is

D = diag[0, γm(2nm + 1), κ(2na1 + 1), κ(2na1 + 1), γ(2na2 + 1), γ(2na2 + 1)]. (19)

The evolution equation of the CM V(t) can completely described the dynamic evolution of
quantum fluctuations and can be used to analyze the quantum properties of the system.
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Because the amplitude of the driving laser is modulated very gently, in order to analyze the
stability of the system over a larger range of driving amplitude, we here make driving laser
independent of time, i.e. the first moment of the operators and the coefficient matrix in Eq. (15)
are time-independent. According to the Routh-Hurwitz criterion [59], the system dynamics is
stable if and only if all of the eigenvalues of the matrix A have negative real parts.

In Fig. 2, we show the effects of driving amplitude E, cavity-cavity coupling J, and gain-loss
ratio κ/γ on the system stability, where yellow (blue) represents the stable (unstable) region and
the optomechanical cavity is in the unresolved-sideband regime. Figures 2(a) and (b) display the
system stability versus E and J for κ = 0.01γ and κ = 0.4γ, respectively, in which the red dashed
lines are composed of the EPs, i.e., J = 0.505γ (κ = 0.01γ) and J = 0.7γ (κ = 0.4γ). It can be
found that the system stable region shrinks as the system moves towards the balanced gain and
loss, and the stable region mainly locates in the unbroken-PT -symmetry regime, i.e., before the
two supermodes coalesce. Figures 2(c) and (d) exhibit the system stability versus E and κ/γ
for J=0.4γ and J=γ, respectively, from which we can see the stable region expands with the
increase of coupling strength J. Therefore, the strong coupling J and low gain-loss ratio κ/γ are
beneficial to the stability of the system. The coupling strength J in the unbroken-PT -symmetry
regime is larger than that in the broken-PT -symmetry regime, so under the same conditions,
the system is more likely to be stable in the unbroken-PT -symmetry regime. In the following
section, we will study the mechanical squeezing in these stable regions.

Fig. 2. Diagram of the system stability versus E and J for κ = 0.01γ (a) and κ = 0.4γ (b),
the system stability versus E and κ/γ for J = 0.4γ (c) and J = γ (d). The yellow (blue)
region represents the stable (unstable) region of the system. The red dashed lines in (a) and
(b) indicate the EPs. The chosen system parameters are (in units of ωm): ∆ = 1, γm = 10−6,
g = 8 × 10−5, γ = 6.5, and the thermal noises are absence (nm = na = 0).
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4. Mechanical squeezing in the unresolved-sideband and resolved-sideband
regimes

When the conventional dissipative optomechanical cavity is driven by a periodically amplitude-
modulated laser field, it has been demonstrated that the mechanical squeezing will be generated
[5], and the passive-passive double cavities will enhance the mechanical squeezing [7]. Here we
want to show what will happen in a periodically amplitude-modulated active-passive double-cavity
optomechanical system. The periodically modulated amplitude E(t) can be expanded by using
Fourier series

E(t) =
∞∑︂

n=−∞
Ene−inΩt (20)

whereΩ = 2π/τ is the fundamental modulation frequency and τ is the modulated period. For the
following numerical analysis, we approximatively truncate the series of the modulated amplitude
to the first terms, i.e., the time-dependent amplitude takes the form of E(t) = E−1eiΩt+E0+E1e−iΩt.
Substitute E(t) into Eq. (7), then we can numerically solve the motion equation of the CM
V(t) to study the quantum behaviors of the system. As we all know, as long as the position
variance V(q) or the momentum variance V(p) of the mechanical mode, i.e., the first or second
diagonal elements of the CM V(t), is less than 1/2, we can come to conclusion that mechanical
squeezing has been generated. Now we show the generation of mechanical squeezing in the
unresolved-sideband (γ>ωm) regime by numerically evaluating the position variance V(q) in
Fig. 3, where the system parameters are chosen according to the stable region in Fig. 2. J = 0.6γ,
E0 = 1.4 × 105ωm, and E±1 = 3 × 104ωm. The modulation frequency is chosen as Ω = 2ωm,
following the result of Ref. [5], whose physical mechanism can be understood by analogy with
the parametric amplification: the variation of the spring constant of the mechanical motion in
time with just twice the frequency of the mechanical motion will leads to the squeezing of the
mechanical mode. The other parameters are the same as those in Fig. 2(a).
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Fig. 3. Time evolution of the mechanical position operator variance in the unresolved-
sideband regime for the mean thermal phonon number (a) nm = 0 and (b) nm = 6000.
The red solid (blue dashed) line represents the position variance in the active-passive
(passive-passive) cavity optomechanical system. The rectangular light blue areas (shadow
areas) represent the region below quantum noise limit. The chosen parameters are J = 0.6γ,
E0 = 1.4 × 105ωm, E±1 = 3 × 104ωm, and Ω = 2ωm. The other parameters are the same as
those in Fig. 2(a).

The system driven by a periodically amplitude-modulated laser field will reach steady state
after a long period of time. In Fig. 3, we plot V(q) versus the time from t = 97τ to t = 100τ.
The red solid line in Fig. 3 represents the position variance V(q) in the active-passive cavity
optomechanical system, while the blue dashed line represents the V(q) in the passive-passive



Research Article Vol. 30, No. 26 / 19 Dec 2022 / Optics Express 47077

cavity optomechanical system, which can be achieved by choosing the negative value of the gain
κ. The periodic oscillation of the variance V(q) over time indicates that the squeezing direction
changes periodically, and the change period is the same as the modulation period. Figures 3(a)
and (b) correspond to the cases the mechanical thermal phonon number nm = 0 and nm = 12000,
respectively. From Fig. 3(a), we can see the mechanical squeezing can be generated in both
the active-passive and passive-passive system, the squeezing in the active-passive system is
slightly better than that in the passive-passive system. For example, the the minimum V(q) in
the active-passive system is 0.3166, and in the passive-passive system is 0.3205. That is, the
active-passive system seems to have little advantage over the passive-passive system. However,
when the thermal noise is taken into account and the mean thermal phonon number nm = 12000
as shown in Fig. 3(b), the squeezing in the active-passive system can still be generated, while the
mechanical mode cannot be squeezed in the passive-passive system. That is, the active-passive-
coupled system has stronger robustness against the thermal noise than the passive-passive-coupled
system. The physics behind the results above can be understood as follows. On the one hand,
the mechanical squeezing is generated through the nonlinearity induced by the periodically
amplitude-modulated pump [5] rather than the gain of the active cavity, so when the thermal
noise is not taken into account, the mechanical squeezing in the active-passive-coupled system is
almost no better than that in the passive-passive-coupled system. On the other hand, the coupled
system can be regarded as a whole, and the gain of the active cavity can balance a part of the
dissipation of the passive cavity. Therefore, the overall dissipation of the active-passive system is
essentially less than that of the passive-passive system, and thus the active-passive system will
have stronger robustness against the thermal noise than the passive-passive system according to
the fluctuation-dissipation theorem.

The mechanical squeezing can be generated in the unresolved-sideband regime, but the strong
squeezing breaking the so-called 3 dB limit cannot achieved. Now we numerically evaluate the
position variance V(q) in the resolved-sideband regime, as shown in Fig. 4, where the red solid
(blue dashed) line represents the position variance for the mean thermal phonon number nm = 0
(nm = 1000), and the loss of the optomechanical cavity γ = 0.2ωm. We can see the 3 dB limit
of the mechanical squeezing based on the parametric interaction can be broken (V(q)<0.25) in
the resolved-sideband regime. The minimum variance V(q) = 0.1469 for nm = 0. The strong
mechanical squeezing can be still achieved even in the presence of thermal noise (the minimum
V(q) = 0.2386 for nm = 1000), which once again proves the mechanical squeezing scheme in the
active-passive-coupled system has strong robustness against the thermal noise. What we want to
point out is that, although the mechanical squeezing here is slightly increased and has stronger
robustness against the thermal noise than that in the passive-passive-coupled system, the present
scheme requires the introduction of gain to a cavity, which will inevitably increase the difficulty
of the experiment. Fortunately, the active cavity has been fabricated from Er3+-doped silica and
can emit photons in the 1550-nm band by optically pumping Er3+ ions with a pump laser in the
1460-nm band [38], which ensures the experimental feasibility of the present scheme.

To compare the mechanical squeezing before and after the two supermodes coalesce, we plot
the evolution of single-mode squeezing parameter r over time in Fig. 5 for different cavity-cavity
coupling strengths J, where the squeezing parameter r is defined as the logarithm of the minimum
eigenvalue of the CM V(t) [5]. The system parameters are the same as those in Fig. 2(a). From
Fig. 5, we can see the steady-state squeezing parameter increases with the increase of J. J = 0.505
corresponds to the EP (the red dashed line in Fig. 2(a)), and J>0.505 (J<0.505) corresponds to the
unbroken-PT -symmetry (broken-PT -symmetry) regime, i.e., before (after) the two supermodes
coalesce. Therefore, Fig. 5 shows the mechanical squeezing in the unbroken-PT -symmetry
regime is stronger than that in the broken-PT -symmetry regime.
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Fig. 4. Time evolution of the mechanical position operator variance in the resolved-sideband
regime. The red solid and blue dashed lines represent the cases that the mean thermal
phonon number nm = 0 and nm = 1000, respectively. The rectangular blue area (shadow
area) represents the region below quantum noise limit. The chosen system parameters are
γ = 0.2ωm, κ = 0.1γ, J = 12γ, E0 = 1.4× 105ωm, E±1 = 2× 104ωm. The other parameters
are the same as those in Fig. 3.
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Fig. 5. Time evolution of the mechanical mode-squeezing parameter r for different
cavity-cavity coupling strengths J. The chosen parameters are the same as those in Fig. 2(a).
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5. Conclusions

In conclusion, we have investigated the mechanical squeezing in an active-passive-coupled
double-cavity optomechanics system driven by a periodically amplitude-modulated laser. The
coupled loss and gain cavities can form into a PT -symmetry system. We derived dynamics
of the active-passive optomechanics system, and further analyzed the its stability, which shows
that the system is generally unstable in the broken-PT -symmetry regime, while more stable
in the unbroken-PT -symmetry regime. We found that when the driving laser is blue-detuned
respecting to the cavity frequency, the mechanical squeezing can be generated in both the resolved-
sideband regime and the unresolved-sideband regime. What’s more, the strong mechanical
squeezing can be achieved in the resolved-sideband regime even when the thermal noise is
present. Compared with the passive-passive-coupled double-cavity optomechanics system, we
have shown the mechanical squeezing in the active-passive system is more robust against the
mechanical thermal noise. It is also demonstrated that the degree of the mechanical squeezing
in the unbroken-PT -symmetry regime is higher than that in the broken-PT -symmetry regime.
What’s more, the active-passive-coupled double-cavity system has been realized experimentally
that makes the presented scheme feasible in experiment. Therefore, this work can not only provide
an effective quantum resource for quantum information and quantum precision measurement
based on cavity optomechanics, but also may be meaningful for the study of PT -symmetric
physics in the quantum regime.
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