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A quantum sensor network with multipartite entanglement offers a sensitivity advantage in optical phase esti-
mation over the classical scheme. To tackle richer sensing problems, we construct a distributed sensor network
with four nodes via four partite entanglements, unveil the estimation of the higher order derivative of radio-
frequency signal phase, and unlock the potential of quantum target ranging and space positioning. Taking
phased-array radar as an example, we demonstrate the optimal quantum advantages for space positioning
and target ranging missions. Without doubt, the demonstration that endows innovative physical conception
opens up widespread application of quantum sensor networks. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.469166

1. INTRODUCTION

Quantum metrology provides a route to conquer the measure-
ment sensitivity limitation imposed by quantum noise in sens-
ing devices [1–3]. As a unique quantum resource, squeezed and
entangled states present the feature of quantum correlation,
which can suppress statistical scaling of errors n−

1
2 in interfero-

metric measurements, and thereby enhance measurement pre-
cision, until approaching and reaching the Heisenberg bound
1∕n [4–6]. It holds particular relevance to the power constraint
introduced by optical damage or quantum measurement back-
action, and an ultra-weak signal that is thoroughly submerged
in inherent quantum noise. Laser radar is a prime case of ultra-
weak signal sensing, and has an urgent demand for measure-
ment sensitivity beyond the shot noise limit [7,8].

Since quantum metrology was recognized in the 1980s [9],
both the theoretical scheme and experimental technology of
quantum metrology have advanced dramatically [10,11]. In
this regard, numerous demonstrations of quantum-enhanced
metrology have been reported, for example, to enhance the per-
formance of gravitational wave detection [12–15], magnetic
field detection [16,17], and biological measurement [18] and
imaging [19,20], and are expected to be applied in more prac-
tical areas. Furthermore, quantum sensing has been upgraded
from a single sensor to a sensor network to realize spatially dis-
tributed sensing of multi-parameters. Theoretical schemes of
distributed quantum sensing have been proposed in both
the discrete variable (DV) domain [21–24] and continuous var-
iable (CV) domain [25–29]. By utilizing entangled photons
[30,31] or entangled states [32], the average optical phase

was estimated experimentally with precision beyond what is
achievable with seperable probes. Very recently, Xia et al.
extended the application of distributed quantum sensing to a
radio-frequency signal based on tripartite CV entanglement
[33], and subsquently demonstrated the supervised learning as-
sisted by an entangled sensor network for quantum-enhanced
data classification [34]. Taking a typical sensing mission for
phased-array radar (PAR) as an example, the fundamental re-
quirement is to be able to discover a target and acquire its posi-
tion relative to the sensor, not only to discriminate whether the
target is present or not. However, for space positioning of a mov-
ing target with PAR, it is necessary to estimate three angles of
arrival simultaneously, which cannot be implemented by three
sensor nodes [33]. Moreover, estimating the angle of arrival and
its derivative with high accuracy is necessary to implement target
ranging, requiring at least four sensor nodes. In addition, the
power limit of laser radar that comes from the endless pursuit
of the detecting range is ultimately determined by noise perfor-
mance. For a classical system, poor noise performance imposes
restrictions on the intensity of the return signal, and that in turn
limits the detecting range, which has the potential to be im-
proved to some extent via squeezed light. To date, quantum po-
sitioning [35,36] and quantum ranging [37] protocols based on
multipartite entanglement have been proposed theoretically, but
none of these protocols have been demonstrated experimentally.

In this paper, we experimentally demonstrate a quantum
sensor network empowered by four-partite CV entanglement,
optimizing the quantum advantage in global parameter estima-
tion including the higher order derivative of radio-frequency
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signal phase. The global parameter of four sensors φ �P
4
j�1 βjφj, where βj is the weights for different sensing prob-

lems, is estimated in our experiment, achieving quantum noise
reduction of 6.0 dB� 0.2 dB. The quantum sensor network is
configured with an equally weighted distribution to maximize
the quantum advantage for measuring the angle of arrival of the
return signal along three independent dimensions, showing
quantum positioning. The sensor network is reconfigured with
a weighted distribution of −11∕6:3:−3∕2:1/3 (2:−5:4:−1) to
maximize the quantum advantage of the first (second) deriva-
tive of PAR phase, demonstrating quantum ranging.

PAR consists of multiple sensing elements appropriately
arranged in space, whose amplitude and phase can be independ-
ently controlled to provide full space scanning without the in-
fluence of receiving sensitivity [38]. Space positioning can be
realized by measuring the angle of arrival of the return signal
in three dimensions [39], which can be inferred from the phase
difference between two sensor nodes of each dimension [33].
Thus, to achieve space positioning, it requires at least four sensor
nodes. As the other key capacity, target ranging, dependent on
the angle of arrival and its derivative of the return signal in
one dimension, can be obtained by configuring a diverse
weighted distribution among these sensor nodes. As such, a
reconfigurable beam splitter network (BSN), in terms of mini-
mum estimation variance, distributes the needed portion of a
squeezed state to these sensor nodes, leading to the optimal
quantum advantage in different cases, which serves as the esti-
mation of the angle of arrival and its first (second) derivative be-
yond the shot noise limit. There are two cases of sensor network
topology: equilateral star topology for space positioning, and lin-
ear topology for target ranging. Compared with the demonstra-
tion of only an average outcome among all of sensor nodes, the
richer physics and more intriguing application scenario of a dis-
tributed quantum sensor network are unveiled by our work.

2. QUANTUM POSITIONING PROTOCOL

In the quantum positioning case, three sensor nodes are ar-
ranged in an equilateral star topology, while the central node
is situated at the triangle center; the schematic illustration of
quantum positioning is represented in Fig. 1. When the target
occurs, we can acquire three independent angles of arrival in
three-dimensional space, and the target is positioned at the
intersectional region of three angles of arrival. Critically, the
distributed quantum sensor network must be optimized to
generate minimum outcome uncertainty in a given distributed

sensing problem. Here, to meet the requirement for simulta-
neous estimation of three angles of arrival with minimum
positioning uncertainty, dependent on the phase difference
between two sensor nodes with the function of θ �
arccos

λ�φj−φ1�
2πΔx �j � 2, 3, 4�, a CV quantum sensor network

with an equally weighted distribution is constructed. Under
the circumstances, the additional noise coupling vanishes, lead-
ing to the minimum estimation variance of the PAR phase that
depends on the initial squeezing factor. The equally weighted
distribution is experimentally verified when the average vari-
ance for PAR phase φ � P

4
j�1 βjφj �β4 � β3 � β2 � 1,

β1 � −1� reaches minimum. At this point, the uncertainties
of three phase differences φ2 − φ1, φ3 − φ1, and φ4 − φ1 re-
present the best compromise, and will have a boosted perfor-
mance for target positioning.

A schematic illustration of our experimental setup is repre-
sented in Fig. 2. The squeezed state of light is generated by
a below-threshold optical parametric amplifier (OPA), which
has been shown in our previous publication in details [40].
The only difference is that the relative phase between the seed
and pump beam is controlled to zero to ensure our OPA oper-
ates in parametric amplification condition, generating the
quadrature phase squeezed state [δ2�Ŷ � � e−2r ; r is the squeez-
ing factor]. The BSN, which consists of three pairs of half-wave
plates and polarization beam splitters, can be set to any splitting
ratio by tuning the angle of half-wave plates. After the BSN,
four partite CV entangled states with correlation variance
[δ2�β1Ŷ 1�β2Ŷ 2�β3Ŷ 3�β4Ŷ 4�� e−2r ; Ŷ i �i � 1, 2, 3, 4�
is the phase quadrature of each partite] are generated and dis-
tributed to four sensor nodes. Each sensor node entails an
electro-optical modulator (EOM) to simulate the return signal
from the target, and homodyne detection (HOM) to discern
the return signal with sensitivity beyond the shot noise limit.
In each node, the relative phase between the local oscillator and
sensing beam is controlled to �π∕2 by utilizing the interfer-
ence signal as the error signal. The EOM that has high radio
frequency to photonics conversion efficiency, is an excellent
simulator of PAR. Four EOMs are independently driven by
four clock-synchronized function generators with the same
modulation frequency of 3 MHz, but the amplitude and phase
are independently manipulated to generate four independent
displacements αj �j � 1, 2, 3, 4� on the squeezed phase quad-
rature [33]. The output of four homodyne detectors through
the same four bandpass filters from 1.8 MHz to 4.5 MHz is
demodulated with 3 MHz signals. The demodulation signals
are clock synchronized with the corresponding return signals,
but their phases can be independently manipulated to compen-
sate for the delay difference of the processing circuit. The time-
domain data from four mixers are collected and postprocessed
to derive the estimated parameters under different weights, and
demonstrate diverse quantum-enhanced sensing applications.

The noise variances of the measured PAR phase are limited
by the initial squeezing factor and system loss. It is worth not-
ing that the parametric amplification process (for the genera-
tion of a quadrature phase squeezed state) intensifies the noise
coupling between the seed and pump field, which usually re-
sults in the degradation of the squeezing factor [41]. As the

Fig. 1. Schematic illustration of quantum positioning based on CV
entangled network. (a) Principle of quantum positioning. (b) Structural
diagram of PAR network.
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pump factor is increased, the noise coupling is enhanced. Thus,
we need to make a trade-off between the pump factor and noise
coupling, both of which are key factors affecting the squeezing
factor. Here, the OPA operates at the pump factor of

ffiffiffi
2

p
∕2,

with quantum noise reduction of 8.0� 0.2 dB generated,
providing a superior quantum resource for the downstream
experiment.

During the experiment, delicate mode-matching with inter-
ference efficiency of 99.8% is accomplished. The optimal
weights are scheduled in terms of the different mission require-
ments, and the number of optical elements is as small as pos-
sible, reducing the additional noise coupling to the maximum
extent and minimizing the estimation variance of diverse physi-
cal scenarios. On the other hand, the phase of the demodula-
tion signal is carefully optimized to suppress the noise coupling
of anti-squeezing quadrature into squeezing quadrature as
much as possible.

Suppose that the PAR operates in single-transmitter and
multi-receiver mode; we show the experimental results of
quantum-enhanced PAR in two sensing tasks. PAR1 serves
as a transmitter and receiver, and all other nodes act as receivers.

Under ideal conditions, three angles of arrival define a point
in space, which is the principle of target positioning. More de-
tails can be found in Appendix A. However, the quantum noise
of an optical field imposes a limitation on positioning precision,
defining a space region instead of a point. Positioning precision
can be improved by reducing the estimation variance of each
angle of arrival. According to the above analysis, a quantum
sensor network with an equally weighted distribution can offer
a precision advantage in the angle of arrival estimation over
the other weighted one. We estimate the average displacement
for radio-frequency phase (φ � φ4 � φ3 � φ2 − φ1) by meas-
uring the phase quadrature of each node and summing the
photocurrents of four homodyne detectors. Figure 3(a) repre-
sents the estimation of average field amplitude and estimation
variance for φ as a function of the applied PAR phases for all

sensors synchronously. We repeatedly measured the depend-
ence of estimated amplitude (average displacement) on applied
PAR phase from zero to 2π with phase interval of 20 deg. To
reach optimum estimation precision, the applied PAR phase is
manipulated to generate identical displacements on the phase
quadrature in each sensor node simultaneously. By minimizing
the estimation variance, a 6.0 dB� 0.2 dB quantum noise re-
duction is achieved, confirming the entanglement properties
of the sensor network with equally weighted distribution. At
this point, the splitting ratios of three variable beam splitters
(VBSs) are 25:75, 33:67, and 50:50, and the three angles of

Fig. 2. Experimental setup of quantum-enhanced PAR with a CV
entangled network. OPA, optical parametric amplifier; HWP, half-
wave plate; PBS, polarization beam splitter; BSN, beam splitter net-
work; EOM, electro-optical modulator; HOM, homodyne detection.
BPF, bandpass filter.
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Fig. 3. Estimation of average field amplitude and normalized noise
powers versus applied PAR phases. (a) Estimated average field ampli-
tude. Data points: average displacement from homodyne detection;
orange curves: sinusoidal fit; orange shaded area: estimation uncertain-
ties for the entangled (dark color) and classical separable (light color)
sensor networks. The blue curve shows the time-domain measurement
result of standard quantum limit; the purple, light purple, green,
and light green curves represent the measurement results with the en-
tangled sensor network at several PAR phases: π∕9, 5π∕9, 11π∕9, and
13π∕9, respectively. (b) Measured noise powers of three phase
differences. Black and orange curves show the noise powers based
on classical and entangled schemes, respectively. The circular and
square data points represent noise powers of three different phase
differences with classical and entangled schemes, respectively. All mea-
surement results are normalized to the standard quantum limit.
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arrival are quantified. Figure 3(b) shows the measured noise
powers for three phase differences φj − φ1 �j � 2, 3, 4� for es-
timating the angle of arrival at different applied PAR phases.
The measurement noise variances of three phase differences,
represented by purple, green, and orange, are plotted for both
quantum (square) and classical (circle) cases. The estimation
variances for several cases are normalized to the shot noise limit.
It is evident that the quantum-enhanced sensor network leads
to a reduction in estimation variance, whereas such a noise re-
duction mechanism is absent without the quantum resource.
The reduced noise powers of −2.1� 0.1 dB for φ2 − φ1,
−2.2� 0.1 dB for φ3 − φ1, and −2.1� 0.1 dB for φ4 − φ1

are obtained, which means the detection range is expanded
by at least 12.8%. The noise variances are independent of
the applied PAR phases, allowing the realization of 360-deg
arbitrary scanning. The inset of Fig. 3(b) shows the principle
of the improved positioning precision. It can be inferred that
the uncertainty region of our protocol with multipartite entan-
glement is reduced to 0.4837 in three-dimensional space, in
contrast with the classical protocol, corresponding to position-
ing precision improvement of 51.6%. Suppose we individually
estimate each phase difference φ2 − φ1 (φ3 − φ1, φ4 − φ1) with
the optimal weights 1/2:1/2:0:0 (1/2:0:1/2:0, 1/2:0:0:1/2);
then we can obtain higher sensitivity improvement (6.8 dB)
than that of simultaneous estimation using similar quantum
states. However, the individual estimation will spend more time
performing the measurement task (three times), which is inap-
propriate for the positioning protocol of a moving target.

3. QUANTUM RANGING PROTOCOL

In the quantum ranging case, except for target positioning, tar-
get ranging is another critical specification of a radar system,
which can be expressed as (see Appendix B for more details)

r � �φ 0
1�2
φ 0 0
1

λ

36πΔx
�− sin ζx 0 − cos ζy 0 � iz 0�, (1)

where φ 0
1 and φ 0 0

1 are the first and second derivatives of edge
node PAR1; λ is the wavelength of the PAR field; Δx indicates
the distance between each two sensors; x 0, y 0, and z 0 show the
movement speed of a target; ζ represents the azimuth angle of a
target in terms of the PAR plane. The azimuth angle ζ can be
obtained from the positioning case demonstrated in the pre-
vious section. According to Eq. (1), target ranging can be trans-
ferred to the estimation of the first and second derivatives
of edge node PAR1. Exploiting the Taylor series expansion
of the phase estimator with the estimated phase φ1 of edge node
PAR1 [33], the optimum weights for the first and second deriv-
atives are expressed as β1:β2:β3:β4 � −11∕6:3:−3∕2 :1∕3
and 2:−5:4:−1, respectively. Details of the calculation of opti-
mum weights can be found in Appendix C. As the number of
nodes increases, higher order derivatives for edge node PAR1
can be obtained, standing for a richer physical scenario. Here,
as shown in the inset of Fig. 4, four sensor nodes are arranged
along a straight line, and edge node PAR1 serves as a reference.

To achieve optimum performance in quantum ranging,
weighted distributions need to be configured on the grounds
of the physical quantity measured. At the same time, the
PAR network is arranged in a linear topology. The optimal

weight −11∕6:3:−3∕2:1/3 (2:−5:4:−1) is arranged to imple-
ment the minimum estimation variance of the first (second)
derivative of edge node PAR1; thereby, the splitting ratios
of the VBSs correspond to 27.5:72.5, 62:38, and 82:18
(17:83, 50:50, and 80:20, respectively). The negative signs
in the weights are introduced by adding a π-phase delay in
the corresponding optical path. Figure 5 shows the estimated
average amplitude of the first and second derivatives of PAR1 as
a function of applied PAR phase, with the shaded area repre-
senting the estimation uncertainty of the first (second) deriva-
tive of the node, dark orange (green) for the quantum sensing
protocol, and light orange (green) for the classical protocol.
To satisfy 360-deg fast scanning, a precision advantage of quan-
tum ranging should be offered at an arbitrary azimuth angle,
irrespective of the applied PAR phase. Compared with the
classical protocol, the almost invariable noise reductions of
−5.0� 0.1 dB for the first derivative and −5.4� 0.2 dB for
the second derivative are implemented in the experiment, dem-
onstrating the full scanning range with enhanced precision.
The inset of Fig. 5 represents the topology structure of quan-
tum ranging. In addition, for the noise suppression in three
independent relative phase differences, the first and second

Node3Node1 Node2 Node4

PAR2PAR1 PAR3 PAR4

Sq
ue

eze
d vacuum state

BSN

Fig. 4. Schematic illustration of quantum ranging based on CV
entangled network.

Fig. 5. Comparison of the estimated amplitude for the first and
second derivatives of the PAR phase under two cases. Data points:
means of the measured homodyne signals; curves: sinusoidal fit;
shaded area: estimation uncertainties for entangled (dark color) and
classical separable (light color) sensor networks. All signals are normal-
ized using the same factor for standard quantum limit normalization.
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derivatives of the edge node are still maintained when the
applied PAR amplitude varies, which confirms that the PAR
network can be compatible with the return signal with differ-
ent intensities without sacrificing precision. It can be inferred
from the results of Fig. 5 that the pitch angle with enhanced
precision of 68.4% is achieved on all-around scanning.
Furthermore, combined with noise suppression of 5.4 dB
for φ 0 0

1 , target ranging with enhanced precision of 69.3%
can be realized. In other words, with the same signal to noise
ratio (SNR) of the return signal, the detection range of radar
is increased by 34.3% [42]. It is worth noting that quantum
ranging can be realized only when both the first and second
derivatives are measured simultaneously, meaning that at least
three sensor nodes in line are required. In combination with
quantum ranging, the space positioning of the target becomes
more accurate.

4. CONCLUSION

In conclusion, we have implemented the demonstration of a
quantum-enhanced PAR network exploiting a CV multipartite
entanglement state, verifying the feasibility of quantum posi-
tioning and quantum ranging. By utilizing a sensor network
with an average weighted distribution, quantum positioning
offers a precision advantage of 51.6% in three-dimensional
space over the classical scheme, increasing the detection range
by 12.8%. Moreover, in virtue of diverse weighted distribu-
tions, quantum ranging with enhanced precision of 69.3%
can be realized; thus, the detection range of radar is increased
by 34.3% with the same SNR of the return signal. We expect
to construct a distributed sensing network via a multipartite
entanglement state, which can be applied to track moving tar-
gets in PAR. However, for realistic PAR, the frequency of a
return signal from a target that is not constant depends on
the speed of the moving target. Therefore, to satisfy diverse tar-
get tracking (different speeds of movement), we need the gen-
eration of a broad-bandwidth multipartite entanglement state
and balanced homodyne detectors.

APPENDIX A: PRINCIPLE OF SPACE
POSITIONING

Figure 6 shows the principle of quantum ranging based on
a quantum-enhanced sensor network. In three-dimensional
space, the positioning mechanism is the triangulation of the
angle of arrival from multiple sensors. For a well-known dis-
tance and phase differences between any two sensor nodes,
the angle of arrival can be expressed as

cos θ1 �
�φ2 − φ1�λ
2πΔx

� Δx2 � d 2
2 − d

2
1

2d 2

, (A1)

cos θ2 �
�φ3 − φ1�λ
2πΔx

� Δx2 � d 2
3 − d

2
1

2d 3

, (A2)

cos θ3 �
�φ4 − φ1�λ
2πΔx

� Δx2 � d 2
4 − d

2
1

2d 4

, (A3)

where θ1, θ2, and θ3 represent the three angles of arrival.
φ1, φ2, φ3, and φ4 are the radio-frequency phase of each sensor.

λ is the wavelength of the PAR field. Δx represents the distance
between each two sensors. d 1, d 2, d 3, and d 4 are the dis-
tance between each sensor and target. From Eqs. (A1)–(A3),
the target positioning is given as

φi − φ1 �
πΔx
λ

Δx2 � d 2
i − d 2

1

d i
, i � 2, 3, 4 (A4)

where d 2
1 � x2 � y2 � z2, d 2

2 � �x − Δx�2 � y2 � z2, d 2
3 �

�x � 1
2Δx�2 � �y �

ffiffi
3

p
2 Δx�2 � z2, and d 2

4 � �x � 1
2Δx�2��y −

ffiffi
3

p
2 Δx�2 � z2. From Eq. (A4), the target position can

be estimated by using a standard least-squares approach when
we acquire three phase differences in three-dimensional space.
Each phase difference can be measured by a distributed sensor
network. Therefore, it requires at least four sensor nodes to
achieve space positioning.

For space positioning, the scanning surfaces from four sen-
sor nodes interfere at the target position by manipulating the
phase of the applied PAR field. Space positioning with angles of
arrival has a significant advantage in less data and simple data
processing since only the phase measurement and distance of
each two PAR nodes are required.

APPENDIX B: THEORETICAL MODEL OF THE
QUANTUM RANGING

Figure 7 shows the principle of quantum ranging based on
a quantum-enhanced sensor network. In three-dimensional
space, for given PAR nodes and target, the pitch angle and
azimuth angle are given as

tan θ � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p , cos θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p , (B1)

sin θ � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p , tan ζ � x
y
, (B2)

cos ζ � yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p , sin ζ � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2

p : (B3)

Fig. 6. Principle of quantum positioning based on quantum-
enhanced sensor network.
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From Eqs. (B1)–(B3), the angle of arrival and its changing
rate can be expressed as

θ � arctan
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � y2
p , (B4)

θ 0 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

p �− sin θ sin ζx 0 − sin θ cos ζy 0

� cos θz 0�, (B5)

where θ and θ 0 are the angle of arrival and its derivative; x 0, y 0,
and z 0 show the movement speed of the target; ζ represents the
azimuth angle of the target in terms of the PAR plane. The
distance between the target and edge node is given as

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � y2 � z2

q

� 1

θ 0 �− sin θ sin ζx 0 − sin θ cos ζy 0 � cos θz 0�: (B6)

The angle of arrival in Eq. (B6) is given as

θ � arccos
�φi − φ1�λ
2πΔx

, i � 2, 3,…, (B7)

where λ is the wavelength of the PAR field, and Δx represents
the distance between any two sensors. From Eq. (B7), the angle
of arrival of edge node PAR1 is given as

θ � arccos
λ

36πΔx
φ 0
1: (B8)

Another key factor of quantum ranging is the derivative of
the angle of arrival, expressed as

θ 0 � −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�

λ
36πΔx φ

�1�
1

�
2

r λ

36πΔx
φ 0 0
1 : (B9)

For given radar nodes, target ranging can be translated into
the measurement of the angle of arrival and its first derivative of
edge node PAR1. Taking Eqs. (B8) and (B9) into Eq. (B6), the
target ranging is given as

r � �φ 0
1�2
φ 0 0
1

λ

36πΔx
�− sin ζx 0 − cos ζy 0 � iz 0�: (B10)

In summary, target positioning in virtue of the angle of
arrival in three dimensions has relatively low precision. In com-
bination with target ranging, the space positioning of the target
becomes more accurate.

APPENDIX C: CALCULATION OF OPTIMUM
WEIGHTS

In Appendix C, we aim to optimize the precision of phase dif-
ference estimation. The phase estimation at an edge node is
expressed as

hφi � β1φ1 � β2φ2 � β3φ3 � β4φ4, (C1)

where

φ2 � φ1 � φ 0
1Δx �

1

2
φ 0 0
1Δx2 �

1

6
φ 0 0 0
1 Δx3, (C2)

φ3 � φ1 � φ 0
12Δx �

1

2
φ 0 0
1 �2Δx�2 �

1

6
φ 0 0 0
1 �2Δx�3, (C3)

φ4 � φ1 � φ 0
13Δx �

1

2
φ 0 0
1 �3Δx�2 �

1

6
φ 0 0 0
1 �3Δx�3, (C4)

and one requires β1 � − 11
2 β4, β2 � 9β4, β3 � − 9

2 β4 to ensure
expectation value hφi � φ 0

1Δx � o�Δx2�. If β2 � 2β3 �
3β4 � 1 is required, then β1:β2:β3:β4 � −11∕6:3:−3∕2:1/3
and hφi � φ 0

1Δx � o�Δx2�. At this point, the optimum
weight for the first derivative is expressed as β1:β2:β3:β4 �
−11∕6:3:−3∕2:1/3. Similarly, one requires β1 � −2β4, β2 �
5β4, β3 � −4β4 to ensure the expectation value hφi �
φ 0 0
1Δx2 � o�Δx3�. If β2 � 4β3 � 9β4 � 1 is required, then

β1:β2:β3:β4 � 2:−5:4:1 and hφi � φ 0
1Δx2 � o�Δx3�, and

the optimum weight for the second derivative is expressed
as β1:β2:β3:β4 � 2:−5:4:1.
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