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Abstract: We study continuous variable coherence of phase-dependent squeezed state based
on an extended Hanbury Brown-Twiss scheme. High-order coherence is continuously varied
by adjusting squeezing parameter r, displacement α, and squeezing phase θ. We also analyze
effects of background noise γ and detection efficiency η on the measurements. As the squeezing
phase shifts from 0 to π, the photon statistics of the squeezed state continuously change from
the anti-bunching (g(n) < 1) to super-bunching (g(n) > n!) which shows a transition from particle
nature to wave nature. The experiment feasibility is also examined. It provides a practical method
to generate phase-dependent squeezed states with high-order continuous-variable coherence
by tuning squeezing phase θ. The controllable coherence source can be applied to sensitivity
improvement in gravitational wave detection and quantum imaging.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum coherence characterizes inherent nature of light fields and reveals quantum statistics
of photons. The research on quantum coherence originated from Hanbury Brown and Twiss
(HBT) experiment [1] and subsequently, Glauber [2] proposed a quantum theory that describes
high-order coherence of light fields and makes it possible to distinguish between classical and
non-classical light fields in quantum optics [3,4]. The non-classical feature [5,6] of light fields
is mainly reflected in anti-bunching [7,8], squeezing [9,10] and entanglement [11]. In recent
years, researchers have proved theoretically and experimentally existences of many non-classical
optical states, such as Schrödinger’s cat state [12], squeezed state [5,9,10,13], photon-added
entangled coherent state [14–16], Fock state [17–20]. Among them, since squeezed state has
an advantage of being lower than quantum shot-noise limit, its applications in gravitational
waves detection [21,22], quantum key distribution and optical communication [23–25] have
received extensive attention. Especially, squeezed state minimizes a combination of quantum
radiation pressure noise and shot noise by tuning squeezing phase and squeezing level with a filter
cavity to optimize sensitivity of Advanced LIGO detector and improve measurement precision
[21,22]. As a typical non-classical light, continuous-variable squeezed light shows obvious
photon bunching statistics (i.e. wave nature) [26] and anti-bunching effects (i.e. particle nature)
in special amplitude-displacement cases [27,28]. Afterwards, many experimental methods for
squeezed light generation with optical parameter oscillator (OPO) cavity [29], four-wave mixing
[30,31], and others [32,33] have been proposed, which has also promoted the research on the
photon statistics of squeezed light. It is important to further the understanding of high-order
coherence of squeezed light at single-photon detection level.
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Second-order coherence g(2) is a standard metric for distinguishing different light fields. For
example, when delay time τ = 0, g(2)>1 indicates incoherence of light fields or indistinguishability
of photons [34–38]. g(2) = 1 indicates a coherent state and g(2)<1 indicates a non-classical
state with Sub-Poisson distribution which has anti-bunching statistics [39]. Accordingly, HBT
scheme enables research on the second-order coherence of squeezed state with non-classical
feature [26,27]. In these works, the anti-bunching photon statistics of squeezed state stems from
the interference of two-photon emission and coherent light, and the coherence can be partly
changed by adjusting the intensity of the injected or interference light. The researches have been
mainly devoted to elucidating the influences of squeezing parameter and displacement on the
second-order coherence of squeezed state. However, the influence of squeezing phase on the
coherence is not fully explored. Meanwhile, the second-order coherence g(2) only uncovers the
variance of the photon number distribution. The higher-order coherences g(3) and g(4), which
respectively reflect the skewness and kurtosis of the distribution, offer more information on
multi-photon emission and can be used to characterize the nonclassical feature of light field
[40,41]. Extended HBT schemes combined with more single-photon detectors are used to access
high-order coherences [41,42]. The measurements of high-order coherences for different states
have been investigated in the past decades [41–44], and have been applied to ghost imaging
[45,46], quantification of timescales in phonon laser [47], characterization of single-photon
detectors [48], and so on. The effects of squeezing phase, background noise, and detection
efficiency on high-order coherences are also important for the quantum statistics of squeezed
state. Controllable high-order coherences of squeezed state with comprehensive analysis of
various influential factors, which continuously vary from bunching to anti-bunching, remain
elusive and to be explored.

In this work, we exploit an extended HBT scheme with four single-photon counting modules
(SPCMs) to investigate high-order coherence of phase-dependent squeezed state. High-order
coherence of the squeezed state can be continuously varied from anti-bunching effect to super-
bunching effect by adjusting the squeezing phase from 0 to π. The effects of squeezing degree,
displacement, background noise and overall efficiency on the coherences are studied. The optimal
anti-bunching and super-bunching effects are obtained with the same feasible parameters, except
the squeezing phase. The continuous-variable coherence of the phase-dependent squeezed state
is prepared for quantum information applications.

2. Theoretical model

The schematic diagram is shown in Fig. 1. The input squeezed light is a non-classical photon
source with oscillating photon number distributions [49].
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where θ is the squeezing phase, r is the squeezing parameter, and α (α ∈ R) is the displacement.
Hn(x) is the Hermite polynomials.

We can prepare a phase-dependent squeezed state by the OPO cavity and measure the state by
an extended HBT device. Then a beam splitter B0 with a transmittance η is placed in front of the
measurement unit to simulate the loss and detection efficiency of the entire system. Meanwhile,
we also consider the effect of noise |β⟩ on the system. The noise |β⟩ is mainly caused by dark
counts and background noise, and the photon number distribution follows the Poisson distribution
Pnoise(n) = γn exp(−γ)/n!, where γ = |β |2 represents the average photon number of noise. The
noise-affected phase-dependent squeezed state then passes through three beam splitters B1, B2,
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Fig. 1. Schematic diagram for examining high-order coherences of phase-dependent
squeezed state based on extended HBT measurement using four SPCMs. η is overall
efficiency and β is background noise. B1, B2, and B3 are 50/50 lossless beam splitters and
D1, D2, D3, and D4 are single-photon counters. DM: dichroic mirror, PZT: piezoelectric
ceramic transducer, OPO: optical parameter oscillator.

B3, and finally the HBT detection system consisting of four SPCMs D1, D2, D3, and D4 measures
its probability of joint photon number distribution, as shown in Fig. 1.

After the phase-dependent squeezed state with photon number distribution Pscs(n) in Eq. (1)
passes through the beam splitter B0 with the overall detection efficiency η, its photon number
distribution evolves through the Bernoulli transformation as

Λ
n
m =
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n=m

Pscs(n)
⎛⎜⎝

n

m
⎞⎟⎠ ηm(1 − η)(n−m), (2)

where ⎛⎜⎝
n

m
⎞⎟⎠ = n!

m!(n−m)! . The light field is then mixed with the background noise |β⟩ at the beam

splitter B1, which can be considered as a convolution process. The photon number distribution
of the weak background noise Pnoise(n) obeys the Poissonian distribution. Therefore, the mixed
photon number distribution arriving at B1 can be written as

Λ
m
L =

L∑︂
m=0
γ(L−m)e−γΛn

m/

L−m∏︂
i=1

i, (3)

where L is the total photon numbers reaching the beam splitter B1. After B1, N photons are
transmitted and L − N photons are reflected. Subsequently, the N transmitted photons reach B2,
and K photons are reflected into detector D1, while N − K photons are transmitted to detector
D2. Then L − N photons in the reflection path of B1 reach B3. M and L − N − M photons reach
detectors D3 and D4 after reflection and transmission of B3, respectively.

The extended HBT device consisting of four SPCMs measures the joint photon probability
Γclick⊗i, where i indicates the number of clicking detectors. Since the four detectors have the
same performance and the three beam-splitters B1, B2, and B3 in the double HBT system are all
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50:50 beam splitters, the final photon probabilities are limited to five cases, i.e.

Γclick⊗0 =Λ
m
L=0,

Γclick⊗1 =4
∞∑︂

L=1
Λ

m
L

(︃
1
2

)︃2L
,

Γclick⊗2 =6
∞∑︂

L=2
Λ

m
L

L−1∑︂
k1=1

L!
(︃
1
2

)︃2L
/

2∏︂
i=1

ki!,

Γclick⊗3 =4
∞∑︂

L=3
Λ

m
L

L−1∑︂
k1=2

k1−1∑︂
k3=1

L!
(︃
1
2

)︃2L
/

4∏︂
i=2

ki!,

Γclick⊗4 =

∞∑︂
L=4
Λ

m
L

L−2∑︂
k1=2

k1−1∑︂
k3=1

k2−1∑︂
k5=1

L!
(︃
1
2

)︃2L
/

6∏︂
i=3

ki!,

(4)

where k1 = N, k2 = L − N, k3 = K, k4 = N − K, k5 = M, and k6 = L − N − M. According
to the definition of correlation function [2], the m-order coherence through photon counting
measurement can be expressed as follows:

g(m) =
⟨n1n2 · · · nm⟩

⟨n1⟩ ⟨n2⟩ · · · ⟨nm⟩
. (5)

where nm represents the photon number and ⟨·⟩ denotes the ensemble average. We use the double
HBT system to obtain the probability distribution Γclick⊗i of the phase-dependent squeezed state
and the high-order coherence is derived by substituting Eq. (4) into Eq. (5). Then we can have
the second, third, and fourth-order coherences determined by the detected photon probabilities.

g(2) =
8Γclick⊗2 + 24Γclick⊗3 + 48Γclick⊗4

3 ⟨n⟩2 ,

g(3) =
16Γclick⊗3

⟨n⟩3 ,

g(4) =
256Γclick⊗4

⟨n⟩4 ,

(6)

where ⟨n⟩ =
∑︁∞

i=0 iΓclick⊗i is the total average number of photons detected by the system. The
detailed derivation of the high-order coherences based on the extended HBT scheme is given in
Appendix.

3. High-order coherence of phase-dependent squeezed state

For an input phase-dependent squeezed state, it has the following expression:

|ξ,α⟩ = S (ξ)D (α) |0⟩ , (7)

where S (ξ) and D (α) are unitary squeezing operator and displacement operator, respectively.
ξ = reiθ is the squeeze factor with the squeezing phase θ and α is the amplitude displacement. In
the absence of delay time, the normalized high-order photon coherence can be obtained by using
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Eq. (5)
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where Ω = α
(︁
cosh r − eiθ sinh r

)︁
, A = |Ω|2 + sinh2 r, B =

(︁
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C = cosh 2r + 3 sinh2 r, and D = 13 cosh2 r + 23 cosh 2r. The Eq. (8) indicates that the ideal
high-order coherences of the squeezed state are related to the three parameters, i.e. squeezing
parameter r, amplitude displacement α, and squeezing phase θ. The A and B are both real numbers.
Eq. (6) gives the high-order coherences with taking into account the effects of background noise
and detection efficiency. If the input state is |α, ξ⟩ = D (α) S (ξ) |0⟩ in which the displacing and
squeezing operations are opposite to Eq. (7), the similar continuous-variable coherences are
also obtained and it should be noted that the flexible operations provide powerful support for
the experiment feasibility. The second-order coherence g(2) reflects the mean value of photon
number distribution, and the third-order coherence g(3) and fourth-order coherence g(4) reflect the
statistical skewness and kurtosis respectively. The analysis of the high-order coherences allows
us to have a deeper understanding of quantum statistics of the squeezed state.

4. Results

4.1. High-order coherence of phase-dependent squeezed state for θ = 0
The high-order coherences of phase-dependent squeezed state is closely related to the three
parameters: r, α, and θ. We investigate and obtain the high-order coherences of the phase-
dependent squeezed state as functions of squeezing parameter r, displacement α, and squeezing
phase θ. The experiment feasibility of this scheme is also verified.

Figure 2 shows the results of high-order coherences versus the three parameters [Figs. 2(a)–2(c)]
according to Eq. (8), and the maps of high-order coherences versus r and α when θ = 0
[Figs. 2(d)–2(f)]. Light blue regions exhibit photon anti-bunching effect (g(n)<1), and regions
exhibiting photon super-bunching (g(n)>n!) are marked progressively darker. In the ideal case,
the high-order coherences g(n) give a continuous variation with the squeezing phase θ, squeezing
parameter r, and amplitude displacement α, as shown in Figs. 2(a)–2(c). When the amplitude
displacement α is held constant, the g(n) exhibits a 2π-periodic variation with the squeezing
phase θ and can continuously shift from anti-bunching regions to super-bunching regions as the
squeezing parameter r increases. When the r is kept constant, the g(n) also exhibits a 2π-periodic
variation with the θ and can continuously vary from super-bunching regions to anti-bunching
regions as the α increases. Moreover, the photon statistics of the phase-dependent squeezed
state can be changed continuously between anti-bunching effect (g(n)<1) and super-bunching
effect (g(n)>n!) as the squeezing phase θ varies. When the phase θ is kept constant, the g(n) can
continuously shift between super-bunching regions and anti-bunching regions as the displacement
α and the squeezing r vary. In Figs. 2(d)–2(f), when the squeezing phase θ = 0 and the squeezing
r is weak, the g(n) can continuously vary from super-bunching effect to anti-bunching effect
as the amplitude displacement α increases. For small α at θ = 0, the g(n) can continuously
vary from anti-bunching regions to super-bunching regions as the r increases. The controllable
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coherence squeezed state is beneficial to boosting an implementation of high-speed, remote and
scalable quantum communication, especially the communication of combining discrete-variable
and continuous-variable approaches [25]. Moreover, the phase-dependent squeezed state with
controllable coherence contributes to improving measurement precision of Advanced LIGO
detection [22]. It is important and potentially useful for hybrid discrete- and continuous-variable
quantum key distribution and high-precision quantum sensing.

Fig. 2. (a)-(c) g(2), g(3), and g(4) versus squeezing parameter r, displacement α, and
squeezing phase θ; (d)-(f) maps of g(2), g(3), and g(4) of the phase-dependent squeezed state
versus r and α when θ = 0.

When α = 0, the phase-dependent squeezed state turns into a squeezed vacuum state. In our
previous work, the extended HBT scheme has been used to specifically analyze the high-order
coherences of the squeezed vacuum state versus the squeezing parameter and detection efficiency,
and further details refer to [41]. When the displacement α ≠ 0, the high-order coherence g(n)
(n = 2, 3, 4) changes periodically with the phase θ on a cycle of 2π. The phase-dependent
squeezed state with squeezing phase θ = 0 can be prepared experimentally. Based on the
double-HBT scheme, the theoretical results of Figs. 3(a), 3(c), 3(e) show that the high-order
coherences follow a nonmonotonic dependence on the amplitude displacement α, revealing a dip
for a critical low α. The dip indicates that two-photon destructive interference exists between
the squeezing amplitude and the displacement amplitude. For small squeezing parameters
r, the high-order coherences behave from super-bunching effect to anti-bunching effect, and
then approach to 1, as the α increases. For the squeezing r = 0.001, the minimum values of
g(2) = 0.0034, g(3) = 0.0009, and g(4) = 0.0003 can be obtained when the α are 0.032, 0.055,
and 0.074 respectively. The minimum anti-bunching values of g(n) increase as the squeezing
r increases. In Figs. 3(b), 3(d) and 3(f), the high-order coherences also show a nonmonotonic
variation as the squeezing parameter r increases, and the g(n) falls from 1 to the minimum
anti-bunching values and continuously increases to super-bunching values. Meanwhile, as can
be seen in Fig. 3, the theoretical results of g(n) become consistent with the ideal ones as the
displacement α and squeezing parameter r increase. The solid curves in Fig. 3 correspond to
the results obtained from Eq. (8) in an ideal case (i.e., η = 1 and γ = 0), and the dashed curves
indicate the results obtained from Eq. (6) in a feasible experiment case (η = 0.5 and γ = 10−5).
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Fig. 3. High-order coherence g(n) (n = 2, 3, 4) versus displacement α and squeezing
parameter r for squeezing phase θ = 0. The solid curves indicate the ideal case of
background noise γ = 0 and detection efficiency η = 1. The dashed curves indicate the
feasible case of γ = 10−5, η = 0.5.

Furthermore, it should be noted that due to the effects of background noise and detection
efficiency, the g(n) deviation between the ideal values and the experimentally feasible values is
relatively large for low displacement α and weak squeezing r. In Fig. 4, we analyze the effects
of background noise γ and detection efficiency η on the minimum high-order coherences g(n)min,
which shows the strong anti-bunching effect. As the background noise γ decreases and the
detection efficiency η increases, the g(n)min approaches to 0 when the squeezing parameter r = 0.001
and squeezing phase θ = 0. Meanwhile, the anti-bunching effects of higher-order coherences
g(n) (n>2) are more robust against the background noise γ and the detection efficiency η than
that of g(2). The background noise γ for g(4)<0.5 is one order of magnitude larger than the
background noise for g(2)<0.5. It is easier to observe strong anti-bunching effect by measuring
the higher-order coherence.

4.2. High-order coherence of phase-dependent squeezed state for θ = π

To investigate the super-bunching effect of phase-dependent squeezed state, we also analyze the
high-order coherence versus squeezing parameter r for squeezing phase θ = π, as shown in Fig. 5.
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Fig. 4. Maps of (a) g(2)min, (b) g(3)min, and (c) g(4)min as functions of background noise γ and
detection efficiency η when squeezing parameter r = 0.001 and squeezing phase θ = 0.

The solid curves indicate the high-order coherence g(n) in the ideal case of background noise γ = 0
and detection efficiency η = 1, and the dashed curves indicate the g(n) when γ = 10−5 and η = 0.5.
The high-order coherence behaves super-bunching effect (g(n)>n!) for small displacement α,
and the g(n) first increases to the maximum and then decreases as the squeezing parameter r
increases. For α = 0.01 and θ = π, the maximum high-order coherences are g(2) = 2.5 × 103,
g(3) = 2.2 × 104 and g(4) = 5.6 × 107 with r = 0.01. The straight lines in Fig. 5 represent the
values of n! (n = 2, 3, 4). It should be noted that the high-order coherence g(n) can change from
anti-bunching effect to super-bunching effect when the squeezing phase θ turns from 0 to π.

Fig. 5. High-order coherence g(n) as a function of squeezing parameter r for squeezing
phase θ = π with three α: 0.01, 0.1, and 1. The solid curves indicate g(n) in an ideal case of
γ = 0, η = 1 and the dashed curves indicate the results when γ = 10−5 and η = 0.5.

4.3. g(n) of phase-dependent squeezed state for continuous θ

The high-order coherences of phase-dependent squeezed state continuously vary from strong
anti-bunching effect to super-bunching effect as the squeezing phase θ changes. The results
are shown in Fig. 6. The g(n) versus θ varies with a period of 2π, and the photon number
distribution of phase-dependent squeezed state gradually tends to Poisson distribution as the
background noise γ increases. For the feasible detection efficiency η = 0.5 and background noise
γ = 10−5, the g(2) with α = 0.032 and r = 0.001, g(3) with α = 0.063 and r = 0.002, and g(4)
with α = 0.017 and r = 5 × 10−4 allow us to observe the transition from anti-bunching effect
(g(n)<1) to super-bunching effect (g(n)>n!) by continuously adjusting squeezing phase θ. It also
indicates that the weak squeezing can induce the continuous-variable high-order coherences of
phase-dependent squeezed state.
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Fig. 6. g(n) as a function of squeezing phase θ for detection efficiency η = 0.5 and various
background noises γ.

5. Discussion

With the development of single-photon detection technology, the typical SPCM detection
efficiency with a range of 10%–70% can be achieved higher than 50% at 852 nm. The count
rate of background noise is from 25 counts/s to 1500 counts/s and the resolution time is higher
than 350 ps. Accordingly, the background noise γ can be as low as the order of 10−9 in the
feasible experimental case. When θ = 0 with γ = 10−5 and η = 0.5, the strong anti-bunching
effects of g(2) = 0.042, g(3) = 0.010, g(4) = 0.003 are obtained at weak squeezing r = 0.001
(i.e. 0.009 dB) and small displacements α = 0.032, α = 0.055, α = 0.074. The magnitude of
squeezing in dB units is given by −10 log10 e−2r. When θ = π with the same feasible parameters,
the super-bunching effects of g(2) = 3.786, g(3) = 6.190, g(4) = 375.9 are obtained for r = 0.009
dB and α = 0.032, r = 0.017 dB and α = 0.063, r = 0.004 dB and α = 0.016, respectively. The
phase-dependent squeezed state can be prepared and its photon statistics shows a continuous
variation from anti-bunching effect (g(n)<1) to super-bunching effect (g(n)>n!) as the squeezing
phase θ is tuned. Furthermore, as the detection efficiency increases and the background noise
decreases, the high-order coherences corresponding to the minimum anti-bunching and maximum
super-bunching effects will be improved.

6. Conclusion

The high-order coherence of phase-dependent squeezed state based on the extended HBT scheme
is investigated. The coherence versus the squeezing parameter r, displacement α and squeezing
phase θ is analyzed, and it can behave a continuous variation from anti-bunching effect to
super-bunching effect. The effects of background noise γ and detection efficiency η on the g(n)
are also taken into account. The higher-order coherences g(n) (n>2) are more robust against
background noise and detection efficiency than the second-order coherence g(2). As the squeezing
phase θ increases from 0 to π, the g(n) of the phase-dependent squeezed state changes from the
minimum g(n)min (g(n)min<1) to the maximum g(n)max (g(n)max>n!). It is also verified with experimentally
feasible parameters. For θ = 0, γ = 10−5, η = 0.5, the strong anti-bunching effects of g(2) = 0.042,
g(3) = 0.010, g(4) = 0.003 can be achieved at weak squeezing and small displacements. For
θ = π with the same feasible parameters, the super-bunching effects of g(2) = 3.786, g(3) = 6.190,
g(4) = 375.9 can be observed at small r and α. The results indicate that tuning squeezing phase θ
plays an active role in continuously controlling high-order coherence. This study will contribute
to the ongoing attempts to boost the required sensitivity in quantum metrology.

Appendix

For an input state, m photons of the total n photons pass through the beam splitter B0 with a
transmittance of η, and the photon transmission probability Λm is proportional to the product of
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ηm and (1 − η)n−m, i.e. Λm ∝ ηm(1 − η)(n−m). Meanwhile, it is not known which m photons of the
total number n are transmitted through B0, so the photon transmission probability must have a
binomial combination:

Λm =
⎛⎜⎝

n

m
⎞⎟⎠ ηm(1 − η)(n−m). (9)

Then the photon transmission probability Λm is multiplied by the original photon number
distribution of the input state Pin, and summed over n photon numbers. The photon number
distribution after B0 can be expressed as a Bernoulli distribution [49]:

Λ
n
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n=m

Pin(n)
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n

m
⎞⎟⎠ ηm(1 − η)(n−m). (10)

Subsequently, the input state is mixed with background noise |β⟩ at the beam splitter B1. The
mixed photon number distribution includes the photon number distribution of the detection
efficiency Λn

m and the photon number distribution of the background noise Pnoise(n). Accordingly,
the mixed photon number distribution can be expressed as Eq. (3). In this case, L represents the
number of photons before B1. N photons are transmitted and L−N photons are reflected after B1.
Then N photons are split by B2, and K photons arrive at the detector D1, and N −K photons arrive
at the detector D2. Meanwhile, L − N photons pass through B3 and M photons are transmitted
into the D3, and L − N − M photons are reflected into the D4. Since the four detectors are all
on-off single-photon counters and B1, B2, B3 are all 50/50 lossless beam splitters. Therefore,
five joint photon probabilities can be obtained through the extended HBT scheme

Γclick⊗0 =Γ(0, 0, 0, 0) = Λm
L=0,

Γclick⊗1 =Γ(1, 0, 0, 0) + Γ(0, 1, 0, 0) + Γ(0, 0, 1, 0) + Γ(0, 0, 0, 1)

=4
∞∑︂

L=1
Λ

m
L

(︃
1
2

)︃2L
,

Γclick⊗2 =Γ(1, 1, 0, 0) + Γ(1, 0, 1, 0) + Γ(1, 0, 0, 1) + Γ(0, 1, 1, 0)
+ Γ(0, 1, 0, 1) + Γ(0, 0, 1, 1)

=6
∞∑︂

L=2
Λ

m
L

L−1∑︂
k1=1

L!
(︃
1
2

)︃2L
/

2∏︂
i=1

ki!,

Γclick⊗3 =Γ(1, 1, 1, 0) + Γ(1, 1, 0, 1) + Γ(1, 0, 1, 1) + Γ(0, 1, 1, 1)

=4
∞∑︂

L=3
Λ

m
L

L−1∑︂
k1=2

k1−1∑︂
k3=1

L!
(︃
1
2

)︃2L
/

4∏︂
i=2

ki!,

Γclick⊗4 =Γ(1, 1, 1, 1) =
∞∑︂

L=4
Λ

m
L

L−2∑︂
k1=2

k1−1∑︂
k3=1

k2−1∑︂
k5=1

L!
(︃
1
2

)︃2L
/

6∏︂
i=3

ki!,

(11)

where k1 = N, k2 = L − N, k3 = K, k4 = N − K, k5 = M, and k6 = L − N − M.
Based on the double HBT scheme, the second-order coherence of the input state is determined,

and the four detectors can be divided into two groups. Γ(n1, n2) is the joint distribution probability
of n1 and n2 photons detected by the two groups of detectors. Thus, the second-order coherence
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can be expressed as

g(2) =
⟨n1n2⟩

⟨n1⟩ ⟨n2⟩
=

⟨n1n2⟩[︁ 1
2 ⟨n⟩

]︁2 =

∑︁
n1n2 n1n2Γ(n1, n2)

1
4 [
∑︁

n nΓclick⊗n]2

=
Γ(1, 1) + 2Γ(1, 2) + 2Γ(2, 1) + 4Γ(2, 2)

1
4 ⟨n⟩2

=
8Γclick⊗2 + 24Γclick⊗3 + 48Γclick⊗4

3 ⟨n⟩2 .

(12)

By picking three or four detectors in the double HBT scheme, the third-order or fourth-order
coherence of the input state can be obtained as

g(3) =
⟨n1n2n3⟩

⟨n1⟩ ⟨n2⟩ ⟨n3⟩
=

∑︁
n1n2n3 n1n2n3Γ(n1, n2, n3)[︁ 1

4 ⟨n⟩
]︁3

=
Γ(1, 1, 1)[︁ 1

4 ⟨n⟩
]︁3 =

Γ(1, 1, 1, 0)[︁ 1
4 ⟨n⟩

]︁3 =
16Γclick⊗3

⟨n⟩3 ,
(13)

g(4) =
⟨n1n2n3n4⟩

⟨n1⟩ ⟨n2⟩ ⟨n3⟩ ⟨n4⟩
=

∑︁
n1n2n3n4 n1n2n3n4Γ(n1, n2, n3, n4)[︁ 1

4 ⟨n⟩
]︁4

=
Γ(1, 1, 1, 1)[︁ 1

4 ⟨n⟩
]︁4 =

256Γclick⊗4

⟨n⟩4 .
(14)
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