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Abstract: In continuous-variable quantum key distribution (CV-QKD), the key information
are encoded on quadratures of the optical field, which are measured via balanced homodyne
detector (BHD). The bandwidth of the BHD is one of key parameters for precise characterization
of quantum states. We establish a theoretical model to analyze the impact of the BHD bandwidth
and signal modulation patterns on the channel parameters estimation of CV-QKD systems. Based
on the proposed model, the secure key rate of a practical CV-QKD system under different BHD
bandwidths and signal modulation patterns are investigated. Our results show that insufficient
BHD bandwidth will result in wrong estimate of the transmission loss and excess noise, which
significantly affects the performance of CV-QKD systems. Given the BHD bandwidth, there
exists an optimal signal repetition rate that maximizes the secure key rate. The BHD bandwidth
requirement of the QKD system increases with the transmission distance for large duty cycle
pulse. Furthermore, the root raised-cosine pulse signal modulation performs better than the
square pulse signal modulation in general.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum key distribution (QKD)[1–3] enables two legitimate communication parties (Alice and
Bob) to share information-theoretically secure key through an insecure quantum channel and
an authenticated classical channel. Any eavesdropping behaviours aiming at the QKD system
can be detected and the security is guaranteed by the laws of quantum mechanics rather than the
complexity of mathematical algorithms. When combine with one-time pad encryption, secure
and private communication can be realized. Various QKD protocols have been proposed and
demonstrated during the past decades [4,5]. Many of them utilize discrete-variable (DV) of light
fields as the carrier of the key information, such as the polarization or phase of single photon. The
other protocols encode key information in continuous-variable (CV) of light fields, such as the
amplitude and phase quadratures of quantized optical mode [6–8]. Due to its good compatibility
with the standard optical telecommunication technologies and potential high secure key rate
over metropolitan areas, significant progress have been seen in continuous-variable quantum key
distribution (CV-QKD) [9–38].

For CV-QKD protocol based on Gaussian-modulated coherent states (GMCS) and homodyne
detection [11], Alice prepares a train of Gaussian distribution coherent states and sends them to
Bob. Bob randomly measures either amplitude or phase quadrature of the received states using
the balanced homodyne detector (BHD). Based on the estimated secure key rate, Alice and Bob
extract the secret key by using data error correction and privacy amplification. Recently, the
composable security of the GMCS CV-QKD protocol has been proved against general attacks
[28,39–41].
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The GMCS CV-QKD protocol is considered to be a promising alternative in practical
applications over metropolitan area secure networks. To date, a number of works have been
implemented from laboratory system to field test. And the transmission distance has been extended
to 202 km using ultralow-loss optical fiber [42]. Given the transmission distance, the secure
key rate of the QKD system is mainly limited by the system excess noise and signal repetition
rate. The former is caused by the imperfect state preparation [43], the Eve’s eavesdropping, and
the inaccurate measurement of the quantum state, etc. The latter is mainly limited by the BHD
bandwidth and the speed of the classical data post-processing.

The design and construction of a wideband homodyne detector for time-domain quantum
measurements has been reported [44]. By assuming a pulsed local oscillator (LO) with the
pulse width much shorter than the time resolution of the detector, effective efficiency due to
the electronic noise is derived. To get high secure key rate, Chi et al. discussed the induced
excess noise by the electrical pulses overlap in time-domain BHD [45]. In [46], Tang et al.
analyzed various noise sources at different clock rates and evaluated the performance of CV-QKD
with fixed BHD bandwidth. Recently, the impact of receiver imbalances on the security of a
heterodyne based CV-QKD system was reported in [47]. Although the finite bandwidth of the
receiver is involved in the analysis, it remains constant. At present, the systematic investigation
about the impact of the BHD bandwidth and signal modulation patterns on the performance of
the CV-QKD system is still missing.

Since the design and fabrication of shot noise limited BHDs with very high bandwidth is
technically challenging. In order to fully exploit the bandwidth of BHD and achieve high
performance CV-QKD, in this paper, a theoretical model for the impact of the BHD bandwidth
and signal modulation patterns on the channel parameter estimation of a CV-QKD system is
proposed. In our model, we keep the pulse duration, pulse repetition period, and the detection
bandwidth as independent variables, and choose the integration limits in a reasonable manner.
Then, we analyze the performance of the CV-QKD system under the conditions of different BHD
bandwidths and signal modulation patterns. For the fixed BHD bandwidth and transmission
distance, the optimal signal repetition rates are derived.

The paper is organized as follows. In Sec. 2, we model the parameter estimation of the
CV-QKD system with a finite-bandwidth BHD. In Sec. 3, we derive the secure key rate under
finite-bandwidth BHD, and analyze the influences of the bandwidth on practical performance of
a CV-QKD system. In Sec. 4, we analyze the parameter estimation of the CV-QKD system with
a root raised-cosine pulse signal modulation and finite-bandwidth BHD. Finally, we present the
conclusion in Sec. 5.

2. Influence mechanism of the BHD bandwidth on channel parameters estima-
tion

2.1. BHD output under finite bandwidth

In Fig. 1, we show a typical schematic of the BHD with finite bandwidth. A signal mode is
interfered with a phase reference mode (local oscillator, LO) at a 50:50 beam splitter. The two
output fields emerging from the beam splitter are incident upon two photodiodes and the resulting
photocurrents are subtracted. For BHD with infinite bandwidth, the photocurrent difference
is proportional to the instantaneous quadrature of the signal field x̂ (t, θ) = â†s (t)eiθ + âs(t)e−iθ ,
where â†s (t) and âs(t) denote creation and annihilation operators of the signal field, θ is the relative
phase between the signal field and LO. Assume that the LO and signal have the same spatial
mode, and their pulses duration and repetition period are s0 and s, respectively, then the measured
quadrature of the single pulsed signal mode x̂ (θ) defined by the spatial and temporal mode of the
LO is given by

x̂ (θ) =
∫ s0

0
G |αL(t)| x̂ (t, θ) dt, (1)
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where G denotes the optic-to-electronic gain factor and the strong LO has been treated as a
classical field. We assume that the LO is a square pulse with αL(t) = αL, and omit θ in x̂ (θ) and
x̂ (t, θ). In this case, Eq. (1) can be simplified as

x̂=
1

√s0

∫ s0

0
x̂ (t) dt. (2)

To derive Eq. (2), we have set GαL = 1/√s0 to normalize the variance of the vacuum field
fluctuation.

Fig. 1. Schematic of the balanced homodyne detection with finite bandwidth. BS, beam
splitter; LO, local oscillator; h(t), response function of the BHD.

For a practical BHD with finite bandwidth, we introduce a response function h(t) [48,49], so
that the measured quadrature of the single pulsed signal mode has the form

x̂ =
1

√s0

∫ s1

0

∫ ∞

−∞

h(t − τ)x̂ (τ) dτdt, (3)

where s1 is the upper limit of the integral that depends on h(t − τ) and x̂ (τ). In the following, we
will investigate in detail the channel parameters estimation under the finite-bandwidth BHD.

2.2. Estimation of the channel parameters in CV-QKD with finite-bandwidth BHD

In GMCS CV-QKD, Alice prepares a series of coherent states and their quadratures obey a
centered bivariate Gaussian distribution in phase space. The amplitude quadrature of the signal
mode is written as

x̂A(t) = xA(t) + x̂v1(t), (4)
where x̂v1(t) is the quadrature of a vacuum field, and xA(t) denotes the Gaussian modulation
signal with modulation variance of

VA=
⟨︁
x2

A
⟩︁

, xA=
1

√s0

∫ s0

0
xA(t)dt. (5)

After transmitting through a quantum channel characterized by the transmittance T and excess
noise ε, the signal mode measured by Bob’s BHD has the form

x̂B(t) =
√︁
ηT [x̂A(t) + x̂ε(t)] +

√︁
1 − ηTx̂v2(t) + xel(t), (6)

where x̂ε is the quadrature of the auxiliary mode introduced by the eavesdropper, which satisfies
⟨x̂ε⟩ = 0 and

⟨︁
x̂2
ε

⟩︁
= ε, xν2 denotes the quadrature of a vacuum field which models the detection

noise due to the imperfect quantum efficiency of the BHD, η and xel denote the detection efficiency
and electronic noise of Bob’s BHD, respectively, and satisfy

⟨︁
x2

el
⟩︁
= υel.

By introducing a noise operator x̂N(t), Eq. (6) can be rewritten as

x̂B(t) =
√︁
ηTxA(t) + x̂N(t), (7)

where x̂N(t) is defined as

x̂N(t) =
√︁
ηTxv1(t)+

√︁
ηTx̂ε(t) +

√︁
1 − ηTx̂v2(t) + xel(t). (8)

Hereafter, we consider only the impact of the closest signal pulse that dominates the impact on
the current measurement results. In this case, the quadrature of the signal mode measured by
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Bob’s BHD is given by

x̂B =
1

√s0

∫ s1

0

∫ t

−∞

h(t − τ)x̂B(τ)dτdt

=
1

√s0

∫ s1

0

∫ t

0
h(t − τ)x̂B(τ)dτdt +

1
√s0

∫ s1

0

∫ 0

−s
h(t − τ)x̂B(τ)dτdt.

(9)

In the second line of Eq. (9), we expand the integral to two terms. The first term denotes
the contribution arising from the current signal pulse itself. The second term denotes the
contribution arising from the closest signal pulse. In the case of infinite-bandwidth BHD, that
means h(t − τ) = 2δ(t − τ) , Eq. (9) can be rewritten as

x̂B =
1

√s0

∫ s0

0
x̂B(t)dt. (10)

After the send-receive and key sifting stages of the signal quantum states, Alice and Bob share a
set of raw keys. By using random sampling, the quantum channel parameters T and ε can be
estimated [21]. From Eqs. (4), (5), (7), (8), and (10), we have

⟨xAx̂B⟩ =
1
s0

∫ s0

0

∫ s0

0

⟨︂√︁
ηTxA(t)xA(t′) + xA(t)x̂N(t′)

⟩︂
dtdt′, (11)

⟨︁
x̂2

B
⟩︁
=

1
s0

∫ s0

0

∫ s0

0

⟨︂
(
√︁
ηTxA(t) + x̂N(t))(

√︁
ηTxA(t′) + x̂N(t′))

⟩︂
dtdt′. (12)

Since the modulation signal xA(t) and the noise x̂N(t) are independent of each other, Eqs. (11)
and (12) can be calculated to be [43]

⟨xAx̂B⟩ =
√︁
ηTVA, (13)⟨︁

x̂2
B
⟩︁
= ηT(VA + ε) + 1 + υel. (14)

In Eq. (14), the fluctuations of the vacuum field (shot noise for BHD) has been normalized. In
terms of Eqs. (13) and (14), we can estimate the quantum channel parameters T and ε

T =
⟨xAx̂B⟩

2

ηV2
A

, (15)

ε =

⟨︁
x̂2

B
⟩︁
− 1 − υel

ηT
− VA. (16)

At this stage, the secure key rate can be calculated based on the relevant parameters of the system.
Then, the data post-processing technique (reconciliation and privacy amplification) is exploited
to distill the secret key from the raw keys and guarantee the security.

In the above analysis, we have assumed that Bob performs measurement with an ideal BHD
that has an infinite bandwidth. However, the practical BHDs always have a finite bandwidth,
which inevitably distort the measurement outcomes and result in inaccurate parameter estimation.
In the following part, the effect of the finite BHD bandwidth on the estimate of the quantum
channel parameters is investigated.

Considering that the Butterworth filter is wildly used on the BHD, we assume that a fifth-order
Butterworth low-pass filter is exploited hereafter, which has transfer function of the form [50]

H(s) =
ω2

c(︁
ωcs + ω2

c
)︁ [︁

s2 + 2 cos(π/5)ωcs + ω2
c
]︁ [︁

s2 + 2 cos(2π/5)ωcs + ω2
c
]︁ , (17)

where s=iω and ωc denotes the cut-off frequency of the filter. The impulse response h(t) of the
fifth-order Butterworth filter is given by the inverse Laplace Transform of its transfer function
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H(s)

h(t)=
1

2πi

∫ c+i∞

c−i∞
H(s)estds. (18)

By inserting Eq. (18) into Eq. (9), we can analyze the effect of the finite-bandwidth BHD on the
channel parameters estimation. In Eq. (9), the upper limit of the integral for the variable t should
be reasonably determined. For an ideal BHD with infinite bandwidth, the upper limit of the
integral is exactly the optical pulse duration. For finite-bandwidth BHDs, it is not reasonable to
integrate the electronic response pulses of the photodetection system just within the optical pulse
duration. In this case, only partial electronic pulse signals are sampled and exploited, which
will alter and distort the quadrature information of the signal field. By simulating the output
electronic pulse shape of the BHD, the upper limit of the integral s1 is selected as

s1 =

{︄
s0 + 2π/ωc, s0 + 2π/ωc<s
s, s0 + 2π/ωc ≥ s

. (19)

In Eq. (19), the aliasing effects has been taken into account. Firstly, we consider the calibration
of the shot noise and electronic noise. When the signal field is blocked and only the LO field is
incident, the quadrature of the signal mode measured by Bob’s finite-bandwidth BHD consists
of the shot noise and electronic noise. In this case, applying Eqs. (8) and (9), the quadrature is
given by

x̂B1 =
1√s0

{︂∫ s1
0

∫ t
0 h (t − τ) x̂B1(τ)dτdt +

∫ s1
0

∫ 0
−s h (t − τ) x̂B1(τ)dτdt

}︂
, (20)

where
x̂B1(τ) = x̂v(τ) + xe(τ). (21)

It follows from Eqs. (20) and (21) that⟨︁
x̂2

B1
⟩︁
=

1
s0

[A + A1 + υel(A0 + A2)] , (22)

where

A0 = (

∫ s1

0

∫ t

0

∫ t′

0
+

∫ s1

0

∫ s1

t

∫ t

0
)h(t − τ)h(t′ − τ)dτdt′dt,

A=(
∫ s0

0

∫ t

0

∫ t′

0
+
∫ s1

s0

∫ s0

0

∫ t′

0
+
∫ s1

s0

∫ s1

s0

∫ s0

0
+

∫ s0

0

∫ s1

t

∫ t

0
)h(t − τ)h(t′ − τ)dτdt′dt,

A1=
∫ s1

0

∫ s1

0

∫ −s+s0

−s
h(t − τ)h(t′ − τ)dτdt′dt,

A2=
∫ s1

0

∫ s1

0

∫ 0

−s
h(t − τ)h(t′ − τ)dτdt′dt,

(23)
where A and A1 denote the contributions to the shot noise due to the current and the closest signal
pulses, respectively, and A0 and A2 denote the contributions to the electronic noise due to the
current and the closest pulses, respectively. In a similar manner, if we block both the signal and



Research Article Vol. 30, No. 15 / 18 Jul 2022 / Optics Express 27917

LO fields, the variance of the electronic noise measured by the BHD has the form⟨︁
x̂2

B2
⟩︁
=

1
s0
υel(A0 + A2). (24)

From Eqs. (22) and (24), the measured shot noise N0 and electronic noise υ′el (normalized to N0)
are given by

N0 =
⟨︁
x̂2

B1
⟩︁

-
⟨︁
x̂2

B2
⟩︁
= (1/s0)(A + A1), υ′el =

⟨︁
x̂2

B2
⟩︁

N0
= υel

A0 + A2
A + A1

. (25)

By normalizing x̂B to
√

N0 , Eqs. (13) and (14) are rewritten as⟨︃
xAx̂B
√

N0

⟩︃
=

A3VA
√
ηT√︁

s0(A + A1)
, (26)

VB =

⟨︁
x̂2

B
⟩︁

N0
=

A2
3 + A2

4
s0(A + A1)

ηTVA + ηTε+1 + υel
A0 + A2
A + A1

, (27)

where A3=(
∫ s0
0

∫ t
0 +

∫ s1
s0

∫ s0
0 )h(t − τ)dτdt and A4=

∫ s1
0

∫ -s+s0
−s h(t − τ)dτdt. Combine Eqs. (15),

(16), (26), and (27), the estimated transmittance and excess noise of the quantum channel under
finite-bandwidth BHD are derived as

T1=T
A2

3
s0(A + A1)

, (28)

ε1 =
s0(A + A1)

A2
3

ε +
A2

4

A2
3
VA. (29)

Figure 2 depicts the estimated channel parameters and normalized electronic noise as a function
of the BHD bandwidth by using Eqs. (28) and (29). It is obvious that insufficient BHD bandwidth
decreases the estimate value of the transmittance, whereas increases the estimate value of the
excess noise and electronic noise. The physical mechanism is that the quadrature of signal
quantum states measured by the finite-bandwidth BHD is incomplete and noisy due to the loss of
the information at high frequency components and overlapping of adjacent signal pulses. This
introduces noises on Bob’s data and decreases the correlation between Alice’s and Bob’s data.

In the case of infinite-bandwidth BHD, the normalized electronic noise keeps constant.
Although the electronic noise is estimated without quantum signal and LO, when the BHD
bandwidth decreases from 5 GHz to around 1 GHz, the electronic noise power of current period
declines due to the filtering effect, whereas the crosstalk of the adjacent pulse increases. The
overall effect results the rise of the electronic noise. When the BHD bandwidth decreases
further, the crosstalk of the adjacent pulse cannot compensate the rapid degradation of the current
electronic noise, therefore the electronic noise starts to drop quickly. Above effect results in that
the electronic noise has a peak value around 1 GHz and is dependent of duty cycle, as shown in
Fig. 2(a).

Notice that estimation of the channel parameters is less sensitive for smaller duty cycle s0/s
when BHD bandwidth is larger than l.5 GHz (the repetition rate of the QKD system is 1 GHz).
The transmittance can be accurately determined at BHD bandwidth above 3.5, 2 and 1.5 GHz for
duty cycles of 0.8, 0.5 and 0.2, respectively. On the other hand, the excess noise can be accurately
estimated when the BHD bandwidth is higher than 3.0, 2.0 and 2.0 GHz for duty cycles of 0.8,
0.5 and 0.2, respectively.



Research Article Vol. 30, No. 15 / 18 Jul 2022 / Optics Express 27918

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105

0.2

El
ec

tro
ni

c 
no

is
e 

(S
N

U
)

Tr
an

sm
itt

an
ce

BHD bandwidth (GHz)

 Duty Cycle = 0.8
 Duty Cycle = 0.5
 Duty Cycle = 0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8(a)

 Duty Cycle = 0.8
 Duty Cycle = 0.5
 Duty Cycle = 0.2

 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40(b)
 

Ex
ce

ss
 n

oi
se

 (S
N

U
)

BHD bandwidth (GHz)

 Duty Cycle = 0.8
 Duty Cycle = 0.5
 Duty Cycle = 0.2

2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.048

0.050

0.052

0.054

0.056

0.058

 

  

 

Fig. 2. Estimated transmittance and electronic noise (a), excess noise (b) of the CV-QKD
system versus the BHD bandwidth at different duty cycles of 0.8, 0.5 and 0.2, when
considering the influence of the closest signal pulse. In (a), the solid line denotes the
transmittance and the dashed line denotes the electronic noise. SNU, shot noise unit. The
parameters used for the simulations are: s = 1ns, VA = 5, T = 0.1, ε = 0.05, η = 0.6, and
υel = 0.1.

3. Performance analysis of the CV-QKD system with the finite-bandwidth BHD

The performance of a practical CV-QKD system is mainly characterized by the secure key rate
and maximal transmission distance. Based on the estimated experimental parameters of the
system VA, T1, ε1, η, and υ′el, Alice and Bob can estimate the secure key rate, which is expressed
as [51]

K =
n
N

[︁
βIϵPE

AB − SϵPE
BE − ∆ (n)

]︁
. (30)

Here the finite-size effect has been considered. N denotes the total number of signals exchanged
between Alice and Bob, n denotes the number of signals that is used to extract the final key, and
the remaining m = N − n signals are used for the parameter estimation. β is the reconciliation
efficiency. IϵPE

AB and SϵPE
BE represent the Shannon mutual information and Holevo bound information

compatible with the statistic fluctuations, except with probability ϵPE, respectively. ∆ (n) is the
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parameter related to the security of the privacy amplification, which has the form [51]

∆(n) ≈ 7
√︃

log2(2/ϵ̄ )
n

, (31)

where ϵ̄ is the probability of error during privacy amplification.
In the finite-size regime, the estimated channel parameters in Eqs. (28) and (29) are no longer

the true channel parameters, but the expected values. We need to replace these parameters
with their confidence intervals and find their boundary values that are most favorable for Eve.
According to [51], the worst estimation of the unknown parameters T1 and ε1 are given by

T1,min =
⎛⎜⎝t̂ − zϵPE/2

√︄
σ̂2

mVA

⎞⎟⎠
2

/η, ε1,max =

(︄
σ̂2 + zϵPE/2

σ̂2√2
√

m
− 1 − υ′el

)︄
/t̂2. (32)

where zϵPE/2 =
√

2erf−1 (1 − ϵPE) , and erf−1(x) denotes the inverse function of the error function.
The parameters t̂ and σ̂2 are independent estimators, and from the theoretical perspective, we
can assign them with the expected values E

(︁
t̂
)︁
=
√
ηT1 and E

(︁
σ̂2)︁ =ηT1ε1 + 1 + υ′el.

Considering the statistic fluctuations, IϵPE
AB is given by

IϵPE
AB =

1
2

log2

(︃
VA + 1 + χ̂tot

1 + χ̂tot

)︃
. (33)

Here χ̂tot = χ̂line + χhom/T̂1 represents the total noise referred to the quantum channel input,
where χ̂line = 1/T̂1 − 1 + ε̂1, χhom =

[︁
(1 − η) + υ′el

]︁
/η, T̂1 = t̂2/η, and ε̂1=(σ̂2 − 1 − υ′el)/t̂

2 .
The Holevo bound SϵPE

BE is calculated by [15]

SϵPE
BE =

2∑︂
i=1

G
(︃
λi − 1

2

)︃
−

5∑︂
i=3

G
(︃
λi − 1

2

)︃
, (34)

where G (x) = (x + 1) log2 (x + 1) − xlog2x, λi ≥ 1 are symplectic eigenvalues of the covariance
matrices characterizing the quantum states

λ2
1,2=

1
2

(︂
A ±

√
A2 − 4B

)︂
,

λ2
3,4=

1
2

(︂
C ±

√
C2 − 4D

)︂
,

λ5 = 1,

(35)

with the notations [15]

A = (VA + 1)2 +
[︁
T̂1 (VA + ε̂1) + 1

]︁2
− 2T̂1

(︂
V2

A + 2VA

)︂
,

B =
[︂
(VA + 1)

(︂
T̂1ε̂1 + 1

)︂
− T̂1VA

]︂2
,

C =
Aχhom + (VA + 1)

√
B + T̂1 (VA + ε̂1) + 1

ηT̂1 (VA + ε̂1) + 1 + υ′el
,

D =
√

B (VA + 1) + Bχhom

ηT̂1 (VA + ε̂1) + 1 + υ′el
.

(36)

At this stage, the lower bound of the secure key rate in the finite-size regime is given by [51]

KL =
n
N

[︁
β · IϵPE

AB (T1 min, ε1 max) −SϵPE
BE (T1 min, ε1 max) − ∆ (n)

]︁
. (37)

Using Eq. (37), we plot the secure key rate KL (in unit of bits per pulse) versus the transmission
distance at different BHD bandwidths, as shown in Fig. 3(a) and 3(b). The other numerical
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simulation parameters are listed in Table 1. We find that the finite bandwidth obviously decreases
the secure key rate and the transmission distance. Especially for duty cycle of 0.8, the effect is
more evident. Compared with the ideal BHD with infinite bandwidth, the secure key rate and
transmission distance are significantly degraded at bandwidth less than 2 GHz. Nevertheless,
for bandwidth higher than 2 GHz at duty cycle of 0.5 and bandwidth higher than 3 GHz at duty
cycle of 0.8, the effect of the BHD bandwidth on the channel parameters estimation is trivial.
The secure key rate and the transmission distance are dramatically affected for bandwidth less
than 2 GHz with duty cycle of 0.8.
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Fig. 3. (a) and (b) Secure key rate in unit of bits per pulse as a function of the transmission
distance with different BHD bandwidth. (c) and (d) Secure key rate in unit of Mbits per
second as a function of signal repetition rate of the system for transmission distances of 25,
35 and 50 km, respectively. The bandwidth of the BHD is 1 GHz. The duty cycles are 0.5 in
(a), (c) and 0.8 in (b), (d), respectively. The other parameters are listed in Table 1.

Table 1. The simulation parameters for the performance analysis of the
CV-QKD system. All the variances and noises are in shot noise unit.

s VA T ε η υel β N m ϵ̄

1ns 5 0.1 0.05 0.6 0.1 0.93 109 109/2 10 - 10

Figure 3(c) and 3(d) show the secure key rate K = R · KL (in unit of Mbits per second) as a
function of signal repetition rate of the QKD system. Here R is the signal repetition rate of the
QKD system, and the bandwidth of the BHD is 1 GHz. Three different transmission distances of
25, 35 and 50 km are investigated. We can see that the signal repetition rate exists an optimal
value at each transmission distance, at this point, the secure key rate is maximized. When the
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signal repetition rate R is much smaller than the BHD bandwidth, the signal quantum states can
be precisely measured and the secure key rate KL approaches to its maximum value. However, the
small R inevitably decreases K. In contrast, when the signal repetition rate is close to the BHD
bandwidth, although larger signal repetition rate is beneficial to the secure key rate K, the finite
BHD bandwidth decreases the estimate value of the transmittance and increases the estimate
value of the excess noise (Fig. 2). In this case, the value of secure key rate KL drops quickly to
zero, which results in that the secure key rate K drops to zero. Therefore, there exists an optimal
R to maximize the secure key rate K. From Fig. 3(c), when the transmission distances are 25, 35
and 50 km, the optimal repetition rates are close and has the value of 0.82 GHz. From Fig. 3(d),
when the transmission distances are 25, 35 and 50 km, the optimal repetition rates are 0.38, 0.36
and 0.34 GHz, respectively. We find that the large duty cycle pulse has a smaller optimal signal
repetition rate, and the longer the transmission distances, the smaller the optimal signal repetition
rate. The reason is that the secure key rate K at longer transmission distances is more sensitive to
the excess noise and transmission distance of the quantum channel. Smaller signal repetition rate
R results a lower estimate excess noise and higher estimate transmission distance.

In Fig. 3(c) and 3(d), the shape of the secure key rate lines is different for duty cycles of 0.5
and 0.8. For a duty cycle of 0.8, the secure key rate increases linearly with the repetition rate
until it reaches a maximum. Nevertheless, we do not observe the same behaviour for a duty cycle
of 0.5. The main reason is due to the different variations of the excess noise versus the BHD
bandwidth for duty cycles of 0.5 and 0.8. As shown in Fig. 2(b), for duty cycle of 0.8, the excess
noise monotonically increases as the BHD bandwidth reduces. However, for duty cycle of 0.5,
the excess noise exhibits fluctuation as the BHD bandwidth decreases. In particular, the excess
noise has an explicit peak at BHD bandwidth of around 1.5 GHz, which results in a valley point
in secure key rate at the repetition rate of around 0.67 GHz in Fig. 3(c).

4. Performance of the CV-QKD system with a root raised-cosine pulse signal
modulation and finite-bandwidth BHD

In the above sections, we have analyzed the performance of the CV-QKD system with the
finite-bandwidth BHD. We have assumed that the signal modulation profile in each signal period
is a square pulse, which is simple to implement in practice and has the form

xA(t)=mA, js ≤ t ≤ s0 + js, j ∈ Z. (38)

It is possible to utilize other signal modulation pattern to suppress the crosstalk between adjacent
signal pulses in the QKD system. Here we assumed that a root raised-cosine pulse signal
modulation pattern [47,52] with roll-factor γ = 1 [53] is employed for the Gaussian signal
modulation

xA(t)=mA
√︁

p(t), p(t)=1 − sin[
π(|t − js − s0/2| − s0/4)

s0/2
], js ≤ t ≤ s0 + js, j ∈ Z. (39)

In this case, we can derive the estimated transmittance, excess noise, and electronic noise of the
CV-QKD system following the similar steps as above. The results have the same expression as
Eqs. (28) and (29), and the definitions of A0 and A2 remain unchanged. However, the definitions
of A, A1, A3 and A4 are different, which are given by

A′=(
∫ s0

0

∫ t

0

∫ t′

0
+

∫ s1

s0

∫ s0

0

∫ t′

0

+
∫ s1

s0

∫ s1

s0

∫ s0

0
+
∫ s0

0

∫ s1

t

∫ t

0
)h(t-τ)h(t′-τ)p(τ)dτdt′dt

, (40)

A′
1=

∫ s1

0

∫ s1

0

∫ −s+s0

−s
h(t-τ)h(t′-τ)p(τ)dτdt′dt, (41)
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A′
3=(

∫ s0

0

∫ t

0
+

∫ s1

s0

∫ s0

0
)h(t-τ)p (τ) dτdt, (42)

A′
4=

∫ s1

0

∫ -s+s0

−s
h(t-τ)p(τ)dτdt. (43)

Using Eqs. (28), (29), and (40–43), the estimated channel parameters with a root raised-cosine
pulse signal modulation pattern versus the BHD bandwidth are illustrated in Fig. 4. Similar to
the square pulse signal modulation pattern, the value of the excess noise is overestimated and
the value of the transmittance is underestimated for finite BHD bandwidths. Compared with the
square pulse signal modulation, the channel parameters estimation with a root raised-cosine pulse
signal modulation are less affected by the BHD bandwidth and more accurate. The reason lies in
that the root raised-cosine pulse signal modulation has a narrower frequency spectrum distribution
range in frequency range in contrast to the square pulse signal modulation. Therefore, the finite
bandwidth has a less impact on the fidelity of the measured signal and the crosstalk between
adjacent signal pulses in general. From Fig. 4(a) and 4(c), as the bandwidth is higher than 3 GHz,
the excess noise and transmittance with the root raised-cosine pulse signal modulation at duty
cycle of 0.5 can be estimated with relative errors of |T1 − T | /T<0.1% and |ε1 − ε | /ε<0.2%,
respectively. For the duty cycle of 0.8 (Fig. 4(b) and 4(d)), as the bandwidth is higher than 3 GHz,
the relative errors of the excess noise and transmittance are less than 0.3% and 0.4%, respectively.
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Fig. 4. Estimated channel transmittance (a), (b) and excess noise (c), (d) of the CV-QKD
system vs the BHD bandwidth. Root raised-cosine pulse signal modulation pattern with
the duty cycles of 0.5 ((a) and (c)) and 0.8 ((b) and (d)) are assumed to be employed for the
Gaussian signal modulation. The other parameters used for the simulations are the same as
in Fig. 2

Notice that the improvement with the root raised-cosine pulse signal modulation is more
evident for the large duty cycle pulse signal modulation (see Fig. 4(b) and 4(d)). For duty cycle
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of 0.8 and repetition period of 1 ns, the spectrum range of the root raised-cosine pulse almost
cuts off at 2.5 GHz, however, the spectrum range of the square pulse is unbounded. As the BHD
bandwidth is larger than 1.8 GHz, the root raised-cosine pulse can be measured with high fidelity
and little crosstalk compared to the square pulse. In this case, the estimated excess noise and
transmittance are almost unaffected.

Although the improvement of parameters estimation with root raised-cosine pulse signal
modulation is not significant for large BHD bandwidth, it is useful for other CV-QKD protocols
such as four-state modulation protocol and measurement-device-independent CV-QKD protocol,
which are very sensitive to the channel excess noises.

5. Conclusion

In summary, we investigate the influence mechanism of the finite BHD bandwidth and signal
modulation patterns on the performance of practical CV-QKD systems. To this end, the
dependence model of the channel parameters estimation in CV-QKD on the BHD bandwidth
and signal modulation patterns is established. Then, we derive the secure key rate in the
finite-size regime under the condition of finite-bandwidth BHD. The results show that insufficient
BHD bandwidth can significantly affect the channel parameters estimation and therefore the
performance of the CV-QKD. We also find that the degree of influence depends on the exploited
signal modulation patterns due to their different frequency spectrum distribution to be employed.
The requirement of the BHD bandwidth for a CV-QKD system increases with the transmission
distance for the large duty cycle pulse. The method developed is useful to analyze the impact of
the homodyne bandwidth on other types of CV-QKD protocols. Our results can provide guidance
for the design and optimization of high speed practical CV-QKD systems and may find other
applications in the fields of quantum optics and quantum information.
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